新北師大版九年級上冊初中數(shù)學(xué) 期末試卷_第1頁
新北師大版九年級上冊初中數(shù)學(xué) 期末試卷_第2頁
新北師大版九年級上冊初中數(shù)學(xué) 期末試卷_第3頁
新北師大版九年級上冊初中數(shù)學(xué) 期末試卷_第4頁
新北師大版九年級上冊初中數(shù)學(xué) 期末試卷_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、精品文檔 精心整理精品文檔 可編輯的精品文檔九年級(上)期末數(shù)學(xué)試卷(總分:120分 時間:90分鐘)一、選擇題(本題包括10小題,每小題3分,共30分。每小題只有1個選項符合題意)19的平方根是()A3B3C3D2如圖為正六棱柱與圓錐組成的幾何體,其俯視圖是()ABCD3下列運算結(jié)果正確的是()Ax6x2=x3B(x)1=C(2x3)2=4x6D2a2a3=2a64如圖,已知ABCD,BC平分ABE,C=34,則BED的度數(shù)是()A17B34C56D685在平面直角坐標系中,點(7,2m+1)在第三象限,則m的取值范圍是()AmBmCmDm6如圖,RtABC中,ACB=90,A=50,將其折

2、疊,使點A落在邊CB上A處,折痕為CD,則ADB=()A40B30C20D107如圖,是直線y=x3的圖象,點P(2,m)在該直線的上方,則m的取值范圍是()Am3Bm1Cm0Dm38如圖,在矩形ABCD中,邊AB的長為3,點E,F(xiàn)分別在AD,BC上,連接BE,DF,EF,BD若四邊形BFDE是菱形,且OE=AE,則邊BC的長為()A2B3C D69如圖,半徑為5的A中,弦BC,ED所對的圓心角分別是BAC,EAD,已知DE=6,BAC+EAD=180,則弦BC的長等于()ABC8D610若二次函數(shù)y=ax2+bx+c(a0)的圖象經(jīng)過點(2,0),且其對稱軸為x=1,則使函數(shù)值y0成立的x的

3、取值范圍是()Ax4或x2B4x2Cx4或x2D4x2二、填空題(本題包括7小題,每空3分,共21分)11計算|2|+2cos45= 12一元二次方程x2+9x=0的解是 13如圖,正六邊形ABCDEF的邊長為2,則對角線AF= 14比較大小:sin57 tan5715如圖,在河兩岸分別有A、B兩村,現(xiàn)測得三點A、B、D在一條直線上,A、C、E在一條直線上,若BCDE,DE=90米,BC=70米,BD=20米,那么A、B兩村間的距離為 米16如圖,在平面直角坐標系中,函數(shù)y=(x0常數(shù)k0)的圖象經(jīng)過點A(1,2),B(m,n)(m1),過點B作y軸的垂線,垂足為C,若ABC面積為2,求點B的

4、坐標 17如圖,O為矩形ABCD對角線的交點,M為AB邊上任一點,射線ONOM于點O,且與BC邊交于點N,若AB=4,AD=6,則四邊形OMBN面積的最大值為 三、解答題(共9小題,滿分69分)18解方程: =+119如圖,RtABC中,C=90,用直尺和圓規(guī)在邊BC上找一點D,使D到AB的距離等于CD(保留作圖痕跡,不寫作法)20已知,如圖,在ABC中,點D為線段BC上一點,BD=AC,過點D作DEAC且DE=BC,求證:E=CBA21如圖為一種平板電腦保護套的支架側(cè)視圖,AM固定于平板電腦背面,與可活動的MB、CB部分組成支架,為了觀看舒適,可以調(diào)整傾斜角ANB的大小,但平板的下端點N只能

5、在底座邊CB上不考慮拐角處的弧度及平板電腦和保護套的厚度,繪制成圖(見答題紙),其中AN表示平板電腦,M為AN上的定點,AN=CB=20 cm,AM=8 cm,MB=MN,根據(jù)以上數(shù)據(jù),判斷傾斜角ANB能小于30嗎?請說明理由22為慶祝商都正式營業(yè),商都推出了兩種購物方案方案一:非會員購物所有商品價格可獲九五折優(yōu)惠,方案二:如交納300元會費成為該商都會員,則所有商品價格可獲九折優(yōu)惠(1)以x(元)表示商品價格,y(元)表示支出金額,分別寫出兩種購物方案中y關(guān)于x的函數(shù)解析式;(2)若某人計劃在商都購買價格為5880元的電視機一臺,請分析選擇哪種方案更省錢?23小勵同學(xué)有面額10元.20元.5

