高三數(shù)學(xué)一輪復(fù)習(xí)講義(提高版)計(jì)數(shù)原理與排列組合_第1頁(yè)
高三數(shù)學(xué)一輪復(fù)習(xí)講義(提高版)計(jì)數(shù)原理與排列組合_第2頁(yè)
高三數(shù)學(xué)一輪復(fù)習(xí)講義(提高版)計(jì)數(shù)原理與排列組合_第3頁(yè)
高三數(shù)學(xué)一輪復(fù)習(xí)講義(提高版)計(jì)數(shù)原理與排列組合_第4頁(yè)
高三數(shù)學(xué)一輪復(fù)習(xí)講義(提高版)計(jì)數(shù)原理與排列組合_第5頁(yè)
已閱讀5頁(yè),還剩4頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

§10.1計(jì)數(shù)原理與排列組合

【課標(biāo)要求】1.理解分類加法計(jì)數(shù)原理、分步乘法計(jì)數(shù)原理及其意義2理解排列、組合的概念.3.能利用計(jì)數(shù)

原理、排列組合解決簡(jiǎn)單的實(shí)際問(wèn)題.

1.兩個(gè)計(jì)數(shù)原理

⑴分類加法計(jì)數(shù)原理:完成一件事有兩類不同方案,在第1類方案中有〃,種不同的方法,在第2類方

案中芍〃種不同的方法,那么完成這件事共有N=種不同的方法.

(2)分步乘法計(jì)數(shù)原理:完成一件事需要兩個(gè)步驟,做第1步有機(jī)種不同的方法,做第2步有〃種不同

的方法,那么完成這件事共有N=種不同的方法.

2.排列與組合的概念

名稱定義

排列從八個(gè)不同元素中取出按照—_________排成一列

組合個(gè)元素作為一組

3.排列數(shù)與組合數(shù)

(1)排列數(shù):從〃個(gè)不同元索中取出個(gè)元素的所有的個(gè)數(shù),用符號(hào)

表示.

(2)組合數(shù):從〃個(gè)不同元素中取出個(gè)元素的所有的個(gè)數(shù),用符號(hào)

表示.

4.排列數(shù)、組合數(shù)的公式及性質(zhì)

⑴叱________________________________=________________(〃,

且用《〃).

(2)C£=M=__________________(〃,且加W〃).

Am

性(DO!=_______;A?=_______.

質(zhì)⑵cJH;c^=crm;CM/_________.

B自主診斷

1.判斷下列結(jié)論是否正確.(請(qǐng)?jiān)诶ㄌ?hào)中打“4”或“x”)

(1)在分類加法計(jì)數(shù)原理中,某兩類不同方案中的方法可以相同)

(2)在分步乘法計(jì)數(shù)原理中,事情是分兩步完成的,其中任何一個(gè)單獨(dú)的步驟都能完成這件事.()

(3)所有元素完全相同的兩個(gè)排列為相同排列.()

(4)兩個(gè)組合相同的充要條件是其中的元素完全相同.()

2.從6名班委中選出2人分別擔(dān)任正、副班長(zhǎng),一共有種選法()

A.llB.12C.30D.36

3.(多選)下列結(jié)論正確的是()

A.3X4X5=A1B.C|+C3=C2

C.若Cfo二C:k2,則人=3D.0+C殲第+C$=54

4.由于用具簡(jiǎn)單,趣味性強(qiáng),象棋成為流行極為廣泛的棋藝活動(dòng).某棋局的一部分如圖所示,若不考慮這部

分以外棋子的影響,且“馬”和“炮”不動(dòng),“兵”只能往前走或左右走,每次只能走一格,從“兵”吃

掉“馬”的最短路線中隨機(jī)選擇一條路線,則能順帶吃掉“炮”的可能路線有條.

3微點(diǎn)提醒

1.元素之間與順序有關(guān)的為排列,與順序無(wú)關(guān)的為組合.

2.(1)排列數(shù)與組合數(shù)之間的聯(lián)系為C7A*=A罌

(2)排列數(shù)與組合數(shù)公式的兩種形式分別為:①連乘積形式;②階乘形式.前者多用于數(shù)字計(jì)算,后者多用

于含有字母的排列數(shù)與組合數(shù)式子的變形與論證.

