




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、2021-2022高考數(shù)學(xué)模擬試卷注意事項:1答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2答題時請按要求用筆。3請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1袋中裝有標號為1,2,3,4,5,6且大小相同的6個小球,從袋子中一次性摸出兩個球,記下號碼并放回,如果兩個號碼的
2、和是3的倍數(shù),則獲獎,若有5人參與摸球,則恰好2人獲獎的概率是( )ABCD2已知雙曲線的一條漸近線與直線垂直,則雙曲線的離心率等于( )ABCD3設(shè)為坐標原點,是以為焦點的拋物線上任意一點,是線段上的點,且,則直線的斜率的最大值為( )ABCD14若的二項展開式中的系數(shù)是40,則正整數(shù)的值為( )A4B5C6D75已知直線:()與拋物線:交于(坐標原點),兩點,直線:與拋物線交于,兩點.若,則實數(shù)的值為( )ABCD6網(wǎng)格紙上小正方形邊長為1單位長度,粗線畫出的是某幾何體的三視圖,則此幾何體的體積為( )A1BC3D47已知雙曲線的焦距是虛軸長的2倍,則雙曲線的漸近線方程為( )ABCD8雙
3、曲線的漸近線方程為( )ABCD9等比數(shù)列中,則與的等比中項是( )A4B4CD10函數(shù)的圖象可能為( )ABCD11已知正方體的棱長為2,點為棱的中點,則平面截該正方體的內(nèi)切球所得截面面積為( )ABCD12已知數(shù)列an滿足:an=2,n5a1a2an-1-1,n6nN*.若正整數(shù)k(k5)使得a12+a22+ak2=a1a2ak成立,則k=( )A16B17C18D19二、填空題:本題共4小題,每小題5分,共20分。13 “北斗三號”衛(wèi)星的運行軌道是以地心為一個焦點的橢圓.設(shè)地球半徑為R,若其近地點遠地點離地面的距離大約分別是,則“北斗三號”衛(wèi)星運行軌道的離心率為_.14如圖所示,在邊長為
4、4的正方形紙片中,與相交于.剪去,將剩余部分沿,折疊,使、重合,則以、為頂點的四面體的外接球的體積為_.15若隨機變量的分布列如表所示,則_,_-10116的展開式中,x5的系數(shù)是_(用數(shù)字填寫答案)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)數(shù)列滿足,其前n項和為,數(shù)列的前n項積為.(1)求和數(shù)列的通項公式;(2)設(shè),求的前n項和,并證明:對任意的正整數(shù)m、k,均有.18(12分)已知在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的非負半軸為極軸且取相同的單位長度建立極坐標系,直線的極坐標方程為.(1)求直線的直角坐標方程;(2)求曲線上
5、的點到直線距離的最小值和最大值.19(12分)已知拋物線的焦點為,點在拋物線上,直線過點,且與拋物線交于,兩點(1)求拋物線的方程及點的坐標;(2)求的最大值20(12分)等差數(shù)列中,分別是下表第一、二、三行中的某一個數(shù),且其中的任何兩個數(shù)不在下表的同一列.第一列第二列第三列第一行582第二行4312第三行1669(1)請選擇一個可能的組合,并求數(shù)列的通項公式;(2)記(1)中您選擇的的前項和為,判斷是否存在正整數(shù),使得,成等比數(shù)列,若有,請求出的值;若沒有,請說明理由.21(12分)選修4-2:矩陣與變換(本小題滿分10分)已知矩陣A (k0)的一個特征向量為,A的逆矩陣A1對應(yīng)的變換將點(
