




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
PARTIFUNDAMENTALPRINCIPLES(基本原理)InpartI,wecoversomeofthebasicprinciplesthatapplytoaerodynamicsingeneral.ThesearethepillarsonwhichallofaerodynamicsisbasedChapter2Aerodynamics:SomeFundamentalPrinciplesandEquationsThereissogreatadifferencebetweenafluidandacollectionofsolidparticlesthatthelawsofpressureandofequilibriumoffluidsareverydifferentfromthelawsofthepressureandequilibriumofsolids.JeanLeRondd’Alembert,17682.1IntroductionandRoadMapPreparationoftoolsfortheanalysisofaerodynamicsEveryaerodynamictoolwedevelopedinthisandsubsequentchaptersisimportantfortheanalysisandunderstandingofpracticalproblemsOrientationofferedbytheroadmap2.2ReviewofVectorrelations2.2.1to2.2.10Skippedover2.2.11Relationsbetweenline,surface,andvolumeintegralsThelineintegralofAoverCisrelatedtothesurfaceintegralofA(curlofA)overSbyStokes’theorem:WhereaeraSisboundedbytheclosedcurveC:ThesurfaceintegralofAoverSisrelatedtothevolumeintegralofA(divergenceofA)overVbydivergence’theorem:WherevolumeVisboundedbytheclosedsurfaceS:Ifprepresentsascalarfield,avectorrelationshipanalogoustodivergencetheoremisgivenbygradienttheorem:2.3Modelsofthefluid:controlvolumesandfluidparticlesImportancetocreatephysicalfeelingfromphysicalobservation.Howtomakereasonablejudgmentsondifficultproblems.
Inthischapter,basicequationsofaerodynamicswillbederived.PhilosophicalprocedureinvolvedwiththedevelopmentoftheseequationsInvokethreefundamentalphysicalprincipleswhicharedeeplyentrenchedinourmacroscopicobservationsofnature,namely,a.Massisconserved,that’stosay,masscanbeneithercreatednordestroyed.b.Newton’ssecondlaw:force=mass?accelerationc.Energyisconserved;itcanonlychangefromoneformtoanother2.Determineasuitablemodelofthefluid.3.Applythefundamentalphysicalprincipleslistedinitem1tothemodelofthefluiddeterminedinitem2inordertoobtainmathematicalequationswhichproperlydescribethephysicsoftheflow.Emphasisofthissection:Whatisasuitablemodelofthefluid?Howdowevisualizethissquishysubstanceinordertoapplythethreefundamentalprinciples?Threedifferentmodelsmostlyusedtodealwithaerodynamics.
finitecontrolvolume(有限控制體)infinitesimalfluidelement(無限小流體微團)molecular(自由分子)
2.3.1FinitecontrolvolumeapproachDefinitionoffinitecontrolvolume:
aclosedvolumesculpturedwithinafiniteregionoftheflow.ThevolumeiscalledcontrolvolumeV,andthecurvedsurfacewhichenvelopsthisregionisdefinedascontrolsurfaceS.Fixedcontrolvolumeandmovingcontrolvolume.Focusofourinvestigationforfluidflow.2.3.2InfinitesimalfluidelementapproachDefinitionofinfinitesimalfluidelement:
aninfinitesimallysmallfluidelementintheflow,withadifferentialvolume.ItcontainshugelargeamountofmoleculesFixedandmovinginfinitesimalfluidelement.Focusofourinvestigationforfluidflow.Thefluidelementmaybefixedinspacewithfluidmovingthroughit,oritmaybemovingalongastreamlinewithvelocityVequaltotheflowvelocityateachpointaswell.2.3.3MoleculeapproachDefinitionofmoleculeapproach:
Thefluidpropertiesaredefinedwiththeuseofsuitablestatisticalaveraginginthemicroscopewhereinthefundamentallawsofnatureareapplieddirectlytoatomsandmolecules.Insummary,althoughmanyvariationsonthethemecanbefoundindifferenttextsforthederivationofthegeneralequationsofthefluidflow,theflowmodelcanbeusuallybecategorizedunderoneoftheapproachdescribedabove.2.3.4PhysicalmeaningofthedivergenceofvelocityDefinitionof:
isphysicallythetimerateofchangeofthevolumeofamovingfluidelementoffixedmassperunitvolumeofthatelement.Analysisoftheabovedefinition:Step1.Selectasuitablemodeltogiveaframeunderwhichtheflowfieldisbeingdescribed.
