福建省三明市永安市2026屆數學九上期末達標測試試題含解析_第1頁
福建省三明市永安市2026屆數學九上期末達標測試試題含解析_第2頁
福建省三明市永安市2026屆數學九上期末達標測試試題含解析_第3頁
福建省三明市永安市2026屆數學九上期末達標測試試題含解析_第4頁
福建省三明市永安市2026屆數學九上期末達標測試試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

福建省三明市永安市2026屆數學九上期末達標測試試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每題4分,共48分)1.如圖所示幾何體的左視圖是()A. B. C. D.2.在﹣3、﹣2、﹣1、0、1、2這六個數中,任取兩個數,恰好和為﹣1的概率為()A. B. C. D.3.4月24日是中國航天日,1970年的這一天,我國自行設計、制造的第一顆人造地球衛(wèi)星“東方紅一號”成功發(fā)射,標志著中國從此進入了太空時代,它的運行軌道,距地球最近點439000米.將439000用科學記數法表示應為()A.0.439×106 B.4.39×106 C.4.39×105 D.139×1034.在平行四邊形ABCD中,點E是邊AD上一點,且AE=2ED,EC交對角線BD于點F,則等于()A. B. C. D.5.為測量某河的寬度,小軍在河對岸選定一個目標點A,再在他所在的這一側選點B,C,D,使得AB⊥BC,CD⊥BC,然后找出AD與BC的交點E,如圖所示.若測得BE=90m,EC=45m,CD=60m,則這條河的寬AB等于()A.120m B.67.5m C.40m D.30m6.如圖,BC是⊙O的直徑,點A、D在⊙O上,若∠ADC=48°,則∠ACB等于()度.A.42 B.48 C.46 D.507.某水庫大壩的橫斷面是梯形,壩內一斜坡的坡度,則這個斜坡坡角為()A.30° B.45° C.60° D.90°8.平面直角坐標系中,點P,Q在同一反比例函數圖象上的是()A.P(-2,-3),Q(3,-2) B.P(2,-3),Q(3,2)C.P(2,3),Q(-4,-) D.P(-2,3),Q(-3,-2)9.如圖所示的幾何體的主視圖為()A. B. C. D.10.在Rt△ABC中,∠C=90°,∠B=25°,AB=5,則BC的長為()A.5sin25° B.5tan65° C.5cos25° D.5tan25°11.一條排水管的截面如圖所示,已知排水管的半徑,水面寬,則截面圓心到水面的距離是()

A.3 B.4 C. D.812.若是方程的兩根,則的值是()A. B. C. D.二、填空題(每題4分,共24分)13.如圖,線段AB=2,分別以A、B為圓心,以AB的長為半徑作弧,兩弧交于C、D兩點,則陰影部分的面積為.14.如圖,在平面直角坐標系中,函數與的圖象交于兩點,過作軸的垂線,交函數的圖象于點,連接,則的面積為_______.15.等腰三角形一條邊的邊長為3,它的另兩條邊的邊長是關于x的一元二次方程x2﹣12x+k=0的兩個根,則k的值是________.16.如圖,是正三角形,D、E分別是BC、AC上的點,當=_______時,~.17.有4張看上去無差別的卡片,上面分別寫著2,3,4,6,小紅隨機抽取1張后,放回并混在一起,再隨機抽取1張,則小紅第二次取出的數字能夠整除第一次取出的數字的概率為________.18.若是一元二次方程的兩個根,則=___________.三、解答題(共78分)19.(8分)如圖,在△ABC中,∠CAB=90°,D是邊BC上一點,,E為線段AD的中點,連結CE并延長交AB于點F.(1)求證:AD⊥BC.(2)若AF:BF=1:3,求證:CD:DB=1:2.20.(8分)如圖,一艘游輪在A處測得北偏東45°的方向上有一燈塔B.游輪以20海里/時的速度向正東方向航行2小時到達C處,此時測得燈塔B在C處北偏東15°的方向上,求A處與燈塔B相距多少海里?(結果精確到1海里,參考數據:≈1.41,≈1.73)21.(8分)某汽車銷售公司去年12月份銷售新上市的一種新型低能耗汽車200輛,由于該型汽車的優(yōu)越的經濟適用性,銷量快速上升,若該型汽車每輛的盈利為5萬元,則平均每天可售8輛,為了盡量減少庫存,汽車銷售公司決定采取適當的降價措施,經調查發(fā)現,每輛汽車每降5000元,公司平均每天可多售出2輛,若汽車銷售公司每天要獲利48萬元,每輛車需降價多少?22.(10分)臺州人民翹首以盼的樂清灣大橋于2018年9月28日正式通車,經統(tǒng)計分析,大橋上的車流速度(千米/小時)是車流密度(輛/千米)的函數,當橋上的車流密度達到220輛/千米的時候就造成交通堵塞,此時車流速度為0千米/小時;當車流密度不超過20輛/千米,車流速度為80千米/小時,研究證明:當時,車流速度是車流密度的一次函數.(1)求大橋上車流密度為50/輛千米時的車流速度;(2)在某一交通高峰時段,為使大橋上的車流速度大于60千米/小時且小于80千米/小時,應把大橋上的車流密度控制在什么范圍內?(3)車流量(輛/小時)是單位時間內通過橋上某觀測點的車輛數,即:車流量車流速度車流密度,求大橋上車流量的最大值.23.(10分)某種商品每天的銷售利潤y(元)與銷售單價x(元)之間滿足關系:y=ax2+bx-1.其圖象如圖所示.⑴a=;b=;⑵銷售單價為多少元時,該種商品每天的銷售利潤最大?最大利潤為多少元?⑶由圖象可知,銷售單價x在時,該種商品每天的銷售利潤不低于16元?24.(10分)如圖,拋物線的頂點坐標為,點的坐標為,為直線下方拋物線上一點,連接,.(1)求拋物線的解析式.(2)的面積是否有最大值?如果有,請求出最大值和此時點的坐標;如果沒有,請說明理由.(3)為軸右側拋物線上一點,為對稱軸上一點,若是以點為直角頂點的等腰直角三角形,請直接寫出點的坐標.25.(12分)解方程:x2+2x﹣1=1.26.已知:梯形ABCD中,AD//BC,AD=AB,對角線AC、BD交于點E,點F在邊BC上,且∠BEF=∠BAC.(1)求證:△AED∽△CFE;(2)當EF//DC時,求證:AE=DE.

