




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、2021-2022高考數(shù)學模擬試卷注意事項:1答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角條形碼粘貼處。2作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡
2、一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1設(shè)為等差數(shù)列的前項和,若,則ABCD2已知斜率為k的直線l與拋物線交于A,B兩點,線段AB的中點為,則斜率k的取值范圍是( )ABCD3已知拋物線經(jīng)過點,焦點為,則直線的斜率為( )ABCD4展開項中的常數(shù)項為A1B11C-19D515已知,則a,b,c的大小關(guān)系為( )ABCD6己知集合,則( )ABCD 7已知命題:,則為( )A,B,C,D,8圓錐底面半徑為,高為,是一條母線,點是底面圓周上一點,則點到所在直線的距離的最大值是( )ABCD9已知符號函數(shù)sgnxf(x)是定義
3、在R上的減函數(shù),g(x)f(x)f(ax)(a1),則( )Asgng(x)sgn xBsgng(x)sgnxCsgng(x)sgnf(x)Dsgng(x)sgnf(x)10關(guān)于函數(shù)在區(qū)間的單調(diào)性,下列敘述正確的是( )A單調(diào)遞增B單調(diào)遞減C先遞減后遞增D先遞增后遞減11已知某幾何體的三視圖如右圖所示,則該幾何體的體積為( )A3BCD12已知復數(shù),則( )ABCD2二、填空題:本題共4小題,每小題5分,共20分。13若展開式中的常數(shù)項為240,則實數(shù)的值為_.14已知實數(shù)滿足,則的最小值是_.15定義在封閉的平面區(qū)域內(nèi)任意兩點的距離的最大值稱為平面區(qū)域的“直徑”.已知銳角三角形的三個點,在半
4、徑為的圓上,且,分別以各邊為直徑向外作三個半圓,這三個半圓和構(gòu)成平面區(qū)域,則平面區(qū)域的“直徑”的最大值是_.16已知,則滿足的的取值范圍為_三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)在考察疫情防控工作中,某區(qū)衛(wèi)生防控中心提出了“要堅持開展愛國衛(wèi)生運動,從人居環(huán)境改善、飲食習慣、社會心理健康、公共衛(wèi)生設(shè)施等多個方面開展,特別是要堅決杜絕食用野生動物的陋習,提倡文明健康、綠色環(huán)保的生活方式”的要求.某小組通過問卷調(diào)查,隨機收集了該區(qū)居民六類日常生活習慣的有關(guān)數(shù)據(jù).六類習慣是:(1)衛(wèi)生習慣狀況類;(2)垃圾處理狀況類;(3)體育鍛煉狀況類;(4)心理健康狀況類;(
5、5)膳食合理狀況類;(6)作息規(guī)律狀況類.經(jīng)過數(shù)據(jù)整理,得到下表:衛(wèi)生習慣狀況類垃圾處理狀況類體育鍛煉狀況類心理健康狀況類膳食合理狀況類作息規(guī)律狀況類有效答卷份數(shù)380550330410400430習慣良好頻率0.60.90.80.70.650.6假設(shè)每份調(diào)查問卷只調(diào)查上述六類狀況之一,各類調(diào)查是否達到良好標準相互獨立.(1)從小組收集的有效答卷中隨機選取1份,求這份試卷的調(diào)查結(jié)果是膳食合理狀況類中習慣良好者的概率;(2)從該區(qū)任選一位居民,試估計他在“衛(wèi)生習慣狀況類、體育鍛煉狀況類、膳食合理狀況類”三類習慣方面,至少具備兩類良好習慣的概率;(3)利用上述六類習慣調(diào)查的排序,用“”表示任選一位