amovingcontrolvolumeisselected.Step2.Selectasuitablemodeltogiveaframeunderwhichtheflowfieldisbeingdescribed.
amovingcontrolvolumeisselected.Step3.Howaboutthecharacteristicsforthismovingcontrolvolume?volume,controlsurfaceanddensitywillbechangingasitmovestodifferentregionoftheflow.Step4.ChanginvolumeduetothemovementofaninfinitesimalelementofthesurfacedS
over
.
ThetotalchangeinvolumeofthewholecontrolvolumeoverthetimeincrementisobviouslygivenasbellowStep5.Iftheintegralaboveisdividedby
.theresultisphysicallythetimeratechangeofthecontrolvolume
Step6.ApplyingGausstheorem,wehave
Step7.Asthemovingcontrolvolumeapproachestoainfinitesimalvolume,.Thentheaboveequationcanberewrittenas
Assumethatissmallenoughsuchthatisthesamethroughout.Then,theintegralcanbeapproximatedas,wehaveorDefinitionof:
isphysicallythetimerateofchangeofthevolumeofamovingfluidelementoffixedmassperunitvolumeofthatelement.Anotherdescriptionofand:Assumeisacontrolsurfacecorrespondingtocontrolvolume,whichisselectedinthespaceattime.Attimethefluidparticlesenclosedbyattimewillhavemovedtotheregionenclosedbythesurface.ThevolumeofthegroupofparticleswithfixedidentityenclosedbyattimeisthesumofthevolumeinregionAandB.Andattime,thisvolumewillbethesumofthevolumeinregionBandC.Astimeintervalapproachestozero,coincideswith.Ifisconsideredasafixedcontrolvolume,then,theregioninAcanbeimaginedasthevolumeenterintothecontrolsurface,Cleaveout.Basedontheargumentabove,theintegralofcanbeexpressedasvolumefluxthroughfixedcontrolsurface.Further,canbeexpressedastherateatwhichfluidvolumeisleavingapointperunitvolume.Theaveragevalueofthevelocitycomponentontheright-handxfaceisTherateofvolumeflowoutoftheright-handxfaceisThatintotheleft-handxfaceisThenetoutflowfromthexfacesisperunittimeThenetoutflowfromallthefacesinx,y,zdirectionsperunittimeisThefluxofvolumefromapointis2.4ContinuityequationInthissection,wewillapplyfundamentalphysicalprinciplestothefluidmodel.Moreattentionshouldbegivenforthewayweareprogressinginthederivationofbasicflowequations.DerivationofcontinuityequationStep1.Selectionoffluidmodel.Afixedfinitecontrolvolumeisemployedastheframefortheanalysisoftheflow.Herein,thecontrolsurfaceandcontrolvolumeisfixedinspace.Step2.Introductionoftheconceptofmassflow.LetagivenareaAisarbitrarilyorientedinaflow,thefiguregivenbellowisanedgeview.IfAissmallenough,thenthevelocityVovertheareaisuniformacrossA.ThevolumeacrosstheareaAintimeintervaldt
canbegivenasThemassinsidetheshadedvolumeisThemassflowthroughisdefinedasthemasscrossingAperunitsecond,anddenotedasorTheequationabovestatesthatmassflowthroughAisgivenbytheproductAreaXdensityXcomponentofflowvelocitynormaltotheareamassfluxisdefinedasthemassflowperunitareaStep3.
