




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022年甘肅省隴南市普通高校對口單招高等數(shù)學(xué)一自考測試卷(含答案)學(xué)校:________班級:________姓名:________考號:________一、單選題(20題)1.A.A.條件收斂B.絕對收斂C.收斂性與k有關(guān)D.發(fā)散
2.
3.A.
B.
C.
D.
4.
5.A.A.1/2B.1C.2D.e
6.設(shè)區(qū)域D={(x,y)|-1≤x≤1,0≤y≤2},().A.1B.2C.3D.4
7.
8.
9.設(shè)y=3-x,則y'=()。A.-3-xln3
B.3-xlnx
C.-3-x-1
D.3-x-1
10.設(shè)y=sinx,則y'|x=0等于().A.1B.0C.-1D.-2
11.A.
B.
C.
D.
12.級數(shù)()。A.絕對收斂B.條件收斂C.發(fā)散D.收斂性與k有關(guān)
13.微分方程y+y=0的通解為().A.A.
B.
C.
D.
14.
15.
16.
17.設(shè)y=lnx,則y″等于().
A.1/x
B.1/x2
C.-1/x
D.-1/x2
18.單位長度扭轉(zhuǎn)角θ與下列哪項(xiàng)無關(guān)()。
A.桿的長度B.扭矩C.材料性質(zhì)D.截面幾何性質(zhì)
19.f(x)在[a,b]上可導(dǎo)是f(x)在[a,b]上可積的()。
A.充要條件B.充分條件C.必要條件D.無關(guān)條件
20.設(shè)f(x)在點(diǎn)x0處連續(xù),則下面命題正確的是()A.A.
B.
C.
D.
二、填空題(20題)21.微分方程exy'=1的通解為______.
22.
23.
24.微分方程y''+y=0的通解是______.
25.cosx為f(x)的一個(gè)原函數(shù),則f(x)=______.
26.
27.
28.
29.f(x)=lnx,則f[f(x)]=__________。
30.設(shè)區(qū)域D:x2+y2≤a2,x≥0,則
31.
32.
33.
34.微分方程y"+y'=0的通解為______.
35.設(shè)y=f(x)可導(dǎo),點(diǎn)xo=2為f(x)的極小值點(diǎn),且f(2)=3.則曲線y=f(x)在點(diǎn)(2,3)處的切線方程為__________.
36.
37.
38.
39.微分方程y'=0的通解為______.
40.
三、計(jì)算題(20題)41.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).
42.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
43.求微分方程的通解.
44.
45.將f(x)=e-2X展開為x的冪級數(shù).
46.
47.
48.求曲線在點(diǎn)(1,3)處的切線方程.
49.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
50.
51.
52.求微分方程y"-4y'+4y=e-2x的通解.
53.證明:
54.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.
55.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則
56.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
57.研究級數(shù)的收斂性(即何時(shí)絕對收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.
58.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
59.
60.
四、解答題(10題)61.
62.
63.
64.
65.將函數(shù)f(x)=lnx展開成(x-1)的冪級數(shù),并指出收斂區(qū)間。
66.
67.
68.
69.
70.
五、高等數(shù)學(xué)(0題)71.下列命題不正確的是()。
A.兩個(gè)無窮大量之和仍為無窮大量
B.上萬個(gè)無窮小量之和仍為無窮小量
C.兩個(gè)無窮大量之積仍為無窮大量
D.兩個(gè)有界變量之和仍為有界變量
六、解答題(0題)72.
參考答案
1.A本題考杏的知識點(diǎn)為級數(shù)的絕對收斂與條件收斂.
2.C
3.D本題考查的知識點(diǎn)為牛頓一萊布尼茨公式和定積分的換元法。因此選D。
4.A
5.C
6.D的值等于區(qū)域D的面積,D為邊長為2的正方形面積為4,因此選D。
7.A
8.C
9.Ay=3-x,則y'=3-x。ln3*(-x)'=-3-xln3。因此選A。
10.A由于
可知應(yīng)選A.
11.C
12.A本題考查的知識點(diǎn)為級數(shù)的絕對收斂與條件收斂。
由于的p級數(shù),可知為收斂級數(shù)。
可知收斂,所給級數(shù)絕對收斂,故應(yīng)選A。
13.D本題考查的知識點(diǎn)為-階微分方程的求解.
可以將方程認(rèn)作可分離變量方程;也可以將方程認(rèn)作-階線性微分方程;還可以仿二階線性常系數(shù)齊次微分方程,并作為特例求解.
解法1將方程認(rèn)作可分離變量方程.
解法2將方程認(rèn)作-階線性微分方程.由通解公式可得
解法3認(rèn)作二階常系數(shù)線性齊次微分方程特例求解:
特征方程為r+1=0,
特征根為r=-1,
14.B
15.B解析:
16.D
17.D由于Y=lnx,可得知,因此選D.