6、第k類受訪者是習慣良好者,“”表示任選一位第k類受訪者不是習慣良好者().寫出方差,的大小關(guān)系.18(12分)設(shè)拋物線的焦點為,準線為,為過焦點且垂直于軸的拋物線的弦,已知以為直徑的圓經(jīng)過點.(1)求的值及該圓的方程;(2)設(shè)為上任意一點,過點作的切線,切點為,證明:.19(12分)已知函數(shù),(1)求曲線在點處的切線方程;(2)求函數(shù)的極小值;(3)求函數(shù)的零點個數(shù)20(12分)已知.(1)解不等式;(2)若均為正數(shù),且,求的最小值.21(12分)若數(shù)列滿足:對于任意,均為數(shù)列中的項,則稱數(shù)列為“數(shù)列”(1)若數(shù)列的前項和,試判斷數(shù)列是否為“數(shù)列”?說明理由;(2)若公差為的等差數(shù)列為“數(shù)列”
7、,求的取值范圍;(3)若數(shù)列為“數(shù)列”,且對于任意,均有,求數(shù)列的通項公式22(10分)已知函數(shù)(1)當時,若恒成立,求的最大值;(2)記的解集為集合A,若,求實數(shù)的取值范圍.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1C【解析】根據(jù)等差數(shù)列的性質(zhì)可得,即,所以,故選C2C【解析】設(shè),設(shè)直線的方程為:,與拋物線方程聯(lián)立,由得,利用韋達定理結(jié)合已知條件得,代入上式即可求出的取值范圍【詳解】設(shè)直線的方程為:, ,聯(lián)立方程,消去得:,且,線段的中點為,,把 代入,得,故選:【點睛】本題主要考查了直線與拋物線的位置關(guān)系,考查了韋達定理
8、的應(yīng)用,屬于中檔題3A【解析】先求出,再求焦點坐標,最后求的斜率【詳解】解:拋物線經(jīng)過點,故選:A【點睛】考查拋物線的基礎(chǔ)知識及斜率的運算公式,基礎(chǔ)題.4B【解析】展開式中的每一項是由每個括號中各出一項組成的,所以可分成三種情況.【詳解】展開式中的項為常數(shù)項,有3種情況:(1)5個括號都出1,即;(2)兩個括號出,兩個括號出,一個括號出1,即;(3)一個括號出,一個括號出,三個括號出1,即;所以展開項中的常數(shù)項為,故選B.【點睛】本題考查二項式定理知識的生成過程,考查定理的本質(zhì),即展開式中每一項是由每個括號各出一項相乘組合而成的.5D【解析】與中間值1比較,可用換底公式化為同底數(shù)對數(shù),再比較大
9、小【詳解】,又,即,故選:D.【點睛】本題考查冪和對數(shù)的大小比較,解題時能化為同底的化為同底數(shù)冪比較,或化為同底數(shù)對數(shù)比較,若是不同類型的數(shù),可借助中間值如0,1等比較6C【解析】先化簡,再求.【詳解】因為,又因為,所以,故選:C.【點睛】本題主要考查一元二次不等式的解法、集合的運算,還考查了運算求解能力,屬于基礎(chǔ)題.7C【解析】根據(jù)全稱量詞命題的否定是存在量詞命題,即得答案.【詳解】全稱量詞命題的否定是存在量詞命題,且命題:,.故選:.【點睛】本題考查含有一個量詞的命題的否定,屬于基礎(chǔ)題.8C【解析】分析:作出圖形,判斷軸截面的三角形的形狀,然后轉(zhuǎn)化求解的位置,推出結(jié)果即可.詳解:圓錐底面半
10、徑為,高為2,是一條母線,點是底面圓周上一點,在底面的射影為;,過的軸截面如圖:,過作于,則,在底面圓周,選擇,使得,則到的距離的最大值為3,故選:C點睛:本題考查空間點線面距離的求法,考查空間想象能力以及計算能力,解題的關(guān)鍵是作出軸截面圖形,屬中檔題9A【解析】根據(jù)符號函數(shù)的解析式,結(jié)合f(x)的單調(diào)性分析即可得解.【詳解】根據(jù)題意,g(x)f(x)f(ax),而f(x)是R上的減函數(shù),當x0時,xax,則有f(x)f(ax),則g(x)f(x)f(ax)0,此時sgng ( x)1,當x0時,xax,則有f(x)f(ax),則g(x)f(x)f(ax)0,此時sgng ( x)0,當x0時