3.解有條件限制的排列、組合題,通常有直接法(合理分類)和間接法(排除法).分類時(shí)標(biāo)準(zhǔn)應(yīng)統(tǒng)一,避免出現(xiàn)

重復(fù)或遺漏.

4.對(duì)于分配問(wèn)題,一般先分組,再分配,注意平均分組與不平均分組的區(qū)別,避免重復(fù)或遺漏.

題型一計(jì)數(shù)原理

例1(1)用3種不同顏色給如圖所示的五個(gè)圓環(huán)涂色,要求相交的兩個(gè)圓環(huán)不能涂相同的顏色,共有

種不同的涂色方案()

A.243B.32

C.48D.1280

(2)如蟄,在某海岸尸的附近有三個(gè)島嶼Q,R,S,計(jì)劃建立三座獨(dú)立大橋,將這四個(gè)地方連起來(lái),每

座橋直線連接兩個(gè)地方,且不出現(xiàn)立體交叉形式,則不同的連接方式有()

⑨CD

A.24種B.20種

C.16種D.12種

思維升華完成一件事的方法種數(shù)的計(jì)算步驟

(1)審清題意,弄清要完成的事件是怎樣的.

(2)分析完成這件事應(yīng)采用分類、分步、先分類后分步、先分步后分類這四種方法中的哪一種.

(3)弄清在每一類或每一步中的方法種數(shù).

(4)根據(jù)分類加法計(jì)數(shù)原理或分步乘法計(jì)數(shù)原理計(jì)算出完成這件事的方法種數(shù).

跟蹤訓(xùn)練1(1)(2024?成都模擬)某高中運(yùn)動(dòng)會(huì)設(shè)有8個(gè)項(xiàng)目,甲、乙兩名學(xué)生每人隨機(jī)選取3個(gè)項(xiàng)目

報(bào)名參加,則至少選中2個(gè)相同項(xiàng)目的報(bào)名方法有()

A.420種B.840種

C.476種D.896種

(2)如國(guó),某種雨傘架前后兩排共8個(gè)孔,編號(hào)分別為1~8號(hào).若甲、乙、丙、丁四名同學(xué)要放傘,每個(gè)

孔最多放一把傘,則甲放在奇數(shù)孔,乙放在偶數(shù)孔,且丙、丁沒(méi)有放在同一排的放法有()

A.68種B.136種

C.272種D.544種

題型二排列、組合問(wèn)題

例2(1)甲、乙兩名同學(xué)從生物、地理、政治、化學(xué)中各選兩門(mén)進(jìn)行學(xué)習(xí),若甲、乙不能同時(shí)選生物,

則甲、乙總的選法有()

A.27種B.18種

C.36種D.48種

⑵某單位開(kāi)展聯(lián)歡活動(dòng),抽獎(jiǎng)項(xiàng)目設(shè)置了特等獎(jiǎng)、-一等獎(jiǎng)、二等獎(jiǎng)、三等獎(jiǎng)和鼓勵(lì)獎(jiǎng)共五種獎(jiǎng)項(xiàng).甲、

乙、丙、丁、戊每人抽取一張獎(jiǎng)票,開(kāi)獎(jiǎng)后發(fā)現(xiàn)這5人的獎(jiǎng)項(xiàng)都不相同.甲說(shuō):“我不是鼓勵(lì)獎(jiǎng)”;乙

說(shuō):“我不是特等獎(jiǎng)”;丙說(shuō):“我的獎(jiǎng)項(xiàng)介于丁和戊之間”.根據(jù)以上信息,這5人的獎(jiǎng)項(xiàng)的所有可

能的種數(shù)是()

A.15B.18

C.150種D.240種

思維升華求解排列組合問(wèn)題的6種主要方法

直接法把符合條件的排列數(shù)直接列式計(jì)算

優(yōu)先法優(yōu)先安排特殊元素或特殊位置

把相鄰元素看作一個(gè)整體與其他元素一起排列,同時(shí)注意捆綁元

捆綁法

素的內(nèi)部排列

對(duì)于不相鄰問(wèn)題,先考慮不受限制的元素的排列,再將不相鄰的

插空法

元素插在前面元素排列的空當(dāng)中

定序問(wèn)題對(duì)于定序問(wèn)題,可先不考慮順序限制,排列后,再除以定序元素

除法處理的全排列

間接法正難則反、等價(jià)轉(zhuǎn)化

跟蹤訓(xùn)練3(1)8名同學(xué)以2人為一組分為學(xué)習(xí)小組完成學(xué)習(xí)任務(wù),則所有可能的分組方案數(shù)量是