18.A
19.B∵可導(dǎo)一定連續(xù),連續(xù)一定可積;反之不一定?!嗫蓪?dǎo)是可積的充分條件
20.C本題考查的知識點(diǎn)有兩個(gè):連續(xù)性與極限的關(guān)系;連續(xù)性與可導(dǎo)的關(guān)系.
連續(xù)性的定義包含三個(gè)要素:若f(x)在點(diǎn)x0處連續(xù),則
(1)f(x)在點(diǎn)x0處必定有定義;
(2)必定存在;
(3)
由此可知所給命題C正確,A,B不正確.
注意連續(xù)性與可導(dǎo)的關(guān)系:可導(dǎo)必定連續(xù);連續(xù)不一定可導(dǎo),可知命題D不正確.故知,應(yīng)選C.
本題常見的錯(cuò)誤是選D.這是由于考生沒有正確理解可導(dǎo)與連續(xù)的關(guān)系.
若f(x)在點(diǎn)x0處可導(dǎo),則f(x)在點(diǎn)x0處必定連續(xù).
但是其逆命題不成立.
21.y=-e-x+C本題考查的知識點(diǎn)為可分離變量方程的求解.
可分離變量方程求解的一般方法為:
(1)變量分離;
(2)兩端積分.
由于方程為exy'=1,先變形為
變量分離dy=e-xdx.
兩端積分
為所求通解.
22.
23.±1.
本題考查的知識點(diǎn)為判定函數(shù)的間斷點(diǎn).
24.y=C1cosx+C2sinx微分方程y''+y=0的特征方程是r2+1=0,故特征根為r=±i,所以方程的通解為y=C1cosx+C2sinx.
25.-sinx本題考查的知識點(diǎn)為原函數(shù)的概念.
由于cosx為f(x)的原函數(shù),可知
f(x)=(cosx)'=-sinx.
26.
解析:
27.
28.
29.
則
30.
解析:本題考查的知識點(diǎn)為二重積分的性質(zhì).
31.11解析:
32.(-∞2)
33.
34.y=C1+C2e-x,其中C1,C2為任意常數(shù)本題考查的知識點(diǎn)為二階線性常系數(shù)齊次微分方程的求解.
二階線性常系數(shù)齊次微分方程求解的一般步驟為:先寫出特征方程,求出特征根,再寫出方程的通解.
微分方程為y"+y'=0.
特征方程為r3+r=0.
特征根r1=0.r2=-1.
因此所給微分方程的通解為
y=C1+C2e-x,
其牛C1,C2為任意常數(shù).
35.
36.e
37.
38.e-1/2
39.y=C1本題考查的知識點(diǎn)為微分方程通解的概念.
微分方程為y'=0.
dy=0.y=C.
40.本題考查的知識點(diǎn)為二重積分的直角坐標(biāo)與極坐標(biāo)轉(zhuǎn)化問題。
41.
列表:
說明
42.
43.
44.
45.
46.
則
47.
48.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
49.由二重積分物理意義知
50.
51.
52.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
53.
54.
55.由等價(jià)無窮小量的定義可知
56.函數(shù)的定義域?yàn)?/p>
注意
57.
58.需求規(guī)律為Q=100ep-2.25p
∴
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 黃岡中學(xué)廣州學(xué)校高二下學(xué)期六月考?xì)v史試卷
- 心靈雞湯 讀后續(xù)寫11 Sampo Girl 導(dǎo)學(xué)案-高三英語一輪復(fù)習(xí)
- 小學(xué)三年級數(shù)學(xué)下冊應(yīng)用題專項(xiàng)練習(xí)題(每日一練共10份)
- 小數(shù)的初步認(rèn)識-蘇教版三升四數(shù)學(xué)暑假專項(xiàng)提升講義(含解析)
- 2025年光伏電廠考真題及答案
- 醫(yī)藥制造業(yè)的技術(shù)轉(zhuǎn)移與合作模式考核試卷
- 閱讀理解(含答案解析)-2025年新九年級(八升九)英語暑假專項(xiàng)提升
- 植物基調(diào)味品考核試卷
- 合成材料在食品包裝領(lǐng)域的應(yīng)用考核試卷
- 一元一次方程(原卷版)-2024年七年級數(shù)學(xué)寒假提升學(xué)與練(北師大版)
- 《急性HIV感染診療管理專家共識(2025版)》解讀
- 如何高中數(shù)學(xué)備課
- 涉案資金退還協(xié)議書
- 《神經(jīng)影像解析》課件
- 電力建設(shè)水電工程智慧工地技術(shù)規(guī)范
- 2025年四川省成都市錦江區(qū)中考數(shù)學(xué)二診試卷(含部分答案)
- 食源性疾病防治知識
- 向上溝通培訓(xùn)課件
- 《頸椎病損的康復(fù)治療》課件
- 酒店微笑培訓(xùn)
- 電商平臺服務(wù)協(xié)議交易規(guī)則微信小程序申請模板
評論
0/150
提交評論