參考答案一、選擇題(每題4分,共48分)1、B【分析】根據從左面看得到的圖形是左視圖,可得答案.【詳解】解:如圖所示,幾何體的左視圖是:.故選:B.本題考查了簡單組合體的三視圖,從左面看得到的圖形是左視圖.2、D【分析】畫樹狀圖展示所有15種等可能的結果數,找出恰好和為-1的結果數,然后根據概率公式求解.【詳解】解:畫樹狀圖為:共有15種等可能的結果數,其中恰好和為-1的結果數為3,所以任取兩個數,恰好和為-1的概率=.故選:D.本題考查的是概率的問題,能夠用樹狀圖解決簡單概率問題是解題的關鍵.3、C【分析】科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】解:將439000用科學記數法表示為4.39×1.

故選C.此題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.4、A【解析】試題分析:如圖,∵四邊形ABCD為平行四邊形,∴ED∥BC,BC=AD,∴△DEF∽△BCF,∴,設ED=k,則AE=2k,BC=3k,∴==,故選A.考點:1.相似三角形的判定與性質;2.平行四邊形的性質.5、A【解析】∵∠ABE=∠DCE,∠AEB=∠CED,∴△ABE∽△DCE,∴.∵BE=90m,EC=45m,CD=60m,∴故選A.6、A【分析】連接AB,由圓周角定理得出∠BAC=90°,∠B=∠ADC=48°,再由直角三角形的性質即可得出答案.【詳解】解:連接AB,如圖所示:∵BC是⊙O的直徑,∴∠BAC=90°,∵∠B=∠ADC=48°,∴∠ACB=90°-∠B=42°;故選:A.本題考查了圓周角定理以及直角三角形的性質;熟練掌握圓周角定理是解題的關鍵.7、A【分析】根據坡度可以求得該坡角的正切值,根據正切值即可求得坡角的角度.【詳解】∵坡度為,

∴,

∵,且α為銳角,

∴.

