2022屆甘肅省蘭州市高三第五次模擬考試數(shù)學(xué)試卷含解析_第1頁
2022屆甘肅省蘭州市高三第五次模擬考試數(shù)學(xué)試卷含解析_第2頁
2022屆甘肅省蘭州市高三第五次模擬考試數(shù)學(xué)試卷含解析_第3頁
2022屆甘肅省蘭州市高三第五次模擬考試數(shù)學(xué)試卷含解析_第4頁
2022屆甘肅省蘭州市高三第五次模擬考試數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、2021-2022高考數(shù)學(xué)模擬試卷注意事項1考試結(jié)束后,請將本試卷和答題卡一并交回2答題前,請務(wù)必將自己的姓名、準考證號用05毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置3請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符4作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效5如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目

2、要求的。1已知曲線,動點在直線上,過點作曲線的兩條切線,切點分別為,則直線截圓所得弦長為( )AB2C4D2已知函數(shù)()的部分圖象如圖所示.則( )ABCD3設(shè),點,設(shè)對一切都有不等式 成立,則正整數(shù)的最小值為( )ABCD4已知,則( )ABCD5隨著人民生活水平的提高,對城市空氣質(zhì)量的關(guān)注度也逐步增大,下圖是某城市月至月的空氣質(zhì)量檢測情況,圖中一、二、三、四級是空氣質(zhì)量等級,一級空氣質(zhì)量最好,一級和二級都是質(zhì)量合格天氣,下面敘述不正確的是( )A1月至8月空氣合格天數(shù)超過天的月份有個B第二季度與第一季度相比,空氣達標天數(shù)的比重下降了C8月是空氣質(zhì)量最好的一個月D6月份的空氣質(zhì)量最差.6網(wǎng)格

3、紙上小正方形邊長為1單位長度,粗線畫出的是某幾何體的三視圖,則此幾何體的體積為( )A1BC3D47某幾何體的三視圖如圖所示,其中正視圖是邊長為4的正三角形,俯視圖是由邊長為4的正三角形和一個半圓構(gòu)成,則該幾何體的體積為( )ABCD8已知雙曲線的右焦點為為坐標原點,以為直徑的圓與雙 曲線的一條漸近線交于點及點,則雙曲線的方程為( )ABCD9若的展開式中的系數(shù)之和為,則實數(shù)的值為( )ABCD110已知數(shù)列滿足,且,則的值是( )ABC4D11設(shè),滿足約束條件,則的最大值是( )ABCD12為實現(xiàn)國民經(jīng)濟新“三步走”的發(fā)展戰(zhàn)略目標,國家加大了扶貧攻堅的力度某地區(qū)在2015 年以前的年均脫貧率

4、(脫離貧困的戶數(shù)占當(dāng)年貧困戶總數(shù)的比)為2015年開始,全面實施“精準扶貧”政策后,扶貧效果明顯提高,其中2019年度實施的扶貧項目,各項目參加戶數(shù)占比(參加該項目戶數(shù)占 2019 年貧困戶總數(shù)的比)及該項目的脫貧率見下表:實施項目種植業(yè)養(yǎng)殖業(yè)工廠就業(yè)服務(wù)業(yè)參加用戶比脫貧率那么年的年脫貧率是實施“精準扶貧”政策前的年均脫貧率的( )A倍B倍C倍D倍二、填空題:本題共4小題,每小題5分,共20分。13定義在封閉的平面區(qū)域內(nèi)任意兩點的距離的最大值稱為平面區(qū)域的“直徑”.已知銳角三角形的三個點,在半徑為的圓上,且,分別以各邊為直徑向外作三個半圓,這三個半圓和構(gòu)成平面區(qū)域,則平面區(qū)域的“直徑”的最大值

5、是_.14在一塊土地上種植某種農(nóng)作物,連續(xù)5年的產(chǎn)量(單位:噸)分別為9.4,9.7,9.8,10.3,10.8.則該農(nóng)作物的年平均產(chǎn)量是_噸.15已知平面向量與的夾角為,則_.16若函數(shù)為奇函數(shù),則_.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)設(shè)函數(shù)(其中),且函數(shù)在處的切線與直線平行.(1)求的值;(2)若函數(shù),求證:恒成立.18(12分)設(shè)數(shù)列an的前n項和為Sn,且a1=1,an+1=2Sn+1,數(shù)列bn滿足a1=b1,點P(bn,bn+1)在x-y+2=0上,nN*. (1)求數(shù)列an,bn的通項公式;(2)設(shè)cn=bnan,求數(shù)列cn的前n項和Tn