11、,xax,則有f(x)f(ax),則g(x)f(x)f(ax)0,此時sgng ( x)1,綜合有:sgng ( x)sgn(x);故選:A【點睛】此題考查函數(shù)新定義問題,涉及函數(shù)單調(diào)性辨析,關(guān)鍵在于讀懂定義,根據(jù)自變量的取值范圍分類討論.10C【解析】先用誘導公式得,再根據(jù)函數(shù)圖像平移的方法求解即可.【詳解】函數(shù)的圖象可由向左平移個單位得到,如圖所示,在上先遞減后遞增.故選:C【點睛】本題考查三角函數(shù)的平移與單調(diào)性的求解.屬于基礎(chǔ)題.11B【解析】由三視圖知:幾何體是直三棱柱消去一個三棱錐,如圖:直三棱柱的體積為,消去的三棱錐的體積為,幾何體的體積,故選B. 點睛:本題考查了由三視圖求幾何體
12、的體積,根據(jù)三視圖判斷幾何體的形狀及相關(guān)幾何量的數(shù)據(jù)是解答此類問題的關(guān)鍵;幾何體是直三棱柱消去一個三棱錐,結(jié)合直觀圖分別求出直三棱柱的體積和消去的三棱錐的體積,相減可得幾何體的體積.12C【解析】根據(jù)復數(shù)模的性質(zhì)即可求解.【詳解】,故選:C【點睛】本題主要考查了復數(shù)模的性質(zhì),屬于容易題.二、填空題:本題共4小題,每小題5分,共20分。133【解析】依題意可得二項式展開式的常數(shù)項為即可得到方程,解得即可;【詳解】解:二項式的展開式中的常數(shù)項為,解得.故答案為:【點睛】本題考查二項式展開式中常數(shù)項的計算,屬于基礎(chǔ)題.14【解析】先畫出不等式組對應(yīng)的可行域,再利用數(shù)形結(jié)合分析解答得解.【詳解】畫出不
13、等式組表示的可行域如圖陰影區(qū)域所示.由題得y=-3x+z,它表示斜率為-3,縱截距為z的直線系,平移直線,易知當直線經(jīng)過點時,直線的縱截距最小,目標函數(shù)取得最小值,且.故答案為:-8【點睛】本題主要考查線性規(guī)劃問題,意在考查學生對這些知識的理解掌握水平和數(shù)形結(jié)合分析能力.15【解析】先找到平面區(qū)域內(nèi)任意兩點的最大值為,再利用三角恒等變換化簡即可得到最大值.【詳解】由已知及正弦定理,得,所以,取AB中點E,AC中點F,BC中點G,如圖所示顯然平面區(qū)域任意兩點距離最大值為,而,當且僅當時,等號成立.故答案為:.【點睛】本題考查正弦定理在平面幾何中的應(yīng)用問題,涉及到距離的最值問題,在處理這類問題時,
14、一定要數(shù)形結(jié)合,本題屬于中檔題.16【解析】將f(x)寫成分段函數(shù)形式,分析得f(x)為奇函數(shù)且在R上為增函數(shù),利用奇偶性和單調(diào)性解不等式即可得到答案.【詳解】根據(jù)題意,f(x)x|x|,則f(x)為奇函數(shù)且在R上為增函數(shù),則f(2x1)+f(x)0f(2x1)f(x)f(2x1)f(x)2x1x,解可得x,即x的取值范圍為,+);故答案為:,+)【點睛】本題考查分段函數(shù)的奇偶性與單調(diào)性的判定以及應(yīng)用,注意分析f(x)的奇偶性與單調(diào)性三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1)(2)(3)【解析】(1)設(shè)“選取的試卷的調(diào)查結(jié)果是膳食合理狀況類中習慣良好者“的事件為,
15、根據(jù)古典概型求出即可;(2)設(shè)該區(qū)“衛(wèi)生習慣狀況良好者“,“體育鍛煉狀況良好者“、“膳食合理狀況良好者”事件分別為,設(shè)事件為“該居民在“衛(wèi)生習慣狀況類、體育鍛煉狀況類、膳食合理狀況類”三類習慣方面,至少具備兩類良好習慣“,則(E),求出即可;(3)根據(jù)題意,寫出即可【詳解】(1)設(shè)“選取的試卷的調(diào)查結(jié)果是膳食合理狀況類中習慣良好者“的事件為,有效問卷共有(份,其中受訪者中膳食合理習慣良好的人數(shù)是人,故(A);(2)設(shè)該區(qū)“衛(wèi)生習慣狀況良好者“,“體育鍛煉狀況良好者“、“膳食合理狀況良好者”事件分別為,根據(jù)題意,可知(A),(B),(C),設(shè)事件為“該居民在“衛(wèi)生習慣狀況類、體育鍛煉狀況類、膳食
