




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
TechnicalWhitePaper
MobileNetworks
EvolutionintheAIEra
September2025
SamsungNetworks
Contents
1.Introduction 4
2.Software-basedFlexibleNetwork 6
2.1.NetworkEvolution:fromPurpose-builtHardwaretoSoftware-basedNetwork
2.2.FlexibilityofSoftware-basedNetworks
3.IntegrationofAIandMobileNetworks 12
3.1.WhySoftware-basedNetworksarebestsuitedforAI
3.2.AI-poweredAutomation
3.3.AI-poweredCoreandRadioAccessNetwork
4.PersonalizedService-centricNetwork 18
4.1.PersonalizedNetwork-as-a-Service
4.2.AI-poweredAutonomousServiceAssurance
4.3.On-DemandEdgeAI-as-a-Service
5.Conclusion 22
2
3
Abbreviations
AI
ArtificialIntelligence
mmWave
Millimeterwave
API
ApplicationProgrammingInterface
MNO
MobileNetworkOperator
CAPEX
CapitalExpenditure
NaaS
Network-as-a-Service
COTS
Commercialoff-the-shelf
NF
NetworkFunction
CPU
CentralProcessingUnit
OPEX
OperationalExpenditure
CSR
CellSiteRouter
RAN
RadioAccessNetwork
C-RAN
CentralizedRadioAccessNetwork
SLA
ServiceLevelAgreement
CU
CentralizedUnit
SoC
Systemon-Chip
D-RAN
DistributedRadioAccessNetwork
UE
UserEquipment
DU
DistributedUnit
UPF
UserPlaneFunction
E2E
EndtoEnd
vCore
virtualizedCorenetwork
GPU
GraphicsProcessingUnit
vCSR
virtualizedCellSiteRouter
KPI
KeyPerformanceIndicator
vDU
virtualizedDigitalUnit
LLM
LargeLanguageModel
vRAN
virtualizedRadioAccessNetwork
MIMO
MultipleInput,MultipleOutput
4
1.Introduction
Sinceitsinceptioninthe1970s,themobileindustryhasundergonearemarkabletransformationdrivenbytheaspirationtotransmitmoredatainlesstime.Theevolutionbeganwithfirst-generation(1G)networks,whichofferedonlyafewkilobitspersecondofvoice.Witheachsubsequentgeneration,thecapabilitiesexpandedexponentially:2Gusheredinspeedsuptohundredsofkilobitspersecond,while3Gpeakedatseveralmegabitspersecond.Theadventof4Grevolutionizedaccess,supportinghigh-speeddatatransmissionofupto1Gbps.Now,withthearrivalof5G,userscanexperiencelightning-fastservicesexceeding10Gbps.Thisleapintechnologyenableshigh-definitionvideostreaming,immersivemobilegaming,andseamlessmobileofficeexperiencesanytimeandanywhere.
Whatdoesthefutureholdforthemobileindustry?
Samsungenvisionsagroundbreakingevolutioninmobilenetworksthatwillfurtherenhancetransmissioncapacity.Thesenetworkswillbecharacterizedbytheirflexibility,automation,intelligence,andhaveastrongfocusondeliveringservice-orientedsolutions.Thisprogressiveapproachpromisestorevolutionizehowweconnectandinteractinanincreasinglydigitalworld.
1。
Thefutureofmobilenetworksliesintranscendingtraditionaldedicatedhardwaresetupsandembracingatransformativeshifttowardhardware-agnosticsoftwaresolutions.Bydecouplinghardwarefromsoftware,mobilenetworkoperators(MNOs)canleveragecommercialoff-the-shelf(COTS)orgeneral-purposehardware,enablingthemtoinstallandrunnetworksystemsseamlesslywithouttheneedforhardwaremodifications.ManyMNOsarealreadyleveragingsoftware-drivencoreandRANequipment,andthispromisingtrendwillundoubtedlygainmomentumwithitsstrengths.Intheverynearfuture,amajorityofmobileinfrastructure,includingthecorenetwork,RAN,andtransportnetworkequipment,willtransitiontoasoftware-centricmodel,drivinginnovationandefficiencyacrosstheindustry.