Physicalprinciple
Masscanbeneithercreatednordestroyed.Step4.Descriptionoftheflowfield,controlvolumeandcontrolsurface.DirectionalelementarysurfaceareaonthecontrolsurfaceElementaryvolumeinsidethefinitecontrolvolumeStep5.Applythemassconservationlawtothiscontrolvolume.NetmassflowoutofcontrolvolumethroughsurfaceSTimeratedecreaseofmassinsidecontrolvolumeVorStep6.MathematicalexpressionofBTheelementalmassflowacrosstheareaisThephysicalmeaningofpositiveandnegativeofThenetmassflowoutofthewholecontrolsurfaceS
Step7.MathematicalexpressionofCThemasscontainedinsidetheelementalvolumeVisThemassinsidetheentirecontrolvolumeisThetimerateofincreaseofthemassinsideVisThetimerateofdecreaseofthemassinsideVisStep8.FinalresultofthederivationLetB=C,thenwegetorDerivationwithmovingcontrolvolumeMassattimeMassattimeBasedonmassconservationlawConsiderthelimitsasThenwegetthemathematicaldescriptionofthemassconservationlawwiththeuseofmovingcontrolvolumeWhythefinalresultsderivedwithdifferentfluidmodelarethesame??Step9.NotesfortheContinuityEquationaboveThecontinuityequationaboveisinintegralform,itgivesthephysicalbehaviouroverafiniteregionofspacewithoutdetailedconcernsforeverydistinctpoint.Thisfeaturegivesusnumerousopportunitiestoapplytheintegralformofcontinuityequationforpracticalfluiddynamicoraerodynamicproblems.Ifwewanttogetthedetailedperformanceatagivenpoint,then,whatshallwedealwiththeintegralformabovetogetapropermathematicdescriptionformassconservationlaw?Step10.
ContinuityEquationinDifferentialformControlvolumeisfixedinspaceTheintegrallimitisnotthesameTheintegrallimitisthesameorApossiblecasefortheintegraloverthecontrolvolumeIfthefinitecontrolvolumeisarbitrarilychoseninthespace,theonlywaytomaketheequationbeingsatisfiedisthat,theintegrandoftheequationmustbezeroatallpointswithinthecontrolvolume.Thatis,Thatisthecontinuityequationinapartialdifferentialform.ItconcernstheflowfieldvariablesatapointintheflowwithrespecttothemassconservationlawItisimportanttokeepinmindthatthecontinuityequationsinintegralformanddifferentialformareequallyvalidstatementsofthephysicalprinciplesofconservationofmass.theyaremathematicalrepresentations,butalwaysrememberthattheyspeakwords.Step11.
LimitationsoftheequationsderivedContinuumflowormolecularflowAsthenatureofthefluidisassumedasContinuumflowinthederivationsoItsatisfiesonlyforContinuumflowSteadyfloworunsteadyflowItsatisfiesbothsteadyandunsteadyflowsviscousfloworinviscidflowItsatisfiesbothviscousandinviscidflowsCompressiblefloworincompressiblwflowItsatisfiesbothCompressibleandincompressiblwflowsDifferencebetweensteadyandunsteadyflowUnsteadyflow:Theflow-fieldvariablesareafunctionofbothspatiallocationandtime,thatisSteadyflow:Theflow-fieldvariablesareafunctionofspatiallocationonly,thatisForsteadyflow:Forsteadyincompressibleflow:2.5MomentumequationNewton’ssecondlawwhereForceexertedonabodyofmassMassofthebodyAccelerationConsiderafinitemovingcontrolvolume,themassinsidethiscontrolvolumeshouldbeconstantasthecontrolvolumemovingthroughtheflowfield.Sothat,Newton’ssecondlawcanberewrittenasDerivationofmomentumequationStep1.Selectionoffluidmodel.Afixedfinitecontrolvolumeisemployedastheframefortheanalysisoftheflow.Step2.