16、合理狀況類”三類習慣方面,至少具備兩類良好習慣“則.所以該居民在“衛(wèi)生習慣狀況類、體育鍛煉狀況類、膳食合理狀況類”三類習慣至少具備2個良好習慣的概率為0.766.(3)【點睛】本題考查了古典概型求概率,獨立性事件,互斥性事件求概率等,考查運算能力和事件應(yīng)用能力,中檔題18(1),圓的方程為:.(2)答案見解析【解析】(1)根據(jù)題意,可知點的坐標為,即可求出的值,即可求出該圓的方程;(2)由題易知,直線的斜率存在且不為0,設(shè)的方程為,與拋物線聯(lián)立方程組,根據(jù),求得,化簡解得,進而求得點的坐標為,分別求出,利用向量的數(shù)量積為0,即可證出.【詳解】解:(1)易知點的坐標為,所以,解得.又圓的圓心為,
17、所以圓的方程為.(2)證明易知,直線的斜率存在且不為0,設(shè)的方程為,代入的方程,得.令,得,所以,解得.將代入的方程,得,即點的坐標為.所以,.故.【點睛】本題考查拋物線的標準方程和圓的方程,考查直線和拋物線的位置關(guān)系,利用聯(lián)立方程組、求交點坐標以及向量的數(shù)量積,考查解題能力和計算能力.19(1);(2)極小值;(3)函數(shù)的零點個數(shù)為【解析】(1)求出和的值,利用點斜式可得出所求切線的方程;(2)利用導數(shù)分析函數(shù)的單調(diào)性,進而可得出該函數(shù)的極小值;(3)由當時,以及,結(jié)合函數(shù)在區(qū)間上的單調(diào)性可得出函數(shù)的零點個數(shù).【詳解】(1)因為,所以所以,所以曲線在點處的切線為;(2)因為,令,得或列表如下
18、:0極大值極小值所以,函數(shù)的單調(diào)遞增區(qū)間為和,單調(diào)遞減區(qū)間為,所以,當時,函數(shù)有極小值;(3)當時,且由(2)可知,函數(shù)在上單調(diào)遞增,所以函數(shù)的零點個數(shù)為【點睛】本題考查利用導數(shù)求函數(shù)的切線方程、極值以及利用導數(shù)研究函數(shù)的零點問題,考查分析問題和解決問題的能力,屬于中等題.20(1);(2)【解析】(1)利用零點分段討論法可求不等式的解.(2)利用柯西不等式可求的最小值.【詳解】(1),由得或或,解得.(2),所以,由柯西不等式得:所以,即 (當且僅當時取“=”).所以的最小值為.【點睛】本題考查絕對值不等式的解法以及利用柯西不等式求最值.解絕對值不等式的基本方法有零點分段討論法、圖象法、平方法等,利用零點分段討論法時注意分類點的合理選擇,利用平方去掉絕對值符號時注意代數(shù)式的正負,而利用圖象法求解時注意圖象的正確刻畫利用柯西不等式求最值時注意把原代數(shù)式配成平方和的乘積形式,本題屬于中檔題.21(1)不是,見解析(2)(3)【解析】(1)利用遞推關(guān)系求出數(shù)列的通項公式,進一步驗證時,是否為數(shù)列中的項,即可得答案;(2)由題意得,再對公差進行分類討
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年天車中級工考試題庫及答案
- 醫(yī)療安全知識培訓課件記錄
- 2025年飛機技師證考試題庫
- 傳統(tǒng)壓瘡護理
- 德國社區(qū)護理現(xiàn)狀
- 2025年電控多瓶采水器合作協(xié)議書
- 珠寶行業(yè)的試題及答案
- 2025年涂鍍產(chǎn)品:鍍鋁鋅項目合作計劃書
- 提升服務(wù)水平滿足客戶需求改進制度
- 2025年分期付款購買車輛抵押借款合同模板
- 三級醫(yī)院等級評審標準實施細則檢查方式及責任分解表章
- 甘肅聘用制書記考試題及答案
- T/CHES 61-2021聲學多普勒流量測驗規(guī)范
- 非典型溶血尿毒綜合征多學科診療實踐解讀課件
- 【MOOC期末】《深度學習及其應(yīng)用》(復旦大學)期末考試慕課答案
- 藝考生文化課協(xié)議合同
- 《POCT臨床應(yīng)用管理》課件
- 人工智能在工程領(lǐng)域的應(yīng)用-全面剖析
- 酒店員工用電培訓
- 2025年量檢具測試試題及答案
- 2025保安證考試模擬試卷及答案
評論
0/150
提交評論