




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
數(shù)據(jù)挖掘應(yīng)用CRM顧客生命周期壽命盈利
獲取消費(fèi)者保持消費(fèi)者消費(fèi)者分析和恢復(fù)收入支出壽命CustomeridentificationCRMbeginswithcustomeridentification.Thisphaseinvolvestargetingthepopulationwhoaremostlikelytobecomecustomersormostprofitabletothecompany.Italsoinvolvesanalyzingcustomerswhoarebeinglosttothecompetitionandhowtheycanbewonback.Elementsforcustomeridentificationincludetargetcustomeranalysisandcustomersegmentation.CustomerattractionOrganizationscandirecteffortandresourcesintoattractingthetargetcustomersegments.Directmarketingisapromotionprocesswhichmotivatescustomerstoplaceordersthroughvariouschannels.directmailorcoupon目標(biāo)營銷客戶流失分析CustomerdevelopmentElementsofcustomerdevelopmentincludecustomerlifetimevalueanalysis,up/crosssellingandmarketbasketanalysis.Customerlifetimevalueanalysisisdefinedasthepredictionofthetotalnetincomeacompanycanexpectfromacustomer.Up/Crosssellingreferstopromotionactivitieswhichaimataugmentingthenumberofassociatedorcloselyrelatedservicesthatacustomeruseswithinafirm.Marketbasketanalysisaimsatmaximizingthecustomertransactionintensityandvaluebyrevealingregularitiesinthepurchasebehaviourofcustomers.Personalizedrecommendationsystems
Informationfilteringandrecommendationrule-basedfiltering,content-basedfiltering,andcollaborativefiltering.Rule-basedfilteringusespre-specifiedif-thenrulestoselectrelevantinformationforrecommendation.Content-basedfilteringuseskeywordsorotherproduct-relatedattributestomakerecommendations.Collaborativefilteringusespreferencesofsimilarusersinthesamereferencegroupasabasisforrecommendation.TypicalpersonalizationprocessunderstandingcustomersthroughprodeliveringpersonalizedofferingbasedontheknowledgeabouttheproductandthecustomermeasuringpersonalizationimpactInadequateinformationinIROnepossiblesolutionforovercomingtheproblemistoexpandthequerybyaddingmoresemanticinformationtobetterdescribetheconcepts.Relevancefeedbacksandknowledgestructureareusedtoaddappropriatetermstoexpandthequeries.Relevancefeedbacksareinformationontheitemsselectedbytheuserfromtheoutputofpreviousqueries.Apersonalizedknowledgerecommendationsystem
Asemantic-expansionapproachtobuildtheuserproanalyzingdocumentspreviouslyreadbytheperson.Thesemantic-expansionapproachthatintegratessemanticinformationforspreadingexpansionandcontent-basedfilteringfordocumentrecommendation.Asamplesemantic-expansionnetworkExperimentalresultsAnempiricalstudyusingmasterthesesintheNationalCentrallibraryinTaiwanshowsthatthesemantic-expansionapproachoutperformsthetraditionalkeywordapproachincatchinguserinterests.