6、0元和100元的紙幣各一張,分別裝入大小外觀完全樣的四個紅包中,每個紅包里只裝入一張紙幣,若小勵從中隨機抽取兩個紅包(1)請用樹狀圖或者列表的方法,求小勵取出紙幣的總額為70元的概率;(2)求小勵取出紙幣的總額能購買一件價格為120元文具的概率24如圖,BC是圓O的弦,CF是圓O切線,切點為C,經(jīng)過點B作MNCF于E,且CBM=135,過G的直線分別與圓O,MN交于A,D兩點(1)求證:MN是圓O的切線;(2)當D=30,BD=時,求圓O的半徑r25已知二次函數(shù)yax2+bx+c(a0)的圖象與x軸交于A(5,0)、B(1,0)兩點,與y軸交于點C,拋物線的頂點為D(1)直接寫出頂點D、點C的

7、坐標(用含a的代數(shù)式表示);(2)若ADC=90,試確定二次函數(shù)的表達式26如圖,三角形有一邊上的中線長恰好等于這邊的長,那么這個三角形可稱為“等中三角形”,探索體驗(1)如圖,點D是線段AB的中點,請畫一個ABC,使其為“等中三角形”(2)如圖,在 RtABC中,C=90,AC=2,BC=,判斷ABC是否為“等中三角形”,并說明理由拓展應(yīng)用(3)如圖,正方形ABCD木板的邊長AB=6,請?zhí)剿髟谡叫文景迳鲜欠翊嬖邳cP,使ABP為面積最大的“等中三角形”?若存在,求出CP的長;若不存在,請說明理由九年級(上)期末數(shù)學(xué)試卷參考答案一、選擇題1【考點】平方根【分析】根據(jù)平方與開平方互為逆運算,可得

8、一個正數(shù)的平方根【解答】,故選:A2【考點】簡單組合體的三視圖【分析】從幾何體上方觀察,得到俯視圖即可【解答】如圖為正六棱柱與圓錐組成的幾何體,其俯視圖是故選D3【考點】同底數(shù)冪的除法;冪的乘方與積的乘方;單項式乘單項式;負整數(shù)指數(shù)冪【分析】根據(jù)同底數(shù)冪的除法、冪的乘方、單項式的乘法計算即可【解答】A、x6x2=x4,錯誤;B、(x)1=,錯誤;C、(2x3)2=4x6,正確;D、2a2a3=2a5,錯誤;故選C4【考點】平行線的性質(zhì)【分析】首先由ABCD,求得ABC的度數(shù),又由BC平分ABE,求得CBE的度數(shù),然后根據(jù)三角形外角的性質(zhì)求得BED的度數(shù)【解答】ABCD,ABC=C=34.BC平

9、分ABE,CBE=ABC=34,BED=C+CBE=68故選D5【考點】點的坐標【分析】點在第三象限的條件是:橫坐標是負數(shù),縱坐標是負數(shù),可得2m+10,求不等式的解即可【解答】點在第三象限,點的橫坐標是負數(shù),縱坐標也是負數(shù),即2m+10,解得m故選D6【考點】三角形內(nèi)角和定理;三角形的外角性質(zhì);翻折變換(折疊問題)【分析】由三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和,得ADB=CADB,又折疊前后圖形的形狀和大小不變,CAD=A=50,易求B=90A=40,從而求出ADB的度數(shù)【解答】RtABC中,ACB=90,A=50,B=9050=40.將其折疊,使點A落在邊CB上A處,折痕為CD,則

10、CAD=A.CAD是ABD的外角,ADB=CADB=5040=10故選:D7【考點】一次函數(shù)圖象上點的坐標特征【分析】把x=2代入直線的解析式求出y的值,再根據(jù)點P(2,m)在該直線的上方即可得出m的取值范圍【解答】當x=2時,y=23=1,點P(2,m)在該直線的上方,m1故選B8【考點】矩形的性質(zhì);菱形的性質(zhì)【分析】根據(jù)矩形的性質(zhì)和菱形的性質(zhì)得ABE=EBD=DBC=30,解直角三角形BDC,即可求出BC的長【解答】四邊形ABCD是矩形,A=90,ABC=90,AB=CD,即EAAB.四邊形BFDE是菱形,BDEF.OE=AE,點E在ABD的角平分線上,ABE=EBD.四邊形BFDE是菱形