6、3,1)變?yōu)辄c(1,1)求實數(shù)a,k的值22(10分)已知雙曲線及直線.(1)若l與C有兩個不同的交點,求實數(shù)k的取值范圍;(2)若l與C交于A,B兩點,O是原點,且,求實數(shù)k的值.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1C【解析】先確定摸一次中獎的概率,5個人摸獎,相當(dāng)于發(fā)生5次試驗,根據(jù)每一次發(fā)生的概率,利用獨立重復(fù)試驗的公式得到結(jié)果【詳解】從6個球中摸出2個,共有種結(jié)果,兩個球的號碼之和是3的倍數(shù),共有摸一次中獎的概率是,5個人摸獎,相當(dāng)于發(fā)生5次試驗,且每一次發(fā)生的概率是,有5人參與摸獎,恰好有2人獲獎的概率是,故
7、選:【點睛】本題主要考查了次獨立重復(fù)試驗中恰好發(fā)生次的概率,考查獨立重復(fù)試驗的概率,解題時主要是看清摸獎5次,相當(dāng)于做了5次獨立重復(fù)試驗,利用公式做出結(jié)果,屬于中檔題2B【解析】由于直線的斜率k,所以一條漸近線的斜率為,即,所以,選B.3C【解析】試題分析:設(shè),由題意,顯然時不符合題意,故,則,可得:,當(dāng)且僅當(dāng)時取等號,故選C考點:1拋物線的簡單幾何性質(zhì);2均值不等式【方法點晴】本題主要考查的是向量在解析幾何中的應(yīng)用及拋物線標準方程方程,均值不等式的靈活運用,屬于中檔題解題時一定要注意分析條件,根據(jù)條件,利用向量的運算可知,寫出直線的斜率,注意均值不等式的使用,特別是要分析等號是否成立,否則易
8、出問題4B【解析】先化簡的二項展開式中第項,然后直接求解即可【詳解】的二項展開式中第項.令,則,(舍)或.【點睛】本題考查二項展開式問題,屬于基礎(chǔ)題5D【解析】設(shè),聯(lián)立直線與拋物線方程,消去、列出韋達定理,再由直線與拋物線的交點求出點坐標,最后根據(jù),得到方程,即可求出參數(shù)的值;【詳解】解:設(shè),由,得,解得或,.又由,得,或,又,代入解得.故選:D【點睛】本題考查直線與拋物線的綜合應(yīng)用,弦長公式的應(yīng)用,屬于中檔題.6A【解析】采用數(shù)形結(jié)合,根據(jù)三視圖可知該幾何體為三棱錐,然后根據(jù)錐體體積公式,可得結(jié)果.【詳解】根據(jù)三視圖可知:該幾何體為三棱錐如圖該幾何體為三棱錐,長度如上圖所以所以所以故選:A【
9、點睛】本題考查根據(jù)三視圖求直觀圖的體積,熟悉常見圖形的三視圖:比如圓柱,圓錐,球,三棱錐等;對本題可以利用長方體,根據(jù)三視圖刪掉沒有的點與線,屬中檔題.7A【解析】根據(jù)雙曲線的焦距是虛軸長的2倍,可得出,結(jié)合,得出,即可求出雙曲線的漸近線方程.【詳解】解:由雙曲線可知,焦點在軸上,則雙曲線的漸近線方程為:,由于焦距是虛軸長的2倍,可得:,即:,所以雙曲線的漸近線方程為:.故選:A.【點睛】本題考查雙曲線的簡單幾何性質(zhì),以及雙曲線的漸近線方程.8A【解析】將雙曲線方程化為標準方程為,其漸近線方程為,化簡整理即得漸近線方程.【詳解】雙曲線得,則其漸近線方程為,整理得.故選:A【點睛】本題主要考查了
10、雙曲線的標準方程,雙曲線的簡單性質(zhì)的應(yīng)用.9A【解析】利用等比數(shù)列的性質(zhì)可得 ,即可得出【詳解】設(shè)與的等比中項是由等比數(shù)列的性質(zhì)可得, 與的等比中項 故選A【點睛】本題考查了等比中項的求法,屬于基礎(chǔ)題10C【解析】先根據(jù)是奇函數(shù),排除A,B,再取特殊值驗證求解.【詳解】因為,所以是奇函數(shù),故排除A,B,又,故選:C【點睛】本題主要考查函數(shù)的圖象,還考查了理解辨析的能力,屬于基礎(chǔ)題.11A【解析】根據(jù)球的特點可知截面是一個圓,根據(jù)等體積法計算出球心到平面的距離,由此求解出截面圓的半徑,從而截面面積可求.【詳解】如圖所示:設(shè)內(nèi)切球球心為,到平面的距離為,截面圓的半徑為,因為內(nèi)切球的半徑等于正方體棱