6、19(12分)如圖,三棱柱ABC-A1B1C1中,側(cè)面BCC1B1是菱形,AC=BC=2,CBB1=,點A在平面BCC1B1上的投影為棱BB1的中點E(1)求證:四邊形ACC1A1為矩形;(2)求二面角E-B1C-A1的平面角的余弦值20(12分)設(shè)函數(shù).(1)若恒成立,求整數(shù)的最大值;(2)求證:.21(12分)如圖,在四棱錐P-ABCD中,底面ABCD是邊長為2的菱形,為等邊三角形,平面平面ABCD,M,N分別是線段PD和BC的中點.(1)求直線CM與平面PAB所成角的正弦值;(2)求二面角D-AP-B的余弦值;(3)試判斷直線MN與平面PAB的位置關(guān)系,并給出證明.22(10分)某大型單

7、位舉行了一次全體員工都參加的考試,從中隨機抽取了20人的分數(shù).以下莖葉圖記錄了他們的考試分數(shù)(以十位數(shù)字為莖,個位數(shù)字為葉):若分數(shù)不低于95分,則稱該員工的成績?yōu)椤皟?yōu)秀”.(1)從這20人中任取3人,求恰有1人成績“優(yōu)秀”的概率;(2)根據(jù)這20人的分數(shù)補全下方的頻率分布表和頻率分布直方圖,并根據(jù)頻率分布直方圖解決下面的問題.組別分組頻數(shù)頻率1234估計所有員工的平均分數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);若從所有員工中任選3人,記表示抽到的員工成績?yōu)椤皟?yōu)秀”的人數(shù),求的分布列和數(shù)學(xué)期望.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符

8、合題目要求的。1C【解析】設(shè),根據(jù)導(dǎo)數(shù)的幾何意義,求出切線斜率,進而得到切線方程,將點坐標代入切線方程,抽象出直線方程,且過定點為已知圓的圓心,即可求解.【詳解】圓可化為.設(shè),則的斜率分別為,所以的方程為,即,即,由于都過點,所以,即都在直線上,所以直線的方程為,恒過定點,即直線過圓心,則直線截圓所得弦長為4.故選:C.【點睛】本題考查直線與圓位置關(guān)系、直線與拋物線位置關(guān)系,拋物線兩切點所在直線求解是解題的關(guān)鍵,屬于中檔題.2C【解析】由圖象可知,可解得,利用三角恒等變換化簡解析式可得,令,即可求得.【詳解】依題意,即,解得;因為所以,當(dāng)時,.故選:C.【點睛】本題主要考查了由三角函數(shù)的圖象求

9、解析式和已知函數(shù)值求自變量,考查三角恒等變換在三角函數(shù)化簡中的應(yīng)用,難度一般.3A【解析】先求得,再求得左邊的范圍,只需,利用單調(diào)性解得t的范圍.【詳解】由題意知sin,隨n的增大而增大,,,即,又f(t)=在t上單增,f(2)= -10,正整數(shù)的最小值為3.【點睛】本題考查了數(shù)列的通項及求和問題,考查了數(shù)列的單調(diào)性及不等式的解法,考查了轉(zhuǎn)化思想,屬于中檔題.4B【解析】利用指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性,將數(shù)據(jù)和做對比,即可判斷.【詳解】由于,故.故選:B.【點睛】本題考查利用指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性比較大小,屬基礎(chǔ)題.5D【解析】由圖表可知月空氣質(zhì)量合格天氣只有天,月份的空氣質(zhì)量最差故本題答

10、案選6A【解析】采用數(shù)形結(jié)合,根據(jù)三視圖可知該幾何體為三棱錐,然后根據(jù)錐體體積公式,可得結(jié)果.【詳解】根據(jù)三視圖可知:該幾何體為三棱錐如圖該幾何體為三棱錐,長度如上圖所以所以所以故選:A【點睛】本題考查根據(jù)三視圖求直觀圖的體積,熟悉常見圖形的三視圖:比如圓柱,圓錐,球,三棱錐等;對本題可以利用長方體,根據(jù)三視圖刪掉沒有的點與線,屬中檔題.7A【解析】由題意得到該幾何體是一個組合體,前半部分是一個高為底面是邊長為4的等邊三角形的三棱錐,后半部分是一個底面半徑為2的半個圓錐,體積為 故答案為A.點睛:思考三視圖還原空間幾何體首先應(yīng)深刻理解三視圖之間的關(guān)系,遵循“長對正,高平齊,寬相等”的基本原則,