2。
Mobilenetworksareonthebrinkofatransformativeshifttowardsautomation,significantlyreducingtheneedforhumanintervention.Aswefaceincreasingcomplexityinmobilenetworks—drivenbyevolvingcapacitydemandsandfunctionaladvancements,thesediversecomponentsmustworkharmoniously.Networkautomationstreamlineseveryphase,frominitialinstallationandongoingoperationstopracticalproblemanalysisandresolution.Thismethodologyreducescostsandminimizesthelikelihoodofhumanerrors,resultinginenhancednetworkqualityandstability.Embracingthisautomatedapproachiscrucialforthefutureofmobilenetworks.
5
3
Mobilenetworkswillbecomemoreintelligentthroughtheapplicationofartificialintelligence(AI),takingovertaskstraditionallyperformedbyhumansortasksrequiringhumanexpertise.Forinstance,withlargelanguagemodels(LLMs)andintention-basedautomation,networkscandelivermoreefficientservicesbasedondata-driveninsights.Additionally,thesesystemswillfacilitatefasterandmoreaccuratedecision-makingbyproposingoptimizedsolutionsforhumanconsideration.Withadvancedlearningcapabilities,AIcanminimizenetworkdowntimeandenhanceservicecontinuitybyeffectivelyidentifyingtherootcausesofproblemswhentheyarise.
4。
Mobilenetworksandproductswillbetailoredtobeservice-orientedandpersonalized.Software-basedflexiblenetworksenablethecreationofcustomizedapplicationsthatsatisfymorespecificneeds.WhenpairedwithautonomousnetworksandinnovationsdrivenbyAI,thesesystemsenhanceresourceallocation,predictusagepatterns,andoptimizeservicelevelagreements(SLAs).Thiscombinationsystematicallyimprovesservicequalityandensuresanexcellentenduserexperience.
TheevolvinglandscapeandshiftsalsopresentnewbusinessopportunitiesforMNOs.Thesemobileinfrastructures,whereallnetworkequipmentoperatesthroughsoftware,relyongeneral-purposecentralprocessingunits(CPUs)andgraphicsprocessingunits(GPUs).Samsungenvisionsthisinnovativeinfrastructureasessentiallytransformingmobilenetworksintoadatacenterandcloudplatformcapableofhandlingavarietyofworkloads,includingvariousAIapplications.Mobilecommunicationequipmentislocatedwhereverusersare,fromcentraldatacenterstoantennasites,ensuringservicesaredeliveredclosetousers.Byleveragingfuturenetworks,MNOscanunlocknewrevenuestreamsnotonlyfrommobilecommunicationservicesbutalsofromcloudoperations[1].
6
2.Software-basedFlexibleNetworks
Theevolutionofmobilecommunicationtechnologyhasenabledittomeettheincreasinguserdemandfornewservices–andtheseadvancementswouldn’tbepossiblewithoutchipinnovations.Continuousdevelopmentsinchiptechnologyhaveintroducedmicro-processing,whichenabledtheimplementationofincreasinglycomplexandadvancedtechnologiesatlowercosts,smallersizes,andreducedpowerconsumption.Smartphonesreleasedin2010wereequippedwithchipsetsmadeusing65nm(nanometers)processtechnology,whilesmartphonesreleasedin2025utilizechipsetsbasedon3nmprocesstechnology,enhancingperformanceanduserexperience.Mobilenetworkequipmentalsohasapurpose-builtsystem-on-chip(SoC)forprocessinglarge-capacitydata,andequipmentprovidersareconsistentlyintegratingthelatestSoCsintotheirbasestations.
However,costsassociatedwithdevelopingnewchipshavegrownexponentially,particularlyforhigh-techprocesses.Forinstance,itcost$48milliontocreatea28nmchipin2011,whereasthedevelopmentcostfora2nmchipnowstandsat$725million.Thisevolutionrepresentsastaggering15-foldincreaseinchipdevelopmentcostsoverthepastdecade(seereferenceFigure1),whichpromptedacallforchangesinthedevelopmentofmobilecommunicationequipment.