Physicalprinciple
Force=timeratechangeofmomentumStep3.ExpressionoftheleftsideoftheequationofNewton’ssecondlaw,i.e.,theforceexertedonthefluidasitflowsthroughthecontrolvolume.Twosourcesforthisforce:Bodyforces:overeverypartofV2.Surfaceforces:overeveryelementalsurfaceofSBodyforceonaelementalvolumeBodyforceoverthecontrolvolumeSurfaceforcesoverthecontrolsurfacecanbedividedintotwoparts,oneisduetothepressuredistribution,andtheotherisduetotheviscousdistribution.PressureforceactingontheelementalsurfaceNote:indicationofthenegativesignCompletepressureforceovertheentirecontrolsurfaceThesurfaceforceduetotheviscouseffectissimplyexpressedbyTotalforceactingonthefluidinsidethecontrolvolumeasitissweepingthroughthefixedcontrolvolumeisgivenasthesumofalltheforceswehaveanalyzedStep4.ExpressionoftherightsideoftheequationofNewton’ssecondlaw,i.e.,thetimeratechangeofmomentumofthefluidasitsweepsthroughthefixedcontrolvolume.MovingcontrolvolumeLetbethemomentumofthefluidwithinregionA,
B,andC.forinstance,Attime,themomentuminsideisAttime,themomentuminsideisThemomentumchangeduringthetimeintervalorAsthetimeintervalapproachestozero,theregionBwillcoincidewithSinthespace,andthetwolimitsNetmomentumflowoutofcontrolvolumeacrosssurfaceSTimeratechangeofmomentumduetounsteadyfluctuationsofflowpropertiesinsideVTheexplanationsabovehelpsustomakeabetterunderstandingoftheargumentsgiveninthetextbookbellowNetmomentumflowoutofcontrolvolumeacrosssurfaceSTimerateofchangeofmomentumduetounsteadyfluctuationsofflowpropertiesinsidecontrolvolumeVStep5.MathematicaldescriptionofmassflowacrosstheelementalareadSismomentumflowacrosstheelementalareadSisThenetflowofmomentumoutofthecontrolvolumethroughSisStep6.MathematicaldescriptionofThemomentumintheelementalvolumedV
isThemomentumcontainedatanyinstantinsidethecontrolvolumeV
isItstimeratechangeduetounsteadyflowfluctuationisBeawareofthedifferencebetweenandStep7.FinalresultofthederivationCombinetheexpressionsoftheforcesactingonthefluidandthetimeratechangeduetotermand,respectively,accordingtoNewton’ssecondlowIt’sthemomentumequationinintegralformIt’savectorequationAdvantagesformomentumequationinintegralformStep8.
MomentumEquationinDifferentialformTrytorearrangetheeveryintegralstosharethesamelimitgradienttheoremcontrolvolumeisfixedinspaceThenwegetSplitthisvectorequationasthreescalarequationswithMomentumequationinxdirectionisdivergencetheoremAsthecontrolvolumeisarbitrarychosen,thentheintegrandshouldbeequaltozeroatanypoint,thatisxdirectionydirectionzdirectionTheseequationscanappliedforunsteady,3Dflowofanyfluid,compressibleorincompressible,viscousorinviscid.SteadyandinviscidflowwithoutbodyforcesEuler’sEquationsandNavier-StokesequationsWhetherthe