11、其內(nèi)涵為正視圖的高是幾何體的高,長是幾何體的長;俯視圖的長是幾何體的長,寬是幾何體的寬;側(cè)視圖的高是幾何體的高,寬是幾何體的寬.由三視圖畫出直觀圖的步驟和思考方法:1、首先看俯視圖,根據(jù)俯視圖畫出幾何體地面的直觀圖;2、觀察正視圖和側(cè)視圖找到幾何體前、后、左、右的高度;3、畫出整體,然后再根據(jù)三視圖進行調(diào)整.8C【解析】根據(jù)雙曲線方程求出漸近線方程:,再將點代入可得,連接,根據(jù)圓的性質(zhì)可得,從而可求出,再由即可求解.【詳解】由雙曲線,則漸近線方程:, 連接,則,解得,所以,解得.故雙曲線方程為.故選:C【點睛】本題考查了雙曲線的幾何性質(zhì),需掌握雙曲線的漸近線求法,屬于中檔題.9B【解析】由,進

12、而分別求出展開式中的系數(shù)及展開式中的系數(shù),令二者之和等于,可求出實數(shù)的值.【詳解】由,則展開式中的系數(shù)為,展開式中的系數(shù)為,二者的系數(shù)之和為,得.故選:B.【點睛】本題考查二項式定理的應(yīng)用,考查學(xué)生的計算求解能力,屬于基礎(chǔ)題.10B【解析】 由,可得,所以數(shù)列是公比為的等比數(shù)列, 所以,則, 則,故選B.點睛:本題考查了等比數(shù)列的概念,等比數(shù)列的通項公式及等比數(shù)列的性質(zhì)的應(yīng)用,試題有一定的技巧,屬于中檔試題,解決這類問題的關(guān)鍵在于熟練掌握等比數(shù)列的有關(guān)公式并能靈活運用,尤其需要注意的是,等比數(shù)列的性質(zhì)和在使用等比數(shù)列的前n項和公式時,應(yīng)該要分類討論,有時還應(yīng)善于運用整體代換思想簡化運算過程.1

13、1D【解析】作出不等式對應(yīng)的平面區(qū)域,由目標函數(shù)的幾何意義,通過平移即可求z的最大值【詳解】作出不等式組的可行域,如圖陰影部分,作直線:在可行域內(nèi)平移當(dāng)過點時,取得最大值.由得:,故選:D【點睛】本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決線性規(guī)劃題目的常用方法,屬于基礎(chǔ)題.12B【解析】設(shè)貧困戶總數(shù)為,利用表中數(shù)據(jù)可得脫貧率,進而可求解.【詳解】設(shè)貧困戶總數(shù)為,脫貧率,所以. 故年的年脫貧率是實施“精準扶貧”政策前的年均脫貧率的倍.故選:B【點睛】本題考查了概率與統(tǒng)計,考查了學(xué)生的數(shù)據(jù)處理能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13【解析】先找到平面區(qū)域內(nèi)任意兩點

14、的最大值為,再利用三角恒等變換化簡即可得到最大值.【詳解】由已知及正弦定理,得,所以,取AB中點E,AC中點F,BC中點G,如圖所示顯然平面區(qū)域任意兩點距離最大值為,而,當(dāng)且僅當(dāng)時,等號成立.故答案為:.【點睛】本題考查正弦定理在平面幾何中的應(yīng)用問題,涉及到距離的最值問題,在處理這類問題時,一定要數(shù)形結(jié)合,本題屬于中檔題.1410【解析】根據(jù)已知數(shù)據(jù)直接計算即得.【詳解】由題得,.故答案為:10【點睛】本題考查求平均數(shù),是基礎(chǔ)題.15【解析】根據(jù)已知求出,利用向量的運算律,求出即可.【詳解】由可得,則,所以.故答案為:【點睛】本題考查向量的模、向量的數(shù)量積運算,考查計算求解能力,屬于基礎(chǔ)題.1

