曲靖市七年級(jí)數(shù)學(xué)下冊(cè)相期末壓軸題易錯(cuò)題考試試題_第1頁
曲靖市七年級(jí)數(shù)學(xué)下冊(cè)相期末壓軸題易錯(cuò)題考試試題_第2頁
曲靖市七年級(jí)數(shù)學(xué)下冊(cè)相期末壓軸題易錯(cuò)題考試試題_第3頁
曲靖市七年級(jí)數(shù)學(xué)下冊(cè)相期末壓軸題易錯(cuò)題考試試題_第4頁
曲靖市七年級(jí)數(shù)學(xué)下冊(cè)相期末壓軸題易錯(cuò)題考試試題_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

一、解答題1.如圖1,以直角的直角頂點(diǎn)為原點(diǎn),以,所在直線為軸和軸建立平面直角坐標(biāo)系,點(diǎn),,并且滿足.(1)直接寫出點(diǎn),點(diǎn)的坐標(biāo);(2)如圖1,坐標(biāo)軸上有兩動(dòng)點(diǎn),同時(shí)出發(fā),點(diǎn)從點(diǎn)出發(fā)沿軸負(fù)方向以每秒2個(gè)單位長(zhǎng)度的速度勻速運(yùn)動(dòng),點(diǎn)從點(diǎn)出發(fā)沿軸正方向以每秒個(gè)單位長(zhǎng)度的速度勻速運(yùn)動(dòng),當(dāng)點(diǎn)到達(dá)點(diǎn)整個(gè)運(yùn)動(dòng)隨之結(jié)束;線段的中點(diǎn)的坐標(biāo)是,設(shè)運(yùn)動(dòng)時(shí)間為秒.是否存在,使得與的面積相等?若存在,求出的值;若不存在,說明理由;(3)如圖2,在(2)的條件下,若,點(diǎn)是第二象限中一點(diǎn),并且平分,點(diǎn)是線段上一動(dòng)點(diǎn),連接交于點(diǎn),當(dāng)點(diǎn)在上運(yùn)動(dòng)的過程中,探究,,之間的數(shù)量關(guān)系,直接寫出結(jié)論.解析:(1)(0,6),(8,0);(2)存在t=2.4時(shí),使得△ODP與△ODQ的面積相等;(3)∠DOG+∠ACE=∠OHC【分析】(1)利用非負(fù)性即可求出a,b即可得出結(jié)論;(2)先表示出OQ,OP,利用面積相等,建立方程求解即可得出結(jié)論;(3)先判斷出∠OAC=∠AOD,進(jìn)而判斷出OG∥AC,即可判斷出∠FHC=∠ACE,同理∠FHO=∠DOG,即可得出結(jié)論.【詳解】解:(1)∵,∴a-b+2=0,b-8=0,∴a=6,b=8,∴A(0,6),C(8,0),故答案為(0,6),(8,0);(2)由(1)知,A(0,6),C(8,0),∴OA=6,OB=8,由運(yùn)動(dòng)知,OQ=t,PC=2t,∴OP=8-2t,∵D(4,3),∴S△ODQ=OQ×|xD|=t×4=2t,S△ODP=OP×|yD|=(8-2t)×3=12-3t,∵△ODP與△ODQ的面積相等,∴2t=12-3t,∴t=2.4,∴存在t=2.4時(shí),使得△ODP與△ODQ的面積相等;(3)∴∠GOD+∠ACE=∠OHC,理由如下:∵x軸⊥y軸,∴∠AOC=∠DOC+∠AOD=90°,∴∠OAC+∠ACO=90°,又∵∠DOC=∠DCO,∴∠OAC=∠AOD,∵y軸平分∠GOD,∴∠GOA=∠AOD,∴∠GOA=∠OAC,∴OG∥AC,如圖,過點(diǎn)H作HF∥OG交x軸于F,∴HF∥AC,∴∠FHC=∠ACE,同理∠FHO=∠GOD,∵OG∥FH,∴∠DOG=∠FHO,∴∠DOG+∠ACE=∠FHO+∠FHC,即∠DOG+∠ACE=∠OHC.【點(diǎn)睛】此題是三角形綜合題,主要考查了非負(fù)性的性質(zhì),三角形的面積公式,角平分線的定義,平行線的性質(zhì),正確作出輔助線是解本題的關(guān)鍵.2.在平面直角坐標(biāo)系xOy中,對(duì)于給定的兩點(diǎn)P,Q,若存在點(diǎn)M,使得△MPQ的面積等于1,即S△MPQ=1,則稱點(diǎn)M為線段PQ的“單位面積點(diǎn)”,解答下列問題:如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)P的坐標(biāo)為(1,0).