2025年上學期高三數學“數學編程思維”啟蒙試題(二)_第1頁
2025年上學期高三數學“數學編程思維”啟蒙試題(二)_第2頁
2025年上學期高三數學“數學編程思維”啟蒙試題(二)_第3頁
2025年上學期高三數學“數學編程思維”啟蒙試題(二)_第4頁
2025年上學期高三數學“數學編程思維”啟蒙試題(二)_第5頁
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025年上學期高三數學“數學編程思維”啟蒙試題(二)一、單項選擇題(每題3分,共10題,共30分)算法邏輯與數學推理執(zhí)行如下偽代碼后,輸出結果為()a←1b←2ForiFrom1To3c←a+ba←bb←cEndForPrint(b)A.5B.8C.13D.21遞歸思想與數列某遞歸函數定義為:$f(n)=\begin{cases}1&n=1\2f(n-1)+1&n>1\end{cases}$,則$f(5)$的值為()A.15B.31C.63D.127數據結構與集合運算已知集合$A={x|x^2-5x+6\leq0}$,$B={x|\text{隨機數生成函數}\text{randint}(1,10)\text{的輸出值}}$,則$A\capB$的元素個數的數學期望為()A.2.8B.3.2C.3.6D.4.0復雜度分析與函數增長下列四個函數中,增長速度最快的是()A.$f(n)=n\logn$B.$f(n)=n^2$C.$f(n)=2^n$D.$f(n)=n!$二分法與方程求解用二分法求方程$x^3-2x-5=0$在區(qū)間$[2,3]$內的近似解,若精確度為0.1,則至少需要迭代的次數為()A.3B.4C.5D.6邏輯判斷與命題某程序的條件判斷語句為:If(a>0Andb<=5)OrNot(c==0)Then...,若$a=3$,$b=6$,$c=0$,則該條件的執(zhí)行結果為()A.TrueB.FalseC.無法確定D.語法錯誤算法優(yōu)化與不等式用冒泡排序對數組$[5,3,8,1,2]$進行升序排序,需要交換元素的次數為()A.6B.7C.8D.9動態(tài)規(guī)劃與最優(yōu)化某機器人從原點$(0,0)$移動到$(m,n)$,每次只能向右或向上移動1個單位,且不能經過點$(2,3)$,則不同路徑的條數為()A.$\binom{m+n}{m}-\binom{5}{2}\binom{(m-2)+(n-3)}{m-2}$B.$\binom{m+n}{m}-\binom{m+n}{2}$C.$\binom{m+n}{m}-1$D.$\binom{m+n-1}{m-1}$概率模擬與統(tǒng)計用隨機模擬方法估計圓周率$\pi$:向邊長為2的正方形內隨機投點,記錄落在該正方形內切圓內的點數。若投點10000次,落在圓內的次數為7850,則$\pi$的估計值為()A.3.12B.3.14C.3.16D.3.18位運算與二進制二進制數$101101_2$與$11011_2$進行按位異或運算的結果為()A.$110110_2$B.$011010_2$C.$100110_2$D.$010010_2$二、填空題(每題4分,共5題,共20分)迭代法與極限迭代公式$x_{n+1}=\frac{1}{2}(x_n+\frac{2}{x_n})$,若$x_1=1$,則$\lim_{n\to\infty}x_n=$________。哈希函數與同余某哈希表采用除留余數法構造哈希函數:$H(key)=key\mod7$,若插入關鍵字序列$[14,23,32,41,50]$,則發(fā)生沖突的關鍵字是________(填寫具體數值)。貪心算法與區(qū)間覆蓋用區(qū)間$[1,4]$、$[2,5]$、$[3,6]$、$[7,9]$覆蓋數軸上的$[1,9]$,最少需要選擇的區(qū)間個數為________。矩陣運算與圖像旋轉平面直角坐標系中,點$(x,y)$繞原點逆時針旋轉$90^\circ$的變換矩陣為$\begin{pmatrix}0&-1\1&0\end{pmatrix}$,則點$(3,4)$旋轉后的坐標為________。分治思想與排列組合用分治法求$n$個元素的全排列數,其時間復雜度的遞推關系式為$T(n)=nT(n-1)+O(n)$,則$T(n)$的漸進表達式為________。三、解答題(共5題,共50分)1.算法設計與數列求和(8分)問題:設計一個時間復雜度為$O(n)$的算法,計算數列${a_n}$的前$n$項和,其中$a_n=1+3+5+\dots+(2n-1)$。(1)寫出算法的偽代碼;(2)用數學歸納法證明算法的正確性;(3)若$n=100$,求算法輸出的結果。2.遞歸與函數圖像(10分)問題:定義分形曲線如下:第0階:線段$y=0$,$x\in[0,1]$;第1階:將線段三等分,中間段替換為“V”形,頂點坐標為$(\frac{1}{2},\frac{1}{2})$;第$k$階:對第$k-1$階的每條線段重復上述操作。(1)寫出第$k$階曲線的總長度$L(k)$的遞推公式;(2)計算$\lim_{k\to\infty}L(k)$;(3)用Python語言繪制第3階曲線的圖像(寫出核心代碼)。3.動態(tài)規(guī)劃與資源分配(12分)問題:某工廠生產A、B兩種產品,生產1件A需消耗2噸原料和3小時工時,利潤500元;生產1件B需消耗3噸原料和2小時工時,利潤400元?,F(xiàn)有原料100噸,工時80小時,且A、B的產量均為非負整數。(1)建立利潤最大化的數學模型;(2)用動態(tài)規(guī)劃法求解最優(yōu)生產方案;(3)若原料增加1噸,利潤最多增加多少元?4.圖論與最短路(10分)問題:城市交通網絡如圖所示,頂點表示路口,邊表示道路,邊上的數字為道路長度(單位:公里)。①———2———②———3———③/|/|\|\1|/|\|4/|/|\|④5⑥2⑦⑧\|\|/|3|\|/|1\|\|/|/⑤———4———⑨———2———⑩(1)用Dijkstra算法求從路口①到路口⑩的最短路程;(2)若道路⑥-⑨因施工封閉,重新計算最短路程;(3)分析該網絡的平均路徑長度(保留2位小數)。5.概率模擬與統(tǒng)計推斷(10分)問題:某游戲規(guī)則如下:玩家擲兩個骰子,若點數之和為7或11則獲勝,為2、3或12則失敗,其他情況繼續(xù)擲骰子,直到點數之和等于首次結果(獲勝)或等于7(失?。#?)用隨機模擬法估計獲勝概率(要求:寫出算法步驟,模擬10000次);(2)用全概率公式計算獲勝概率的理論值;(3)比較模擬結果與理論值的差異,并分析誤差來源。四、編程實踐題(共2題,共20分)1.數據處理與函數擬合(10分)問題:給定某城市2015-2024年的年度GDP數據(單位:億元):[5200,5800,6500,7300,8200,9200,10300,11500,12800,14200](1)用Python讀取數據并繪制折線圖;(2)分別用線性函數$y=ax+b$和指數函數$y=ce^{dx}$擬合數據;(3)預測2025年的GDP,并比較兩種模型的擬合優(yōu)度($R^2$)。2.算法優(yōu)化與復雜度分析(10分)問題:比較以下兩種排序算法的性能:算法A:冒泡排

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論