()

A.28B.2520C.105D.128

(2)(多選)(2024.褐陽(yáng)模擬)身高各不相同的六位同學(xué)A,B,C,D,E,尸站成一排照相,則說(shuō)法正確的

是()

A.A,C,。三位同學(xué)從左到右按照由高到矮的順序站,共有120種站法

B.A與C同學(xué)不相鄰,共有種站法

C.A,C,。三位同學(xué)必須站在一起,且A只能在C與。的中間,共有144種站法

D.A不在排頭,8不在排尾,共有504種站法

-微拓展----------------------------------------------------------------------------------------------

遞推數(shù)列在計(jì)數(shù)原理中的應(yīng)用

在計(jì)數(shù)原理中,當(dāng)計(jì)數(shù)的基數(shù)較大時(shí),用枚舉法會(huì)顯得非常困難.如果問(wèn)題帶有明顯的遞推特征,把此類計(jì)數(shù)問(wèn)

題的基數(shù)從有限個(gè)且數(shù)目很少推廣到〃個(gè),運(yùn)用數(shù)列知識(shí)建立遞推關(guān)系,經(jīng)過(guò)推廣就可以解決這類計(jì)數(shù)問(wèn)題.

典例(1)有4,4,…,A6共六個(gè)人,他們的座位分別為以,生,…,氏,現(xiàn)在求每一個(gè)人坐一個(gè)座位,且都

不坐自己座位,則共有種不同的坐法()

A.9B.16

C.44D.265

⑵如圖,一個(gè)環(huán)形的大會(huì)場(chǎng)被分成了〃個(gè)區(qū)域,現(xiàn)有k種不同顏色的服裝提供給〃個(gè)區(qū)域的觀眾,要求同一區(qū)

域的觀眾著裝顏色相同,且相鄰區(qū)域的觀眾著裝顏色不同.當(dāng)〃=5,〃=6時(shí),共有種不同的著裝方

法.

答案精析

落實(shí)主干知識(shí)

1.(1)m+n

2.一定的順序

3.(1)天同排列A#(2)不同組合十

4.n(〃l)(〃2)???(〃m+l)—^―1,?!4+謂7

(n-m)!?ni(n-m):

自主診斷

1.⑴X(2)X⑶X(4)4

2.C3.AD4.6

探究核心題型

例1(1)C[從左到右依次涂色,第一個(gè)圓環(huán)可以涂3種顏色,第二、三、四、五個(gè)圓環(huán)各可以涂2種顏

色,共有3X2X2X2X2=48(種)不同的涂色方案.]

(2)D[可分為兩類:

第一類:從一個(gè)地方出發(fā)向其他三個(gè)地方各建一座橋,共有4種不同的連接方式;

第二類:一個(gè)地方最多建兩座橋,其中建橋連接方式:PSR。和QRSP屬于相同的建橋方法,所以共有:x

A%12(種)不同的連接方式,其中交叉建橋方法,例如PRSQ,PRQS,RPSQ,RPQS不符合題意,共有4

種,

所以第二類建橋方法共有124=8(種)不同的連接方式.

綜上可得,不同的連接方式有4+8=12(種).]

跟蹤訓(xùn)練1(1)D[由題意可知,可以分兩種情況:

第一種情況:所選取的3個(gè)項(xiàng)目中恰有2個(gè)相同項(xiàng)目,

第一步,在8個(gè)項(xiàng)目中選取2個(gè),共有髭=28(種),

第二步,甲在剩下的6個(gè)項(xiàng)目中選取1個(gè),共有瑪=6(種),

第三步,乙在剩下的5個(gè)項(xiàng)目中選取1個(gè),共有瑪=5(種),

由分步乘法計(jì)算原理可知,共有28X6X5=840(種);

第二種情況:所選取的3個(gè)項(xiàng)目全部相同,

則有。=56(種);

由分類加法計(jì)數(shù)原理可知,滿足要求的報(bào)名方法一共有840+56=896(種).]