(1)在點(diǎn)A(1,2),B(﹣1,1),C(﹣1,﹣2),D(2,﹣4)中,線段OP的“單位面積點(diǎn)”是;(2)已知點(diǎn)E(0,3),F(xiàn)(0,4),將線段OP沿y軸向上平移t(t>0)個(gè)單位長(zhǎng)度,使得線段EF上存在線段OP的“單位面積點(diǎn)”,直接寫出t的取值范圍.(3)已知點(diǎn)Q(1,﹣2),H(0,﹣1),點(diǎn)M,N是線段PQ的兩個(gè)“單位面積點(diǎn)”,點(diǎn)M在HQ的延長(zhǎng)線上,若S△HMN≥S△PQN,求出點(diǎn)N縱坐標(biāo)的取值范圍.解析:(1),;(2)或;(3)見解析【分析】(1)分別根據(jù)三角形的面積計(jì)算△OPA,△DPB,△DPC,△OPD的面積即可;(2)分線段OP在線段EF下方和線段OP在線段EF上方分別求解;(3)畫出圖形,根據(jù)S△PQN=1,得到S△HMN≥,分當(dāng)xN=0時(shí),當(dāng)xN=2時(shí),分別結(jié)合S△HMN≥,得到不等式,求出N點(diǎn)縱坐標(biāo)的范圍.【詳解】解:(1)S△OPA=,則點(diǎn)A是線段OP的“單位面積點(diǎn)”,S△OPB=,則點(diǎn)B不是線段OP的“單位面積點(diǎn)”,S△OPC=,則點(diǎn)C是線段OP的“單位面積點(diǎn)”,S△OPD=,則點(diǎn)D不是線段OP的“單位面積點(diǎn)”,(2)設(shè)點(diǎn)G是線段OP的“單位面積點(diǎn)”,則S△OPG=1,∵點(diǎn)E的坐標(biāo)為(0,3),點(diǎn)F的坐標(biāo)為(0,4),且點(diǎn)G在線段EF上,∴點(diǎn)G的橫坐標(biāo)為0,∵S△OPG=1,線段OP為y軸向上平移t(t>0)個(gè)單位長(zhǎng)度,當(dāng)為單位面積點(diǎn)時(shí),當(dāng)為單位面積點(diǎn)時(shí),綜上所述:1≤t≤2或5≤t≤6;(3)∵M(jìn),N是線段PQ的兩個(gè)單位面積點(diǎn),∴S△PQM=1,S△PQN=1,∵P(1,0),Q(1,-2),∴PQ=2,∴M,N的橫坐標(biāo)為0或2,∵點(diǎn)M在HQ的延長(zhǎng)線上,∴點(diǎn)M的橫坐標(biāo)為xM=2,∵S△HMN≥S△PQN,∴S△HMN≥,當(dāng)xN=0時(shí),S△HMN=,則,∴或;當(dāng)xN=2時(shí),S△HMN=,則,∴或.【點(diǎn)睛】本題主要考查三角形的面積公式,并且能夠理解單位面積點(diǎn)的定義,解題關(guān)鍵是找到單位面積點(diǎn)的軌跡進(jìn)行求解.3.如圖,在下面直角坐標(biāo)系中,已知,,三點(diǎn),其中,,滿足關(guān)系式.(1)求,,的值;(2)如果在第二象限內(nèi)有一點(diǎn),請(qǐng)用含的式子表示四邊形的面積;(3)在(2)的條件下,是否存在點(diǎn),使四邊形的面積與三角形的面積相等?若存在,求出點(diǎn)的坐標(biāo),若不存在,請(qǐng)說明理由.解析:(1)a=2,b=3,c=4;(2)S四邊形ABOP=3-m;(3)存在,P(-3,).【分析】(1)根據(jù)非負(fù)數(shù)的性質(zhì),即可解答;(2)四邊形ABOP的面積=△APO的面積+△AOB的面積,即可解答;(3)存在,根據(jù)面積相等求出m的值,即可解答.【詳解】解:(1)由已知可得:a-2=0,b-3=0,c-4=0,解得:a=2,b=3,c=4;(2)∵a=2,b=3,c=4,∴A(0,2),B(3,0),C(3,4),∴OA=2,OB=3,∵S△ABO=×2×3=3,S△APO=×2×(-m)=-m,∴S四邊形ABOP=S△ABO+S△APO=3+(-m)=3-m(3)存在,∵S△ABC=×4×3=6,若S四邊形ABOP=S△ABC=3-m=6,則m=-3,∴存在點(diǎn)P(-3,)使S四邊形ABOP=S△ABC.【點(diǎn)睛】本題考查了坐標(biāo)與圖形性質(zhì),解決本題的關(guān)鍵是根據(jù)非負(fù)數(shù)的性質(zhì)求出a,b,c.4.