11、長的一半,所以球的半徑為,又因為,所以,又因為,所以,所以,所以截面圓的半徑,所以截面圓的面積為.故選:A.【點睛】本題考查正方體的內(nèi)切球的特點以及球的截面面積的計算,難度一般.任何一個平面去截球,得到的截面一定是圓面,截面圓的半徑可通過球的半徑以及球心到截面的距離去計算.12B【解析】由題意可得a1=a2=a3=a4=a5=2,a6=a1a2a3a5-1=25-1=31,n6時,a1a2an-1=1+an,將n換為n+1,兩式相除,an2=an+1-an+1,n6,累加法求得a62+a72+ak2=ak+1-a6+k-5即有a12+a22+ak2=20+ak+1-a6+k-5=ak+1+k-
12、16,結(jié)合條件,即可得到所求值【詳解】解:an=2,n5a1a2an-1-1,n6(nN*),即a1=a2=a3=a4=a5=2,a6=a1a2a3a5-1=25-1=31,n6時,a1a2an-1=1+an,a1a2an=1+an+1,兩式相除可得1+an+11+an=an,則an2=an+1-an+1,n6,由a62=a7-a6+1,a72=a8-a7+1,ak2=ak+1-ak+1,k5,可得a62+a72+ak2=ak+1-a6+k-5a12+a22+ak2=20+ak+1-a6+k-5=ak+1+k-16,且a1a2ak=1+ak+1,正整數(shù)k(k5)時,要使得a12+a22+ak2
13、=a1a2ak成立,則ak+1+k-16=ak+1+1,則k=17,故選:B【點睛】本題考查與遞推數(shù)列相關(guān)的方程的整數(shù)解的求法,注意將題設(shè)中的遞推關(guān)系變形得到新的遞推關(guān)系,從而可簡化與數(shù)列相關(guān)的方程,本題屬于難題.二、填空題:本題共4小題,每小題5分,共20分。13【解析】畫出圖形,結(jié)合橢圓的定義和題設(shè)條件,求得的值,即可求得橢圓的離心率,得到答案.【詳解】如圖所示,設(shè)橢圓的長半軸為,半焦距為,因為地球半徑為R,若其近地點遠地點離地面的距離大約分別是,可得,解得,所以橢圓的離心率為.故答案為:.【點睛】本題主要考查了橢圓的離心率的求解,其中解答中熟記橢圓的幾何性質(zhì),列出方程組,求得的值是解答的
14、關(guān)鍵,著重考查了推理與計算能力,屬于基礎(chǔ)題.14【解析】將三棱錐置入正方體中,利用正方體體對角線為三棱錐外接球的直徑即可得到答案.【詳解】由已知,將三棱錐置入正方體中,如圖所示,故正方體體對角線長為,所以外接球半徑為,其體積為.故答案為:.【點睛】本題考查三棱錐外接球的體積問題,一般在處理特殊幾何體的外接球問題時,要考慮是否能將其置入正(長)方體中,是一道中檔題.15 【解析】首先求得a的值,然后利用均值的性質(zhì)計算均值,最后求得的值,由方差的性質(zhì)計算的值即可.【詳解】由題意可知,解得(舍去)或.則,則,由方差的計算性質(zhì)得.【點睛】本題主要考查分布列的性質(zhì),均值的計算公式,方差的計算公式,方差的
15、性質(zhì)等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計算求解能力.16-189【解析】由二項式定理得,令r = 5得x5的系數(shù)是三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1),;(2),證明見解析【解析】(1)利用已知條件建立等量關(guān)系求出數(shù)列的通項公式(2)利用裂項相消法求出數(shù)列的和,進一步利用放縮法求出結(jié)論【詳解】(1),得是公比為的等比數(shù)列,當(dāng)時,數(shù)列的前項積為,則,兩式相除得,得,又得,;(2),故.【點睛】本題考查的知識要點:數(shù)列的通項公式的求法及應(yīng)用,數(shù)列的前項和的應(yīng)用,裂項相消法在數(shù)列求和中的應(yīng)用,主要考查學(xué)生的運算能力和轉(zhuǎn)換能力,屬于中檔題18(1)(2)最大值;最小值