Moreover,thereleasecycleforpurpose-builtSoCsproducedbymobileequipmentcompaniestypicallyrangesfromthreetofouryears,notablylongerthantheonetotwo-yearcycleforgeneral-purposeCPUsandGPUs.Asaresult,itisunclearwhetherchipsdesignedforspecificpurposeswillremaincompetitiveorcontinuetobeutilizedinthenearfuture.Incontrast,general-purposechipsalreadyholdsignificantmarketshare,havearobustecosystem,andarerapidlyadvancing.Theymayserveasamoreeffectivealternativeinthemobilecommunicationssector.
source:ArmInc2023IPOprospectus(IBS,july2022)
$725M
]
designcost[USD
$48M
processnode
Figure1.Chipsetmarkettrend–chipdesigncostperprocessnode
Thatsaid,operatingsoftware-basedmobileequipmentongenericchip-basedhardwareallowsforsubstantialcostsavingscomparedtodevelopingdedicatedchips.Thereareanumberofotheradvantagesthataredrivingthetransitiontosoftware-basedsolutionsongeneral-purposechipplatforms:
COTSequipmentcanbeutilizedregardlessofthehardwarebrandorunderlyingarchitecturetype.
Hardwareresourcescanbeusedmoreefficiently,ascapacitycanbeeasilyexpandedorreducedaccordingtomarketdemands.
Itenablesresourcesharingwithgeneralapplications,suchasAI,whichhelpstominimizeredundantinvestments.
7
2.1
NetworkEvolution:
FromPurpose-builtHardwaretoSoftware-basedNetwork
Effortsareunderwaytotransitionexistingcommunicationequipmenttowardasoftware-basednetworkacrossalldomains,RAN,core,andtransport.
Youcancheckthevideobyclickingontheimage.
01VirtualizedCoreNetwork
Corenetworkequipmenthastraditionallyhandledlarge-capacity,high-speedpacketprocessingusingdedicatedhardwarespecificallydesignedfortheuniqueattributesofeachnetworkentity.However,withtheperformanceimprovementsobservedwithgeneral-purposeCPUsandservers,itisnowpossibletovirtualizeandimplementcorenetworkentities.Thisshiftallowsforhighprocessingcapacitywithlowerpowerconsumption.
The5Gstandardintroducesseveral
changesaimedatenablingthe
virtualizationofthecorenetworkand
enhancingefficiency:
Theconnectionmethod
betweendifferentNFshasbeen
standardizedthroughaservice-
basedinterfacethatutilizes
HTTP/2
,allowingforeasieruseand
thereuseofservicesforeachNF.
Userequipment(UE)context
cannowbestoredinaseparate
databaseratherthanmanaged
individuallybyeachNF.Thisdesign
enablesallNFstooperatewithout
maintainingaconsistentstate,as
theycanretrieveandupdateUE
contextsthroughthedatabase.
Byimplementingthenetwork
entitieswithinthecorenetwork
domain-definedasnetwork
functions(NFs)–asmicroservices
inacloud-nativearchitecture,they
canbescaledinoroutbasedon
theCPUloadorthenumberofuser
sessionsbeingsupported.
Asaresultofthesetransformations,theprocessesandstorageforNFsaredecoupled,leadingtosimpleroperationsandimprovedscalability.
8
02VirtualizationofRAN
Traditionally,theRANreliedon
purpose-builtchipsduetothe
complexsignalprocessing
requirementsatthephysical
layer,whichinvolvesophisticated
timingandhigh-speeddata
processing.Dedicatedhardware
wasperceivedastheonlycost-
effectiveandenergy-efficient
solutionfortheseoperations.
Whilethatmayhavebeen
truepreviously,withtherapid
advancementsingeneral-purpose
CPUsandongoingeffortstoimplement
virtualizedRANs(vRAN),ithasbecome
feasibletovirtualizeRANequipmentto
competewithtraditionaldedicated
hardwaresolutions[2-4].
Inparticular,vRANoffersoptimaloptionsforvariousinstallationenvironmentsandrequirements,thankstoitsflexibleandscalableattributes,withouttheneedforadditionalormodifiedhardware.
Varioustypesofradiounits:asmultipleinput,
multipleoutput(MIMO)technologyevolves,multiple
typesofradiounits,rangingfrom2T2Rradiounitsto
64T64RmassiveMIMOunits,canbeconnected.
Variousversionsof3GPPstandards:eachMNOmust
support4GLTEand5GNR,dependingontheservice
status,whilealsomaintaining2GGSMformachine-to-
machineservices.Furthermore,itshouldbepossible
tominimizetheneedforhardwarechangesevenas
technologyevolvestoward6Ginthefuture.