11、,EBD=DBC,ABE=EBD=DBC=30.AB的長為3,BC=3,故選B9【考點】圓周角定理;勾股定理【分析】首先延長CA,交A于點F,易得BAF=DAE,由圓心角與弦的關(guān)系,可得BF=DE,由圓周角定理可得:CBF=90,然后由勾股定理求得弦BC的長【解答】延長CA,交A于點F.BAC+BAF=180,BAC+EAD=180,BAF=DAE,BF=DE=6.CF是直徑,ABF=90,CF=25=10,BC=8故選C10【考點】二次函數(shù)與不等式(組)【分析】由拋物線與x軸的交點及對稱軸求出另一個交點坐標,根據(jù)拋物線開口向下,根據(jù)圖象求出使函數(shù)值y0成立的x的取值范圍即可【解答】二次函數(shù)y

12、=ax2+bx+c(a0)的圖象經(jīng)過點(2,0),且其對稱軸為x=1,二次函數(shù)的圖象與x軸另一個交點為(4,0),a0,拋物線開口向下,則使函數(shù)值y0成立的x的取值范圍是4x2故選D二、填空題11【考點】實數(shù)的運算;特殊角的三角函數(shù)值【分析】直接利用絕對值的性質(zhì)結(jié)合特殊角的三角函數(shù)值代入化簡即可【解答】原式=2+2=2+=212【考點】解一元二次方程因式分解法【分析】因式分解法求解可得【解答】x(x+9)=0,x=0或x+9=0,解得:x=0或x=9,13【考點】正多邊形和圓【分析】作BGAF,垂足為G構(gòu)造等腰三角形ABF,在直角三角形ABG中,求出AG的長,即可得出AF【解答】作BGAF,垂

13、足為G如圖所示.AB=BF=2,AG=FG,ABF=120,BAF=30,AG=ABcos30=2=,AC=2AG=2;故答案為214【考點】銳角三角函數(shù)的增減性【分析】根據(jù)正弦函數(shù)的增減性,正切函數(shù)的增減性,可得答案【解答】sin57sin90=1,tan57tan45=1,tan57sin57,故答案為:15【考點】相似三角形的應(yīng)用【分析】由BCDE,可得,ABCADE,進而利用對應(yīng)邊成比例求解線段的長度【解答】由題意可得,ABCADE,即,解得AB=70米16【考點】反比例函數(shù)綜合題【分析】由于函數(shù)y=(x0常數(shù)k0)的圖象經(jīng)過點A(1,2),把(1,2)代入解析式即可確定k=2,依題意

14、BC=m,BC邊上的高是2n=2,根據(jù)三角形的面積公式得到關(guān)于m的方程,解方程即可求出m,然后把m的值代入y=,即可求得B的縱坐標,最后就求出點B的坐標【解答】函數(shù)y=(x0常數(shù)k0)的圖象經(jīng)過點A(1,2),把(1,2)代入解析式得2=,k=2.B(m,n)(m1),BC=m,當x=m時,n=,BC邊上的高是2n=2,而SABC=m(2)=2,m=3,把m=3代入y=,n=,點B的坐標是(3,)故答案為:(3,)17【考點】相似三角形的判定與性質(zhì);一次函數(shù)的性質(zhì);矩形的性質(zhì)【分析】(方法一)過點O作OEAB于點E,作OFBC于點F,易證得FOMEON,然后由相似三角形的對應(yīng)邊成比例結(jié)合分割圖

15、形求面積法即可得出S四邊形OMBN=x+6,根據(jù)一次函數(shù)的性質(zhì)即可解決最值問題;(方法二)過點O作OEAB于點E,作OFBC于點F,當點M和點E重合、點N和點F重合時,四邊形OMBN面積取最大值,根據(jù)矩形的面積即可得出結(jié)論【解答】(方法一)過點O作OEAB于點E,作OFBC于點F,如圖所示四邊形ABCD為矩形,AB=4,AD=6,OE=3,OF=2,OEOF,EOM+FOM=90,F(xiàn)ON+FOM=90,EOM=FONOEM=OFN=90,F(xiàn)ONEOM,OM:ON=OE:OF=3:2,=設(shè)ME=x(0 x2),則FN=x,S四邊形OMBN=S矩形EBFOSEOM+SFON=233x+2x=x+6