16、.【解析】(1)結(jié)合極坐標和直角坐標的互化公式可得;(2)利用參數(shù)方程,求解點到直線的距離公式,結(jié)合三角函數(shù)知識求解最值.【詳解】解:(1)因為,代入,可得直線的直角坐標方程為.(2)曲線上的點到直線的距離,其中,.故曲線上的點到直線距離的最大值,曲線上的點到直線的距離的最小值.【點睛】本題主要考查極坐標和直角坐標的轉(zhuǎn)化及最值問題,橢圓上的點到直線的距離的最值求解優(yōu)先考慮參數(shù)方法,側(cè)重考查數(shù)學(xué)運算的核心素養(yǎng).19(1),;(2)1【解析】(1)根據(jù)拋物線上的點到焦點和準線的距離相等,可得p值,即可求拋物線C的方程從而可得解;(2)設(shè)直線l的方程為:x+my10,代入y24x,得,y2+4my4
17、0,設(shè)A(x1,y1),B(x2,y2),則y1+y24m,y1y24,x1+x22+4m2,x1x21,(),(x22,),由此能求出的最大值【詳解】(1)點F是拋物線y22px(p0)的焦點,P(2,y0)是拋物線上一點,|PF|3,23,解得:p2,拋物線C的方程為y24x,點P(2,n)(n0)在拋物線C上,n2428,由n0,得n2,P(2,2)(2)F(1,0),設(shè)直線l的方程為:x+my10,代入y24x,整理得,y2+4my40設(shè)A(x1,y1),B(x2,y2),則y1,y2是y2+4my40的兩個不同實根,y1+y24m,y1y24,x1+x2(1my1)+(1my2)2m
18、(y1+y2)2+4m2,x1x2(1my1)(1my2)1m(y1+y2)+m2y1y21+4m24m21,(),(x22,),(x12)(x22)+()()x1x22(x1+x2)+4148m2+44+8m+88m2+8m+58(m)2+1當(dāng)m時,取最大值1【點睛】本題考查拋物線方程的求法,考查向量的數(shù)量積的最大值的求法,考查拋物線、直線方程、韋達定理等基礎(chǔ)知識,考查運算求解能力,考查函數(shù)與方程思想,是中檔題20(1)見解析,或;(2)存在,.【解析】(1)滿足題意有兩種組合:,分別計算即可;(2)由(1)分別討論兩種情況,假設(shè)存在正整數(shù),使得,成等比數(shù)列,即,解方程是否存在正整數(shù)解即可.【詳解】(1)由題意可知:
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 城市交通擁堵與城市居住成本關(guān)系分析考核試卷
- 滿意度調(diào)查結(jié)果在典當(dāng)行服務(wù)改進中的應(yīng)用案例考核試卷
- 制冷系統(tǒng)性能優(yōu)化分析考核試卷
- 中醫(yī)康復(fù)護理護理質(zhì)量持續(xù)改進機制考核試卷
- 遼寧省盤錦市雙臺子區(qū)2024-2025學(xué)年八年級下學(xué)期期末考試數(shù)學(xué)試卷(含答案)
- 安理工選礦學(xué)教案第6章 搖床選煤
- 電力系統(tǒng)能效提升技術(shù)應(yīng)用指南
- 藝術(shù)作品觀眾反饋感知體系
- 山東省濟南市槐蔭區(qū)2023-2024學(xué)年八年級上學(xué)期期中地理試題(解析版)
- 剎車模型與限速模型(模型與方法)-2026年高考物理一輪復(fù)習(xí)解析版
- 《護士職業(yè)生涯規(guī)劃與發(fā)展指南》
- 2025年保安證考試復(fù)習(xí)資料試題及答案
- T-CNAS 12-2020 成人經(jīng)口氣管插管機械通氣患者口腔護理
- T-SZMS 0004-2024 頂空進樣器校準規(guī)范
- 皮膚美容注射培訓(xùn)課件
- 肝門部膽管癌診斷和治療指南(2025版)解讀 課件
- 體育教學(xué)中的項目化教學(xué)實施方式
- GB/T 23694-2024風(fēng)險管理術(shù)語
- 七年級數(shù)學(xué)下冊 第二學(xué)期 期末測試卷(冀教河北版 2025年春)
- 華為三化一穩(wěn)定、嚴進嚴出培訓(xùn)教材
- 藥企微生物知識培訓(xùn)課件
評論
0/150
提交評論