Otherconfigurationoptions:in5G,RANfunctions
aredividedintothreecomponents:centralizedunit
(CU),distributedunit(DU),andradiounit(RU).With
theexceptionoftheRUs,whichrequireseparate
hardwareforhandlingradiofrequencies,each
distributedRAN(D-RAN)canincludebothCUandDU.
Alternatively,aD-RANmayconsistonlyofaDU,with
theCUcentralizedinaseparatedatacenter.
Variouscombinationsoffrequencybands:recent
cellularnetworksarerequiredtosupportavariety
ofbandwidthsandfrequencybands,dependingon
theMNOsandlocalenvironmentalconditions.These
mayincludenarrowbandwidthatFDDlow-band,
widebandwidthatTDDmid-band,andextremely
widebandwidthatmillimeterwave(mmWave).
Additionally,multiplecarriersmayneedtobe
supportedwithineachband.
ThesevariouscombinationsofRANrequirementscanleadtoeitherexcessorinsufficientcapacityifonlylimitedhardwareoptionsareused.Incontrast,vRANcanutilizeavarietyofcommerciallyavailableCOTSservers,allowingforoptimalconfigurationsthroughvRANsoftwareoptimizationtailoredtomeetcomplexneeds.Additionally,morepowerfulandcapablegeneral-purposeCPUsdesignedforcommunicationnetworksareexpectedtobereleasedinthefuture.Asaresult,vRANisanticipatedtocontinuetoadvancefurther,improvingitsperformance.
9
03DisaggregatedTransportNetwork
AsothercommunicationequipmentevolvesintovirtualizedsoftwareonCOTSservers,thereisagrowingmomentumtoadoptsystemsthatseparatehardwareandsoftwareintransportnetworks.
IncloudorMNOdatacenters,large-capacityroutersarenecessarytoconnecthigh-capacityserversandcoreequipmenttothepublicnetworkandD-RANsites.Theselarge-capacityroutersrequirenumerousphysicalEthernetportsandhigh-performancepacketprocessingcapabilitiestohandlesignificantnetworktrafficsimultaneously.
Consequently,itispracticallychallengingtoreplacethemsolelywithCOTSservers.
Instead,whiteboxrouterscanbeusedasdevicesthatmeetthesespecifications.Awhiteboxroutercombinesstandardnetworkingchipsforhigh-performancepacketprocessingwithageneral-purposeCPUforsoftwareoperation,effectivelyseparatinghardwarefromsoftware.Thisdesignallowsnetworkmanagerstocontrol,manage,automate,andoptimizetheentiretransportnetworkfromacentralizedlocationusinganopennetworkoperatingsystemandasoftware-definednetworkwhilesupportinglarge-capacitypacketswitching.
Youcancheckthevideobyclickingontheimage.
Anothertransportnetworkdeviceusedinmobilenetworksisthecellsiterouter(CSR)attheD-RANsite.Unliketraditionallarge-capacityrouters,D-RANsitesdonotrequireahighnumberofEthernetportsorextensivesimultaneousnetworkswitchingprocessing.Asaresult,avirtualizedCSR(vCSR)canbeimplementedusingcomputingresourcesfromaCOTSserverwhereavRANhasalreadybeeninstalled.TheintroductionofavCSRattheD-RANsiteeliminatestheneedforaseparatehardwareCSR,integratingallfunctionsintoasinglebox.ThisintegrationisbasedonthecapacityrequirementsoftheD-RANsiteandadvancementsingeneral-purposeCPUtechnology,leadingtosignificantsavingsinbothcapitalexpenditures(CAPEX)andoperationalexpenditures(OPEX)[5].
10
2.2FlexibilityofSoftware-basedNetworks
0102
VirtualizationofCoreand
TransportNetworksandtheRoleofEdgeComputing
Thecoredomainfunctions—includingthecontrolplanefunctionandtheuserplanefunction(UPF)forprocessinghigh-capacitycallsfromeachRANsite—arelocatedintheMNO’scentraldatacenter.ThisdatacenteralsomanagesRANsitesandhandlesapplicationprocessingforservicesprovideddirectlybythespecificMNO.VirtualizingNFsinthecentraldatacenteroffersseveraladvantages,includingdynamicresourceallocationandadjustmentinresponsetochangesinsubscribernumbersortrafficvolume.ThisflexibilityenablesthenetworktoadaptefficientlytonewRANsitesorservices.