viscouseffectsarebeingconsideredornotEulersEquations:inviscidflowNavier-Stokesequations:viscousflowDeepunderstandingofdifferenttermsincontinuityandmomentumequationsTimeratechangeofmassinsidecontrolvolumeTimeratechangeofmomentuminsidecontrolvolumeNetflowofmassoutofthecontrolvolumethroughcontrolsurfaceSNetflowofvolumeoutofthecontrolvolumethroughcontrolsurfaceSNetflowofmomentumoutofthecontrolvolumethroughcontrolsurfaceSBodyforcethroughoutthecontrolvolumeVSurfaceforceoverthecontrolsurfaceSWhatwecanforeseetheapplicationsforaerodynamicproblemswithbasicflowequationsonhand?IfthesteadyincompressibleinviscidflowsareconcernedPartialdifferentialequationforvelocityPartialdifferentialequationforvelocityandpressure2.6Anapplicationofthemomentumequation:dragofa2DbodyHowtodesigna2Dwindtunneltest?Howtomeasuretheliftanddragexertedontheairfoilbythefluid?AselectedcontrolvolumearoundanairfoilDescriptionsofthecontrolvolume1.Theupperandlowerstreamlinesfaraboveandbelowthebody(abandhi).2.Linesperpendiculartotheflowvelocityfaraheadandbehindthebody(ai
andbh)3.Acutthatsurroundsandwrapsthesurfaceofthebody(cdefg)1.Pressureatabandhi.2.Pressureataiandbh
.,velocity,3.Thepressureforceoverthesurfaceabhi4.Thesurfaceforceondefbythepresenceofthebody,thisforceincludestheskinfrictiondrag,anddenotedasperunitspan.5.Thesurfaceforcesoncdandfgcanceleachother.6.Thetotalsurfaceforceontheentirecontrolvolumeis7.ThebodyforceisnegligibleApplytomomentumequation,wehaveforsteadyflowNote:it’savectorequation.Ifweonlyconcernthexcomponentoftheequation,withrepresentsthexcomponentof.Asboundariesofthecontrolvolumeabhiarechosenfarawayfromthebody,thepressureperturbationduetothepresenceofthebodycanbeneglected,thatmeans,thepressurethereequaltothefreestreampressure.Ifthepressuredistributionoverabhiisconstant,thenSothatAsab,hi,defarestreamlines,thenAscd,fg
areareadjacenttoeachother,thenTheonlycontributiontomomentumflowthroughthecontrolsurfacecomefromtheboundariesaiandbh.FordS=dy(1),themomentumflowthroughthecontrolsurfaceisNote:Thesigninfrontofeachintegralsontherighthandsideoftheequation2.TheintegrallimitsforeachintegralsontherighthandsideoftheequationConsidertheintegralformofthecontinuityequationforsteadyflow,orAsisaconstantThefinalresultgivesthedragperunitspanThedragperunitspancanbeexpressedintermsoftheknownfreestreamvelocityandflow-fieldproperties,acrossaverticalstationdownstreamofthebody.PhysicalmeaningbehindtheequationMassflowoutofthecontrolvolumeVelocitydecrementMomentumdecrementpersecondForincompressibleflow,thatis,thedensityisconstant2.6.1CommentsWiththeapplicationofmomentumprincipletoalarge,fixedcontrolvolume,anaccurateresultforoverallquantitysuchasdragonabodycanbepredictedwithknowingthedetailedflowpropertiesalongthecontrolsurface.Thattosay,itisunnecessarytoknowthethedetailsalongthesurfaceofthebody.2.7EnergyequationContinuityequationMomentumequationUnknowns:ForsteadyincompressibleinvicidflowsForcompressibleflowsisanadditionalvariable,andthereforeweneedanadditionalfundamentalequationtocompletethesystem.Thisfundamentalequationistheenergyequation,whichwearegoingtodevelop.Twoadditionalflow-fieldvariableswillappeartotheenergyequation,thatisinternalenergyandtemperature.Energyequationisonlynecessaryforcompressibleflows.Physicalprinciple(firstlawofthermodynamics)Energycanbeneithercreatednordestroyed;itcanonlychangeinform