自適應(yīng)構(gòu)件檢索構(gòu)件檢索是構(gòu)件庫研究中的重要問題,有效的構(gòu)件檢索機(jī)制能夠降低構(gòu)件復(fù)用成本。構(gòu)件的復(fù)用者并不是構(gòu)件的設(shè)計者或構(gòu)件庫的管理員,在檢索構(gòu)件時對構(gòu)件庫的描述理解不充分,導(dǎo)致難以給出完整和精確的檢索需求。用戶選擇構(gòu)件的結(jié)果反映其真實需求,如果能夠從用戶的檢索行為以及用戶對檢索結(jié)果的反饋中推斷出用戶的非精確檢索條件與用戶實際需要的精確檢索條件之間內(nèi)在聯(lián)系的模式,就可以提高系統(tǒng)的查準(zhǔn)率?;陉P(guān)聯(lián)挖掘的自適應(yīng)構(gòu)件檢索把關(guān)聯(lián)規(guī)則挖掘方法引入構(gòu)件檢索,從用戶檢索行為以及反饋中挖掘出非精確檢索條件與精確檢索結(jié)果之間的關(guān)聯(lián)規(guī)則,從而調(diào)整檢索機(jī)制,提高構(gòu)件檢索的查準(zhǔn)率。實例{windows}{windows,SQLServer}{Linux}{Linux,Mysql}{金融}{金融,SQLServer}{windows,金融}{windows,金融,SQLServer}零部件供應(yīng)商選擇如何選擇供應(yīng)商不僅決定了產(chǎn)品的質(zhì)量和成本,也決定了產(chǎn)品的銷售價格、維護(hù)費(fèi)用和用戶滿意程度。選擇供應(yīng)商一般以滿足時間約束的條件下最小化物流成本為目標(biāo),沒有考慮零部件故障率與不同地域環(huán)境之間的相關(guān)性。基于關(guān)聯(lián)規(guī)則的零部件供應(yīng)商選擇使用關(guān)聯(lián)規(guī)則挖掘算法,從產(chǎn)品維修記錄中,尋找不同供應(yīng)商提供的產(chǎn)品零部件及其組合在不同地域的頻繁故障模式。在生成供應(yīng)商選擇和配送方案過程中,利用這些頻繁故障模式,選擇合適的零部件供應(yīng)商組合,達(dá)到物流成本與產(chǎn)品維護(hù)成本的聯(lián)合優(yōu)化。采用決策樹挖掘出人員選拔規(guī)則CHAIDDecisiontreeforpredictingjobperformanceImprovingeducationImprovingteachingandlearningInstructorscanhavetroubleidentifyingtheirrealdifficultiesinlearning.Basedonthestudents’testingrecords,thesystemworkstoidentifyandfindthoseproblems,andthencomesupwithitssuggestionsfordesigningnewteachingstrategies.Assistteacherstoidentifystudents’specificdifficultiesandweaknessesinlearning.Helpsthestudenttofindouthisorherweakpointsinlearningandoffersimprovementrecommendations.ESLrecommenderteachingandlearningRight/wronganswerstatisticaltableForeverystudent,thesystemcreatesaright/wronganswerstatisticaltable:awronganswerisrepresentedby1andarightanswerby0.Summarytableofstudents’wronganswersTheright/wronganswerstatisticaltablesforrespectivestudentsareintegratedinasummarytableofstudents’wronganswers,andthesumvaluesinthetablearethenrankedindescendingordersoastoshowthedescendingdegreesofweaknessesthestudentshavecollectively.HierarchicalclusteringHierarchicalclusteringalgorithmisthenappliedtodatacollectedtosegmentthestudentsintoacertainnumberofclusters,orcategories,eachofwhichincludesstudentssharingthesameorsimilarcharacteristics.Allstudents’right/wronganswerstatisticaltablesClusteringanalysisAclusteringanalysisismadeofthedatainAllstudents’right/wronganswerstatisticaltables.Itisevidentthatthestudentswhosenumbersareenclosedinthefollowingseparateparenthesesbelongtodifferentclustersrespectively:(9,15,6,17,13,19,14,5);(22,23,4,3,21,11,24,20,7,1);(12,18,2,8,25,10,16).