FutureNetworksandIntegrationofAI
Whenwethinkofafuturenetworkwhereservicesarecontinuouslyevolving,edgeapplicationswillincorporateAIprocessing.IftheAIoperationsaresensitivetolatency,theAIprocessescanbeaddedtothevirtualNFwithintheedgedatacenter.Alternatively,iftheAIoperationsrequiresubstantiallearningfromdiverseandextensivedatacollectedfrommultipleedgedatacenters,theAIprocessesmightbehousedasavirtualNFinthecentraldatacenter.Inthiscase,thecomputingresourcesintheedgedatacentercanberepurposedforotherfunctions.Asthecomputingresourcesoftheedgedatacenterevolveandexpandinvariousways,thisdevelopmentpresentsMNOswithanopportunitytoestablisha“distributededgecloud.”
central
datacenter
platformn
Edge
platform
datacenter
C-RAN
D-RAN
datacenter
datacenter
platform
Figure2.Software-basednetworkfunctionsandAIworkloadsrunningongeneral-purposeplatforms
11
03
ReducingLatencywithEdgeDataCenters
Shorteningthetrafficpathbetweenusersandapplicationserversisessentialtosupportlatency-sensitiveservices.Thisroutingcanbeachievedbyrelocatingapplicationserverstoedgedatacentersclosertousers.Insteadofroutingtrafficthroughthecentraldatacenterofanationalnetwork,theedgedatacentercanbeintroducedtosubstantiallyreducethedistancebetweenusersandserviceapplications.IftheRANsitesconnectedtotheedgedatacenterconsistsolelyoftheDUandtheRU,theedgedatacentermustincludeseveralnecessaryNFs.TheseincludetheCUoftheRANdomainandtheUPFofthecoredomain.
Sincethe5GstandarddefinestheCPandUPofthecoredomainseparately,theedgedatacentercanconnectwiththeedgeapplicationserverevenifitincludesonlyUPNFswithoutcoreCPNFs.TheadvantagesofvirtualizingallNFsongeneral-purposehardwareintheedgedatacenterareevident.BeingsituatedbetweenthecentraldatacenterandtheRANsiteallowsworkloadsfromseveralNFstobedistributedacrosseachRANsiteorconcentratedinthecentraldatacenterbasedontheavailablecomputingresourcesateachlocation.Additionally,therequiredcapacityforeachNF,includingedgeapplications,canvaryduetoseveralfactors,suchastheinitialsetupoftheedgeservice,spikesinservicesubscriptions,theadditionofnewfrequencybandsattheRANsites,orincreasedapplicationcomplexityastheedgeserviceevolves.TheflexibilityinredistributingresourceswhenadjustingtheallocationamongNFswithintheedgedatacenterissignificantlygreaterthanthatofconventionalhardware-basednetworks.Thissetupincludestheabilitytoaddmoreresourcesthroughadditionalhardwareinstallations
04
Virtualization
inDistributedRAN(D-RAN)Sites
TheNFsofaD-RANsite,composedofvariousfunctionswithintheDU,canbevirtualizedonthesamegeneral-purposehardwareplatform.Dependingonthenetworktopologydesign,theNFscorrespondingtotheCUmayalsobeincluded.Additionally,avirtualizedNFcanalsoreplacetheCSRusedtoconnecttheD-RANsitetothebackhaulnetwork.ThisstructureallowstheD-RANsitetobeconfiguredusingonlyCOTShardware.Inthefuture,asgeneral-purposeCPUscontinuetoimproveandsoftwareoptimizationadvancesaccordingly,itisanticipatedthat,inmanycases,asingleCOTSserverwillbeabletosupportbothRANfunctionsandCSRfunctionsforallofthefrequencycarriersinaD-RANsite.Furthermore,theremainingcomputingresourcescanenabletheintegrationofAIapplicationswithinRANs,eliminatingtheneedforseparateequipment.
05
BenefitsofVirtualizationin
PrivateNetworkDeployment
BenefitsofvirtualizingtheRAN,core,andtransportelementsinaCOTSservercanbeseenintheestablishmentofprivatenetworksinindustrialfactories,schools,andenterprisecampuses.Unlikenationalmacronetworks,theseprivatenetworkstypicallyconsistofdozenstohundredsofcells.Usingtraditionalhardware-basednetworkequipmentwithfixedconfigurationsandtrafficcapacitywouldrequiretheseparatemanufacturingofdedicatedequipmentforeachNFbasedontheneededcapacity.Thisapproachoftenresultsineitherunnecessarylarge-scaleequipmentoradditionalexpenses.Incontrast,avirtualizednetworkcanoperatewithjustoneCOTSservertosupportallcomponents,includingvRAN,vCore,andvCSR,evenforextremelysmallcapacities.Additionally,tomeetspecializedservicerequirements,it’spossibletocreateacustomizedconfigurationthatincreasesthecapacityofspecificNFsincertaindomainswhilemaintainingoverallflexibility.