(2)C[根據(jù)題意,分2種情況討論:

①甲乙放在同一排,

有GaGGQA,=128(種)放法,

②甲乙不放在同一排,

有最GG瑪瑪A2144(種)放法,

則有128+144=272(種)不同的放法」

例2(1)A[當(dāng)甲選生物,乙不選生物時(shí),甲、乙的選法有瑪髭=9(種);當(dāng)甲不選生物,乙隨便選時(shí),甲、

乙的選法有髭第=18(種),則甲、乙總的選法有9+18=27(種).]

(2)D[甲是特等獎(jiǎng),不考慮丙的獎(jiǎng)項(xiàng)有A才種;甲不是特等獎(jiǎng),不考慮丙的獎(jiǎng)項(xiàng)有禺種;而丙獎(jiǎng)項(xiàng)在

丁和戍之間的情況占?,所以5人的獎(jiǎng)項(xiàng)的所有可能的種數(shù)是-A抖瑪禺Ag)=26.]

跟蹤訓(xùn)練2(1)B[根據(jù)題意,分2步進(jìn)行分析:

①在其他4人中,選出1人,安排在甲、乙中間,有C;A初8(種)情況;

②將3人看成一個(gè)整體,與其余3人全排列,有A*24(種)排法.

則有8X24=192(種)不同的站法.]

(2)C[由題意可知兩名男生必須分開(kāi)在兩組,則有I女1男為一組,余下的人為一組;

2女1男為一組,余下的人為一組;

3女1男為一組,余下的人為一組;

4女1男為一組,余下的人為一組;

所以兩個(gè)小組不同的分配方法有心(禺+《+C升《)=60(種).]

例3AC[如果甲工序不能放在第一道,則甲有4種安排方式,根據(jù)分步乘法計(jì)數(shù)原理,共有

C;A;=4X4X3X2X1=96(種)加工順序,故A正確;

甲、乙兩道工序相鄰,將甲和乙捆綁為一道工序,和剩余3道工序放在一起排序,則共有

A,Ab2X4X3X2Xl=48(種)加工順序,故B錯(cuò)誤;

如果甲、丙兩道工序不能相鄰,則先安排剩余3道工序,在形成的4個(gè)空中,安排甲、丙,故共有

A弘¥=3X2X1X4X3=72(種)加工順序,故C正確;

現(xiàn)將5道不同的工序全排列,再除以乙、丙兩道工序的全排列,故共有§=5":3:2X1=6O(種)加工順序,故

A?NX1

D錯(cuò)誤」

例490

解析由題意,取下6盞不同的花燈,

先對(duì)6盞不同的花燈進(jìn)行全排列,共有A&種方法,

因?yàn)槊看沃蝗∫槐K花燈,而且只能從下往上取,

所以必須除去不符合題意的排列順序,即先取上方的順序,故不同取法種數(shù)為盤(pán)”二90.

A2A2A2

例5B[5名新教師按3:1:1分組有髭種方法,按2:2:1分組有甯種分法,因此5名新教師的安排

方案有(髭+等)A,種,當(dāng)甲、乙在同一組時(shí),甲、乙可視為1個(gè)人,即相當(dāng)于4名新教師的安排方案,

有C灣種,所以所求不同的安排方案有儂+等)A』C渴=25X66X6=114(種).]

跟蹤訓(xùn)練3(1)C[由題意8名同學(xué)以2人為一組分為學(xué)習(xí)小組完成學(xué)習(xí)任務(wù),則所有可能的分組方案數(shù)

ELBC】C式:C:_28X15X6_..

>7E一熱—~—24一—I"'J

⑵ABD[將A,C,。三位同學(xué)從左到右按照由高到矮的順序站,共有獸=120(種)站法,故A正確;

A3

先排B,。,E,乙共有A*種站法,A與。同學(xué)插空站,有A1種站法,故共有種站法,故B正確;

將A,C,。三位同學(xué)捆綁在一起,且A只能在。與。的中間,有2種站法,捆綁后有A:種站法,故共有

2XA2=48(種)站法,故C錯(cuò)誤;

當(dāng)A在排尾,8隨意站時(shí),則有筋=120(種)站

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論