搜索引擎優(yōu)化搜索引擎優(yōu)化Theyareusuallynotsearchenginesbythemselves.Theclusteringengineusesoneormoretraditionalsearchenginestogatheranumberofresults;then,itdoesaformofpost-processingontheseresultsinordertoclusterthemintomeaningfulgroups.Thepost-processingstepanalyzessnippets,i.e.,shortdocumentabstractsreturnedbythesearchengine,usuallycontainingwordsaroundquerytermoccurrences.研討題閱讀后面參考文獻(xiàn),分析案例使用的數(shù)據(jù)挖掘方法以及解決的主要問題。結(jié)合自己的實踐,說明所在崗位對商務(wù)智能的需求(針對軟件工程碩士)。典型參考文獻(xiàn)(1)Chen-FuChien,Li-FeiChen.Dataminingtoimprovepersonnelselectionandenhancehumancapital:acasestudyinhigh-technologyindustry.ExpertSystemswithApplication,2008,(34):280-290Cristo′balRomero,Sebastia′nVentura,EnriqueGarc?′a.Dataminingincoursemanagementsystems:Moodlecasestudyandtutorial.Computers&Education51(2008)368–384Yang,C.C.etal.,Improvingschedulingofemergencyphysiciansusingdatamininganalysis,ExpertSystemswithApplications(2008),doi:10.1016/j.eswa.2008.02.069JangHeeLee,SangChanPark.Intelligentprofitablecustomerssegmentationsystembasedonbusinessintelligencetools.ExpertSystemswithApplications29(2005):145–152Chih-MingChen,Ying-LingHsieh,Shih-HsunHsu.Mininglearnerproassociationruleforweb-basedlearningdiagnosis.ExpertSystemswithApplications33(2007)6–22Bong-HorngVhu,Ming-ShianTsai,Cheng-SeenHo.Towardahybriddataminingmodelforcusterretention.Knowledge-BasedSystems20(2007)703–718DanielaGrigoria,FabioCasatib,MaluCastellanos,etal.Businessprocessintelligence.ComputersinIndustry53(2004)321–343DursunDelen,ChristieFuller,CharlesMcCann.Analysisofhealthcarecoverage:Adataminingapproach.Delen,D.etal.,Analysisofhealthcarecoverage:Adataminingapproach,ExpertSystems
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 企業(yè)培訓(xùn)體系構(gòu)建及在線學(xué)習(xí)平臺
- 雨后的彩虹橋?qū)懢巴捵魑?5篇
- 2025年福建省福州市閩清縣機(jī)關(guān)事務(wù)服務(wù)中心招聘1人考前自測高頻考點模擬試題及完整答案詳解
- 2025廣東深圳大學(xué)彭孝軍院士團(tuán)隊專職研究員招聘2名考前自測高頻考點模擬試題及答案詳解(名師系列)
- 2025年福建省漳州市醫(yī)院招聘若干人考前自測高頻考點模擬試題有答案詳解
- 企業(yè)培訓(xùn)材料標(biāo)準(zhǔn)化制作指南
- 2025年寶應(yīng)縣公安局招聘警務(wù)輔助人員30人模擬試卷附答案詳解(模擬題)
- 2025安徽安慶醫(yī)藥高等專科學(xué)校面向校園招聘21人考前自測高頻考點模擬試題及答案詳解(必刷)
- 2025內(nèi)蒙古錫林郭勒盟太仆寺旗烏蘭牧騎招聘事業(yè)編制舞蹈演員2人模擬試卷有答案詳解
- 2025湖南湘西州瀘溪縣婦幼保健計劃生育服務(wù)中心招聘高校見習(xí)生5人考前自測高頻考點模擬試題及答案詳解(有一套)
- 2025至2030全球及中國InfiniBand行業(yè)發(fā)展趨勢分析與未來投資戰(zhàn)略咨詢研究報告
- 2025年水資源利用與水資源安全保障體系構(gòu)建與完善資源分析可行性研究報告
- 廣東省深圳市龍華區(qū)2024-2025學(xué)年一年級上冊期中測試數(shù)學(xué)試卷(含答案)
- 宅基地爭議申請書
- 河南省百師聯(lián)盟2025-2026學(xué)年高二上學(xué)期9月聯(lián)考化學(xué)試題(A)含答案
- 重慶通信安全員c證題庫及答案解析
- 頸椎骨折護(hù)理圍手術(shù)期管理方案
- 新型建筑材料的實驗檢測技術(shù)與創(chuàng)新進(jìn)展
- 2025年德州中考數(shù)學(xué)試卷及答案
- 住宅小區(qū)物業(yè)管理應(yīng)急預(yù)案方案
- 【MOOC期末】《中國馬克思主義與當(dāng)代》(北京科技大學(xué))期末慕課答案
評論
0/150
提交評論