故選:A.本題考查了坡度的定義,考查了特殊角的三角函數值,考查了三角函數值在直角三角形中的應用.8、C【解析】根據反比函數的解析式y(tǒng)=(k≠0),可得k=xy,然后分別代入P、Q點的坐標,可得:-2×(-3)=6≠3×(-2),故不在同一反比例函數的圖像上;2×(-3)=-6≠2×3,故不正確同一反比例函數的圖像上;2×3=6=(-4)×(-),在同一反比函數的圖像上;-2×3≠(-3)×(-2),故不正確同一反比例函數的圖像上.故選C.點睛:此題主要考查了反比例函數的圖像與性質,解題關鍵是求出函數的系數k,比較k的值是否相同來得出是否在同一函數的圖像上.9、B【分析】根據三視圖的定義判斷即可.【詳解】解:所給幾何體是由兩個長方體上下放置組合而成,所以其主視圖也是上下兩個長方形組合而成,且上下兩個長方形的寬的長度相同.故選B.本題考查了三視圖知識.10、C【分析】在Rt△ABC中,由AB及∠B的值,可求出BC的長.【詳解】在Rt△ABC中,∠C=90°,∠B=25°,AB=5,∴BC=AB?cos∠B=5cos25°.故選:C.本題考查了解直角三角形的問題,掌握解直角三角形及其應用是解題的關鍵.11、D【分析】根據垂徑定理,OC⊥AB,故OC平分AB,由AB=12,得出BC=6,再結合已知條件和勾股定理,求出OC即可.【詳解】解:∵OC⊥AB,AB=12∴BC=6∵∴OC=故選D.本題主要考查了垂徑定理以及勾股定理,能夠熟悉定理以及準確的運算是解決本題的關鍵.12、D【解析】試題分析:x1+x2=-=6,故選D考點:根與系數的關系二、填空題(每題4分,共24分)13、【分析】利用扇形的面積公式等邊三角形的性質解決問題即可.【詳解】解:由題意可得,AD=BD=AB=AC=BC,∴△ABD和△ABC時等邊三角形,∴陰影部分的面積為:故答案為﹣4.考核知識點:扇形面積.熟記扇形面積是關鍵.14、6【分析】根據正比例函數y=kx與反比例函數的圖象交點關于原點對稱,可得出A、B兩點坐標的關系,根據垂直于y軸的直線上任意兩點縱坐標相同,可得出A、C兩點坐標的關系,設A點坐標為(x,-),表示出B、C兩點的坐標,再根據三角形的面積公式即可解答.【詳解】∵正比例函數y=kx與反比例函數的圖象交點關于原點對稱,∴設A點坐標為(x,?),則B點坐標為(?x,),C(?2x,?),∴S=×(?2x?x)?(??)=×(?3x)?(?)=6.故答案為6.此題考查正比例函數的性質與反比例函數的性質,解題關鍵在于得出A、C兩點.15、32【解析】分3為等腰三角形的腰與3為等腰三角形的底兩種情況考慮.①當3為等腰三角形的腰時,將x=3代入原方程可求出k的值,再利用分解因式法解一元二次方程可求出等腰三角形的底,由三角形的三邊關系可確定此情況不存在;②當3為等腰三角形的底時,由方程的系數結合根的判別式可得出△=144﹣4k=0,解之即可得出k值,進而可求出方程的解,再利用三角形的三邊關系確定此種情況符合題意.此題得解.【詳解】①當3為等腰三角形的腰時,將x=3代入原方程得1﹣12×3+k=0,解得:k=27,此時原方程為x2﹣12x+27=0,即(x﹣3)(x﹣1)=0,解得:x1=3,x2=1.∵3+3=2<1,∴3不能為等腰三角形的腰;②當3為等腰三角形的底時,方程x2﹣12x+k=0有兩個相等的實數根,∴△=(﹣12)2﹣4k=144﹣4k=0,解得:k=32,此時x1=x22.∵3、2、2可以圍成等腰三角形,∴k=32.故答案為32.本題考查了解一元二次方程-因式分解法、根的判別式、三角形的三邊關系以及等腰三角形的性質,分3為等腰三角形的腰與3為等腰三角形的底兩種情況考慮是解題的關鍵.16、60°【分析】由△ABC是正三角形可得∠B=60°,又由△ABD∽△DCE,根據相似三角形的對應角相等,即可得∠EDC=∠BAD,然后利用三角形外角的性質,即可求得∠ADE的度數【詳解】∵△ABC是正三角形,∴∠B=60°,∵△ABD∽△DCE,∴∠EDC=∠BAD,∵∠ADC是△ABD的外角,∴∠ADE+∠EDC=∠B+∠BAD,∴∠ADE=∠B=60°,此題考查了相似三角形的判定與性質、等邊三角形的性質以及三角形外角的性質.此題難度適中.17、【分析】畫樹狀圖展示所有16種等可能的結果數,再找出小紅第二次取出的數字能夠整除第一次取出的數字的結果數,然后根據概率公式求解.【詳解】解:畫樹狀圖為:共有16種等可能的結果數,其中小紅第二次取出的數字能夠整除第一次取出的數字的結果數為7,所以小紅第二次取出的數字能夠整除第一次取出的數字的概率=.故答案為.本題考查了列表法與樹狀圖法:通過列表法或樹狀圖法展示所有等可能的結果求出n,再從中選出符合事件A或B的結果數目m,然后根據概率公式求出事件A或B的概率.18、1【分析】根據韋達定理可得,,將整理得到,代入即可.