15、6-2【解析】由是定義在上的奇函數(shù),可知對任意的,都成立,代入函數(shù)式可求得的值.【詳解】由題意,的定義域為,是奇函數(shù),則,即對任意的,都成立,故,整理得,解得.故答案為:.【點睛】本題考查奇函數(shù)性質(zhì)的應(yīng)用,考查學(xué)生的計算求解能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1)(2)證明見解析【解析】(1)求導(dǎo)得到,解得答案.(2)變形得到,令函數(shù),求導(dǎo)得到函數(shù)單調(diào)區(qū)間得到,得到證明.【詳解】(1),解得.(2)得,變形得,令函數(shù),令解得,當(dāng)時,時.函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,而函數(shù)在區(qū)間上單調(diào)遞增,即,即,恒成立.【點睛】本題考查了根據(jù)切線求參數(shù),證明

16、不等式,意在考查學(xué)生的計算能力和轉(zhuǎn)化能力,綜合應(yīng)用能力.18(1)an=3n-1,bn=1+(n-1)2=2n-1(2)Tn=3-123n-2-2n-123n-1=3-n+13n-1.【解析】(1)利用an與Sn的遞推關(guān)系可以an的通項公式;P點代入直線方程得bn+1-bn=2,可知數(shù)列bn是等差數(shù)列,用公式求解即可.(2)用錯位相減法求數(shù)列的和.【詳解】(1)由an+1=2Sn+1可得an=2Sn-1+1(n2),兩式相減得an+1-an=2an,an+1=3an(n2)又a2=2S1+1=3,所以a2=3a1故an是首項為1,公比為3的等比數(shù)列所以an=3n-1由點P(bn,bn+1)在直

17、線x-y+2=0上,所以bn+1-bn=2則數(shù)列bn是首項為1,公差為2的等差數(shù)列則bn=1+(n-1)2=2n-1(2)因為cn=bnan=2n-13n-1,所以Tn=130+331+532+2n-13n-1則13Tn=131+332+533+2n-33n-1+2n-13n,兩式相減得:23Tn=1+23+232+23n-1-2n-13n所以Tn=3-123n-2-2n-123n-1=3-n+13n-1【點睛】用遞推關(guān)系an=Sn-Sn-1(n2)求通項公式時注意n的取值范圍,所求結(jié)果要注意檢驗n=1的情況;由一個等差數(shù)列和一個等比數(shù)列的積組成的數(shù)列求和,常用錯位相減法求解.19(1)見解析

18、(2)【解析】(1)通過勾股定理得出,又,進而可得平面,則可得到,問題得證;(2)如圖,以為原點,所在直線分別為軸,軸,軸,求出平面的法向量和平面的法向量,利用空間向量的夾角公式可得答案.【詳解】(1)因為平面,所以, 又因為,所以,因此,所以, 因此平面,所以,從而,又四邊形為平行四邊形,則四邊形為矩形;(2)如圖,以為原點,所在直線分別為軸,軸,軸,所以,平面的法向量,設(shè)平面的法向量, 由,由,令,即, 所以,所以,所求二面角的余弦值是.【點睛】本題考查空間垂直關(guān)系的證明,考查向量法求二面角的大小,考查學(xué)生計算能力,是中檔題.20(1)整數(shù)的最大值為;(2)見解析.【解析】(1)將不等式變

19、形為,構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性并確定其最值,從而得到正整數(shù)的最大值;(2)根據(jù)(1)的結(jié)論得到,利用不等式的基本性質(zhì)可證得結(jié)論.【詳解】(1)由得,令,令,對恒成立,所以,函數(shù)在上單調(diào)遞增,故存在使得,即,從而當(dāng)時,有,所以,函數(shù)在上單調(diào)遞增;當(dāng)時,有,所以,函數(shù)在上單調(diào)遞減.所以,因此,整數(shù)的最大值為;(2)由(1)知恒成立,令則,上述等式全部相加得,所以,因此,【點睛】本題考查導(dǎo)數(shù)在函數(shù)單調(diào)性、最值中的應(yīng)用,以及放縮法證明不等式的技巧,屬于難題21(1)(2)(3)直線平面,證明見解析【解析】取中點,連接,則,再由已知證明平面,以為坐標原點,分別以,所在直線為,軸建立空間直角坐標系,求出平面的一個法向量(1)求出的坐標,由與所成角的余弦值可得直線與平面所成角的正弦值;(2)求出平面的一個法

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論