12
3.
IntegrationofAIandMobileNetworks
Likeotherindustries,themobilenetworkbusinesshasrecentlyutilizedAItoconductresearchinvariousfields.Theseinvestigationsaimtoenhanceoperatorconvenience,userexperience,andtypicalnetworkperformance,suchasdataspeed.
ThissectiondiscussestherelationshipbetweenAIandmobilenetworks,primarilyfocusingontwomajorquestions:
Youcancheckthevideobyclickingontheimage.
WhatadvantagesandoutcomesmightresultfromcombiningAIand
mobilenetworks?Whatpreparations
shouldbemadein
advancetosupport
variousAIapplicationsinthefuture?
3.1
WhySoftware-based
NetworksarebestsuitedforAI
ForAItechnologytobeeffectivelyutilized,threekeycomponentsarenecessary:computingresources,data,andalgorithms.
WhenapplyingAIwithinamobilenetwork—excludingalgorithmsspecifictotheAIapplication’sfunctions—securingthecomputingresourcesrequiredforAIoperationswithinthenetworksystemisessential.Additionally,significantamountsofrelevantnetworkdatamustbecollectedandprovidedtoAIapplicationsformodeltrainingandinference.
First,weexaminetheissueofsecuringnetworkdata.TofullyleveragethepotentialofAI,itisessentialtocollectvarioustypesofnetworkdatasothatAIapplicationscanlearneffectively.Intraditionalmonolithichardwareenvironments,allnetworkentitiesmustreportentity-levelnetworkdatathroughastandard-definedinterface,regardlessofconfiguration.Thesenetworkentities,whichmaytaketheformofdedicatedhardwareequipment,canbebrokendownintointernallayers,includinghardwaredevices,operatingsystems,middleware,andsoftwarefunctions.
However,theexactstructureandstatusoftheseinternallayersareprimarilyaccessibleonlytotheequipmentprovider.ThissegmentationmightcreatealimitationforMNOs,whomustrelyonthesolutionsofferedbytheequipmentprovidertogathernetworkdatanecessaryforassessingthesystem’snormalcyoridentifyingissuesatthislevel.Consequently,theMNOs’abilitytodeterminethenormalstateofthenetworksystemdependsheavilyontheinformationprocessedandselectedbytheequipmentprovider.Moreover,therearechallengesrelatedtothecollectionandmonitoringofnewnetworkdata,aswellastheabilitytoperformnewanalysesandoptimizations.
13
Conversely,insoftware-basednetworksconstructedusingCOTSgeneral-purposeserversandopensoftwareplatforms,networkentitiesarecreatedbyintegratingtechnologiesacrossvariouslayers,includingoperatingsystemsandvirtualizedorcontainerizedNFs.Sincedifferentprovidersoftensupplythehardwareandsoftwareforeachlayer,theconfigurationandstatusinformationfortheselayersisaccessibletotheMNOusingthenetworkentities.ThisaccessallowstheMNOtocollectandintegratedetailednetworkdatafromallentities,functions,andtheirrespectivelayers.PleaserefertobelowFigure3.
Figure3.Unifiednetworkdatacollectionofsoftware-basednetwork
Thedatagatheredatthislevelnotonlyenhancestheunderstandingofeachnetworkentity,whichmayincludemultiplenetworkfunctions,butalsocontributestothecreationofbigdatafortheentirenetwork.Bycomparinghistoricalandcurrentnetworkdataoranalyzingtherelationshipsbetweenvariousdatapoints,theinterconnectionsbetweendifferentnetworkentitiescanbeunderstoodmoreclearlyandingreaterdepth.
Giventheextensiveandintricateinterrelationshipsrepresentedinthisbignetworkdata,thereisanincreasingneedforAIapplicationstoassistinanalyzingtheseassociations.Fromtheperspectiveofnetworkoperations,AIcanbeemployedtopredictpotentialissuesthatmaybechallengingforMNOstodetectdirectly,aswellastoidentifyrisksassociatedwiththeinterworkingofnetworkfunctions.