【詳解】解:∵是一元二次方程的兩個根,∴,,∴,故答案為:1.本題考查韋達定理,掌握,是解題的關鍵.三、解答題(共78分)19、(1)見解析;(2)見解析.【分析】(1)由等積式轉化為比例式,再由相似三角形的判定定理,證明△ABD∽CBA,從而得出∠ADB=∠CAB=90°;(2)過點D作DG∥AB交CF于點G,由E為AD的中點,可得△DGE≌△AFE,得出AF=DG,再由平行線分線段成比例可得出結果.【詳解】證明:(1)∵AB2=BD·BC,∴又∠B=∠B,∴△ABD∽CBA,∴∠ADB=∠CAB=90°,∴AD⊥BC.(2)過點D作DG∥AB交CF于點G,∵E為AD的中點,∴易得△DGE≌△AFE,∴AF=DG,又AF:BF=1:3,∴DG:BF=1:3.∵DG∥BF,∴DG:BF=CD:BC=1:3,∴CD:DB=1:2.本題考查相似三角形的判定與性質,遇到比例式或等積式就要考慮轉化為三角形相似來解決問題.20、A處與燈塔B相距109海里.【解析】直接過點C作CM⊥AB求出AM,CM的長,再利用銳角三角函數關系得出BM的長即可得出答案.【詳解】過點C作CM⊥AB,垂足為M,在Rt△ACM中,∠MAC=90°﹣45°=45°,則∠MCA=45°,∴AM=MC,由勾股定理得:AM2+MC2=AC2=(20×2)2,解得:AM=CM=40,∵∠ECB=15°,∴∠BCF=90°﹣15°=75°,∴∠B=∠BCF﹣∠MAC=75°﹣45°=30°,在Rt△BCM中,tanB=tan30°=,即,∴BM=40,∴AB=AM+BM=40+40≈40+40×1.73≈109(海里),答:A處與燈塔B相距109海里.【點睛】本題考查了解直角三角形的應用,正確作出輔助線構造直角三角形是解題的關鍵.21、每輛車需降價2萬元【分析】設每輛車需降價萬元,根據每輛汽車每降5000元,公司平均每天可多售出2輛可用x表示出日銷售量,根據每天要獲利48萬元,利用利潤=日銷售量×單車利潤列方程可求出x的值,根據盡量減少庫存即可得答案.【詳解】設每輛車需降價萬元,則日銷售量為輛,依題意,得:,解得:,,∵要盡快減少庫存,∴.答:每輛車需降價2萬元.此題主要考查了一元二次方程的應用,找到關鍵描述語,得出等量關系是解題關鍵.22、(1)車流速度68千米/小時;(2)應把大橋上的車流密度控制在20千米/小時到70千米/小時之間;(3)車流量y取得最大值是每小時4840輛【分析】(1)設車流速度與車流密度的函數關系式為v=kx+b,列式求出函數解析式,將x=50代入即可得到答案;(2)根據題意列不等式組即可得到答案;(3)分兩種情況:、時分別求出y的最大值即可.【詳解】(1)設車流速度與車流密度的函數關系式為v=kx+b,由題意,得,解得,∴當時,車流速度是車流密度的一次函數為,當x=50時,(千米/小時),∴大橋上車流密度為50/輛千米時的車流速度68千米/小時;(2)由題意得,解得20<x<70,符合題意,∴為使大橋上的車流速度大于60千米/小時且小于80千米/小時,應把大橋上的車流密度控制在20千米/小時到70千米/小時之間;(3)由題意得y=vx,當時,y=80x,∵k=80>0,∴y隨x的增大而增大,∴當x=20時,y有最大值1600,當時,y,當x=110時,y有最大值4840,∵4840>1600,∴當車流密度是110輛/千米,車流量y取得最大值是每小時4840輛.此題考查待定系數法求一次函數的解析式,一元一次不等式組的實際應用,二次函數最大值的確定,正確掌握各知識點并熟練解題是關鍵.23、(1)-1,20;(2)當x=10時,該商品的銷售利潤最大,最大利潤是25元;(3)7≤x≤13【分析】(1)利用待定系數法求二次函數解析式得出即可;

(2)利用配方法求出二次函數最值即可;

(3)根據題意令y=16,解方程可得x的值,結合圖象可知x的范圍.【詳解】解:(1)y=ax2+bx-1圖象過點(5,0)、(7,16),

∴解得:故答案為-1,20⑵∵∴當x=10時,該商品的銷售利潤最大,最大利潤是25元.⑶根據題意,當y=16時,得:-x2+20x-1=16,

解得:x1=7,x2=13,

即銷售單價7≤x≤13時,該種商品每天的銷售利潤不低于16元.此題主要考查了二次函數的應用以及待定系數法求二次函數解析式等知識,正確利用二次函數圖象是解題關鍵.24、(1);(2)最大值為,點的坐標為;(3)點的坐標為,.【分析】(1)先設頂點式,再代入頂點坐標得出,最后代入計算

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論