16、,當x=0時,S四邊形OMBN取最大值,最大值為6故答案為:6(方法二)過點O作OEAB于點E,作OFBC于點F,當點M和點E重合、點N和點F重合時,四邊形OMBN面積取最大值,如圖所示S矩形EBFO=23=6,四邊形OMBN面積的最大值為6故答案為:6三、解答題(共9小題,滿分72分)18【考點】解分式方程【分析】分式方程去分母轉(zhuǎn)化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗即可得到分式方程的解【解答】去分母得:x+3=1+x4,移項合并得:2x=6,解得:x=3,經(jīng)檢驗x=3是分式方程的解19【考點】作圖基本作圖;角平分線的性質(zhì)【分析】作BAC的平分線交BC邊于點D,則點D即為所求【解答

17、】如圖,點D即為所求20【考點】全等三角形的判定與性質(zhì);平行線的性質(zhì)【分析】根據(jù)平行線的性質(zhì)可得C=EDB,再證明EBDBAC,根據(jù)全等三角形的性質(zhì)可得E=CBA【解答】DEAC,C=EDB,在EBD和BAC中,EBDBAC(SAS),E=CBA21【考點】解直角三角形的應(yīng)用坡度坡角問題【分析】根據(jù)ANB=30時,作MECB,垂足為E,根據(jù)銳角三角函數(shù)的定義求出EB及BN的長,進而可得出結(jié)論【解答】當ANB=30時,作MECB,垂足為E,MB=MN,B=ANB=30在RtBEM中,cosB=,EB=MBcosB=(ANAM)cosB=6cmMB=MN,MEBC,BN=2BE=12cmCB=AN

18、=20cm,且1220,此時N不在CB邊上,與題目條件不符,隨著ANB度數(shù)的減小,BN的長度增加,傾斜角不可以小于3022【考點】一次函數(shù)的應(yīng)用【分析】(1)根據(jù)兩種購物方案讓利方式分別列式整理即可;(2)分別把x=5880,代入(1)中的函數(shù)求得數(shù)值,比較得出答案即可【解答】(1)方案一:y=0.95x;方案二:y=0.9x+300;(2)當x=5880時,方案一:y=0.95x=5586(元),方案二:y=0.9x+300=5592(元),55865592所以選擇方案一更省錢23【考點】列表法與樹狀圖法【分析】(1)先利用樹狀圖展示所有12種等可能的結(jié)果數(shù),再找出取出紙幣的總額為70元的結(jié)

19、果數(shù),然后根據(jù)概率公式計算;(2)根據(jù)(1)中樹狀圖找到取出紙幣的總額大于或等于120元的結(jié)果數(shù),根據(jù)概率公式計算可得【解答】(1)畫樹狀圖為:共有12種等可能的結(jié)果數(shù),其中取出紙幣的總額為70元的結(jié)果數(shù)為2,所以取出紙幣的總額為70元的概率=;(2)小勵取出紙幣的總額能購買一件價格為120元文具的概率為=24【考點】切線的判定與性質(zhì)【分析】(1)連接OB、OC,證明OCCE即可因為MN是O的切線,所以O(shè)BMN因CBN=45可得OBC=OCB=BCE=45,所以O(shè)CE=90,得證;(2)可證四邊形BOCE為正方形,所以半徑等于CE,可設(shè)半徑為r,在BCE中表示BE;在CDE中表示DE,根據(jù)BD

20、的長得方程求解【解答】(1)證明:連接OB、OCMN是O的切線,OBMN,CBM=135,CBN=45,OBC=45,BCE=45OB=OC,OBC=OCB=45OCE=90,CE是O的切線;(2)解:OBBE,CEBE,OCCE,四邊形BOCE是矩形,又OB=OC,四邊形BOCE是正方形,BE=CE=OB=OC=r在RtCDE中,D=30,CE=r,DE=rBD=2,r+r=2,r=,即O的半徑為25【考點】拋物線與x軸的交點;待定系數(shù)法求二次函數(shù)解析式【分析】(1)根據(jù)拋物線yax2+bx+c(a0)與x軸的交點可得解析式為y=a(x+5)(x1)=ax2+4ax5a=a(x+2)29a,從而得出答案;(2)由A、D、C的坐標得出AD2、CD2、AC2,根據(jù)ADC=90知AD2+CD2=AC2,據(jù)此列出關(guān)于a的方程,解之可得a的值,從而得出答案【解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論