AIapplicationsrequirecomplexprocessingoflargedatasetsandunderstandingthesemanticrelationshipsbetweenthem.IfMNOsarerequiredtoallocatededicatedcomputingresources,suchasseparateCPUsandGPUsexclusivelyforAI,itcouldsignificantlyincreaseCAPEXandcreatesubstantialentrybarriersfortheinitialimplementationofAItechnologyinnetworks.Insoftware-definednetworks,mobilenetworkworkloadsandAIworkloadscansharethesamehardware,simplifyingtheintroductionandexpansionofAIfunctionalities.AIworkloadscanbedistributedfromcentraldatacenterstoedgedatacentersandD-RANsites.ThedecisiononwheretoplacetheAIworkloaddependsonthefunctionalattributesoftheAIapplication,includinglatencyrequirements,thesizeoftheassociatednetworkdata,andthetargetapplicationfortheanalysisresults.
AnotherimportantconsiderationishowtoallocatetheavailablecomputingresourcesateachlocationbetweennetworkfunctionsandAIworkloads.Forinstance,acentraldatacenterwiththehighestcomputingcapacitycanhandleAImodeltrainingandmanagement,whileedgedatacentersorD-RANsitescanreceivethetrainedAImodelsandfocusonspecificAItaskstooptimizeresourceutilization.
Additionally,software-definednetworkscancentralizethemanagementofdistributedcomputingresourcesacrossalltheselocationsforbothnetworkandAIworkloads.
14
3.2AI-poweredAutomation
Operatingamobilenetworkrequiresdeepexpertiseacrossmultipledomains.Asthenetworkevolves,itisdividedintovariousservices,suchasIoTservices,latency-sensitiveservices,fixedwirelessaccess,andtraditionalvoiceanddata.Inthepast,expertsmanagedandoperatedeachdomainindividual
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年皖南醫(yī)學(xué)院第二附屬醫(yī)院招聘28人模擬試卷完整答案詳解
- 2025呼倫貝爾扎蘭屯市教育系統(tǒng)“校園引才”模擬試卷(含答案詳解)
- 2025福建福州市體育工作大隊招聘食堂小工2人模擬試卷及答案詳解(必刷)
- 2025廣東清遠(yuǎn)市英德市招聘教師222人(編制)考前自測高頻考點模擬試題附答案詳解(考試直接用)
- 2025北京順義區(qū)北務(wù)鎮(zhèn)衛(wèi)生院招聘編外人員3人考前自測高頻考點模擬試題有答案詳解
- 2025湖南懷化學(xué)院高層次人才招聘100人模擬試卷及答案詳解(必刷)
- 2025內(nèi)蒙古鄂爾多斯市中心醫(yī)院引進(jìn)高層次人才97人模擬試卷帶答案詳解
- 2025年浙江大學(xué)醫(yī)學(xué)院附屬第二醫(yī)院招聘藥劑師1人考前自測高頻考點模擬試題及完整答案詳解1套
- 2025江蘇蘇州工業(yè)園區(qū)天域幼兒園教學(xué)輔助人員招聘1人模擬試卷完整參考答案詳解
- 2025昆明市第二人民醫(yī)院融城老年病醫(yī)院(5人)模擬試卷附答案詳解(黃金題型)
- 2025-2026學(xué)年高二上學(xué)期第一次月考英語試卷01(全國)
- 新版中華民族共同體概論課件第八講共奉中國與中華民族內(nèi)聚發(fā)展(遼宋夏金時期)-2025年版
- 2025-2030兒童專注力訓(xùn)練行業(yè)市場需求與發(fā)展策略分析報告
- 《PLC電氣控制技術(shù)》課件(共九章)
- 2025年全國電力安全生產(chǎn)網(wǎng)絡(luò)知識競賽題庫及答案
- 反洗錢系統(tǒng)培訓(xùn)
- 《軍品價格管理辦法》
- 廣東省中山市華辰實驗中學(xué)2025-2026學(xué)年高三上學(xué)期開學(xué)考英語試題(含答案)
- 基孔肯雅熱主題班會課件
- 麻醉恢復(fù)室護(hù)理要點
- 心力衰竭的全程管理
評論
0/150
提交評論