DefinitionsofsystemandinternalenergyperunitmasseDefinitionofsurroundingsHeattransferredfromthesurroundingstothesystemWorkdoneonthesurroundingsbythesystemChangeofinternalenergyinsystemduetotheheattransferredandtheworkdoneAsenergyisconserved,soApplythefirstlawtothefluidflowingtroughthefixedcontrolvolume,andletB1=rateofheataddedtofluidinsidecontrolvolumefromsurroundings.B2=rateofworkdoneonfluidinsidecontrolvolume.B3=rateofchangeofenergyoffluidasitflowsthroughcontrolvolume.Asfirstlawshouldbesatisfied,thenB1+B2=B3Actuallyspeaking,theequationaboveisapowerequation.RateofvolumetricheatingIftheflowisviscousB1=Rateofvolumetricheating=TheforceincludesthreepartsPressureforce,bodyforceandskinfrictionforce
RateofworkdoneonfluidinsideVduetopressureforceonSRateofworkdoneonfluidinsideVduetobodyforceB2=Sincethefluidinsidethecontrolvolumeisnotstationary,itismovingatthelocalvelocitywithaconsequentkineticenergyperunitmass,so,thetotalenergyperunitmassisNetrateofflowoftotalenergyacrosscontrolsurfaceSTimeratechangeoftotalenergyinsideVduetotransientvariationsofflow-fieldpropertiesB3=B1+B2=B3EnergyequationinintegralformNotesinthetextbookEnergyequationinpartialdifferentialformIftheflowissteady,inviscid,adiabatic,withoutbodyforceAfterapplythreefundamentalphysicalprinciples,wehavederivedthreebasicequationsforfluidflow.Andtherearethreevariables,suchasForcaloricallyperfectgasesThen,onemorepropertyisadded,butwithperfectgasequationContinuity,momentumandenergyequationwithtwoadditionalequationsarefiveindependentequations,andtherefiveunknowns.Sothatwehavegotaclosedsystemfortheflowproblems.2.8Interimsummary2.9SubstantialderivativesFocusoureyeonainfinitesimalfluidelementmovingthroughaflowfield.ThevelocityfieldcanbegivenasThedensitycanbegivenasWiththeuseofTaylorseriesexpansionaboutpoint1Dividingbyincartesiancoordinates,thenSubstantialderivativeLocalderivativeconvectivederivative2.10FundamentalequationsintermofsubstantialderivativeInthissection,thecontinuity,momentumandenergyequationswillbegivenintermsofsubstantialderivativeThecontinuityequationindifferentialformisorSinceSoThisisthecontinuityequationintermsofsubstantialderivativeThexcomponentofthemomentumequationindifferentialformisorContinuityEquationhenceInthesamewaywecangetthesearethemomentumequationsintermsofsubstantialderivativeinx,y,zdirectionsrespectivelyEnergyequationintermsofsubstantialderivativeDetaileddescriptionsforthecomparisonbetweenthebasicflowequationsindifferentforms,refertothetextbook2.11Pathlines
andstreamlinesofaflowSkippedover2.12Angularvelocity,vorticityandstrainInthissection,moreattentionwillbepaidtoexaminetheorientationofthefluidelementanditsshapeasitmovesthroughastreamlineintheflowfield.Animportantquantity,vorticity,willbeintroduced.MotionofafluidelementalongastreamlineTrytosetuptherelationshipsbetweenwithandDistanceinydirectionthatAmovesduringtimeincrementDistanceinydirectionthatCmovesduringtimeincrementNetdisplacementinydirectionofCrelativetoASinceisasmallangleSimilarlyDefinition:angularvelocityofthefluidelementistheaverageangularvelocityoflinesABandAC,theyareperpendiculartoeachotheratthetimetvorticityInavelocityfield,thecurlofthevelocityisequaltothevorticityIfateverypointinaflowfield,theflowiscalledrotational.ThisimpliesthatthefluidelementshaveafiniteangularvelocityIfateverypointinaflow,theflowiscalledirrotational.Thisimpliesthatthefluidelementhavenoangularvelocity;theirmotionthroughspaceisapuretranslationDefinitionofstrain:thestrainofthefluidelementinxyplaneisthechangeofink,wherethepositivestraincorrespondstoadecreasingk.andkistheanglebetweensidesABandAC,theyareperpendiculartoeachotheratthetimetStrain=ThetimerateofstraininxyplaneisInthematrixabovewhichiscomposedofvelocityderivatives,thediagonaltermsrepresentthedilatation(擴張)
ofafluidelement.Theoffdiagonaltermsareassociatedwithrotationandstrainoffluidelement.Relationsbetweenviscouseffectandrotationofafluidelement.Irrotationalandrotationalflowsinpracticalaerodynamicproblems2.13CirculationImportanttoolforwetoobtainsolutionsforsomeverypracticalandexcitingaerodynamicproblems.Circulationcanbeusedtocalculateliftexertedonanairfoilwithunitspan.Definitionofcirculation
Note:thenegativesigninfrontofthelineintegralStokes’theoremReferringtothevectoranalysis,whatisthephysicalmeaningthattheequationbellowspeak?2.14StreamfunctionInasteady2Dsteadyflow,thedifferentialformofstreamlinescanbeexpressedasIfareknownfunctionsof,then,aftertheequationabovebeingintegrated,wecangetthealgebraicequationofthestreamlineForeachstreamline,isaconstant.Itsvaluevarieswithdifferentstreamlines.Replacingthesymbolwith,thenwehaveThefunctioniscalledstreamfunction.Differentvalueofthe,i.e,,representsdifferentstreamlinesintheflowfield.TwostreamlinesrespectingwithdifferentvaluesofPhysicalmeaningofthestreamfunctionArbitrarinessoftheintegrandconstantDifferenceinstreamfunctionbetweentwoindividualstreamlinesMassflowbetweenthetwostreamlinesab
andcd.(perunitdepthperpendiculartothepage)Howtoremovethearbitrarinessoftheconstantofintegration?Whatwillbethemassflowthroughanarbitrarycurveconnectingtwopointsonastreamline?Forasteadyflow,themassflowinsideagivenstreamtubeisconstant.Forasteadyflow,thecontinuityequationshouldbesatisfied,then,themassflowthroughaclosedcurveCiszero.ThatmeansthemassflowthroughL1isthesametothatofL2.Forasteadyflowandphysicalpossibleflows,the
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年人工智能科技科技行業(yè)深度學習算法應(yīng)用前景研究報告
- 小學美術(shù)素養(yǎng)(繪畫技巧)競賽試題與答案
- 2025年旅游行業(yè)旅游消費新趨勢研究報告
- 湖南火災(zāi)逃生知識培訓課件
- 2025年農(nóng)業(yè)科技行業(yè)農(nóng)業(yè)物聯(lián)網(wǎng)發(fā)展前景研究報告
- 2025年自貢市市級機關(guān)公開遴選考試真題
- 2025年人工智能產(chǎn)業(yè)行業(yè)智能機器人與智能家居發(fā)展趨勢研究報告
- T∕ZZB 0639-2018 氧化鋅鋁磁控濺射靶材
- 2025年數(shù)字化醫(yī)院構(gòu)建發(fā)展趨勢和模式研究報告
- 2025年金融科技行業(yè)數(shù)字貨幣交易平臺發(fā)展趨勢研究報告
- 第二屆“強國杯”技術(shù)技能大賽-工業(yè)大數(shù)據(jù)管理與分析賽項考試題庫(含答案)
- 徐州市城市軌道交通1號線一期工程電動客車運營、修理及維護手冊
- 制作并觀察植物細胞臨時裝片教學設(shè)計(五篇模版)
- 信息推廣服務(wù)合同范例
- 《大氣的組成和垂直分層》
- GB/T 2423.17-2024環(huán)境試驗第2部分:試驗方法試驗Ka:鹽霧
- 第一次月考試卷(月考)-2024-2025學年三年級上冊數(shù)學人教版
- SMP-05-004-00 受托方化驗室監(jiān)督管理規(guī)程
- CJT 399-2012 聚氨酯泡沫合成軌枕
- 中小微企業(yè)FTTR-B全光組網(wǎng)解決方案
- 小班兒歌《袋鼠愛跳高》課件
評論
0/150
提交評論