對(duì)于平面直角坐標(biāo)系xOy中的圖形G和圖形G上的任意點(diǎn)P(x,y),給出如下定義:將點(diǎn)P(x,y)平移到P'(x+t,y﹣t)稱為將點(diǎn)P進(jìn)行“t型平移”,點(diǎn)P'稱為將點(diǎn)P進(jìn)行“t型平移”的對(duì)應(yīng)點(diǎn);將圖形G上的所有點(diǎn)進(jìn)行“t型平移”稱為將圖形G進(jìn)行“t型平移”.例如,將點(diǎn)P(x,y)平移到P'(x+1,y﹣1)稱為將點(diǎn)P進(jìn)行“l(fā)型平移”,將點(diǎn)P(x,y)平移到P'(x﹣1,y+1)稱為將點(diǎn)P進(jìn)行“﹣l型平移”.已知點(diǎn)A(2,1)和點(diǎn)B(4,1).(1)將點(diǎn)A(2,1)進(jìn)行“l(fā)型平移”后的對(duì)應(yīng)點(diǎn)A'的坐標(biāo)為.(2)①將線段AB進(jìn)行“﹣l型平移”后得到線段A'B',點(diǎn)P1(1.5,2),P2(2,3),P3(3,0)中,在線段A′B′上的點(diǎn)是.②若線段AB進(jìn)行“t型平移”后與坐標(biāo)軸有公共點(diǎn),則t的取值范圍是.(3)已知點(diǎn)C(6,1),D(8,﹣1),點(diǎn)M是線段CD上的一個(gè)動(dòng)點(diǎn),將點(diǎn)B進(jìn)行“t型平移”后得到的對(duì)應(yīng)點(diǎn)為B',當(dāng)t的取值范圍是時(shí),B'M的最小值保持不變.解析:(1)(3,0);(2)①P1;②或;(3)【分析】(1)根據(jù)“l(fā)型平移”的定義解決問題即可.(2)①畫出線段A1B1即可判斷.②根據(jù)定義求出t最大值,最小值即可判斷.(3)如圖2中,觀察圖象可知,當(dāng)B′在線段B′B″上時(shí),B'M的最小值保持不變,最小值為.【詳解】(1)將點(diǎn)A(2,1)進(jìn)行“l(fā)型平移”后的對(duì)應(yīng)點(diǎn)A'的坐標(biāo)為(3,0),故答案為:(3,0);(2)①如圖1中,觀察圖象可知,將線段AB進(jìn)行“﹣l型平移”后得到線段A'B',點(diǎn)P1(1.5,2),P2(2,3),P3(3,0)中,在線段A′B′上的點(diǎn)是P1,故答案為:P1;②若線段AB進(jìn)行“t型平移”后與坐標(biāo)軸有公共點(diǎn),則t的取值范圍是﹣4≤t≤﹣2或t=1.故答案為:﹣4≤t≤﹣2或t=1.(3)如圖2中,觀察圖象可知,當(dāng)B′在線段B′B″上時(shí),B'M的最小值保持不變,最小值為,此時(shí)1≤t≤3.故答案為:1≤t≤3.【點(diǎn)睛】本題屬于幾何變換綜合題,考查了平移變換,“t型平移”的定義等知識(shí),解題的關(guān)鍵理解題意,靈活運(yùn)用所學(xué)知識(shí)解決問題,學(xué)會(huì)利用圖象法解決問題,屬于中考創(chuàng)新題型.5.如圖,在平面直角坐標(biāo)系中,四邊形各頂點(diǎn)的坐標(biāo)分別為,,,,現(xiàn)將四邊形經(jīng)過平移后得到四邊形,點(diǎn)的對(duì)應(yīng)點(diǎn)的坐標(biāo)為.(1)請(qǐng)直接寫點(diǎn)、、的坐標(biāo);(2)求四邊形與四邊形重疊部分的面積;(3)在軸上是否存在一點(diǎn),連接、,使,若存在這樣一點(diǎn),求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.解析:(1);(2);(3)存在,或【分析】(1)先確定平移的規(guī)則,然后根據(jù)平移的規(guī)則,求出點(diǎn)的坐標(biāo)即可;(2)由平移的性質(zhì)可知,重疊部分為平行四邊形,且底邊長(zhǎng)為3,高為2,即可求出面積;(3)設(shè)點(diǎn)的坐標(biāo)為,先求出平行四邊形ABCD的面積,然后利用三角形的面積公式,即可求出b的值.【詳解】解:(1)∵,,∴平移的規(guī)則為:向右平移2個(gè)單位,向上平移一個(gè)單位;∵,,,∴;(2)如圖,延長(zhǎng)交x軸于點(diǎn)E,過點(diǎn)做由平移可知,重疊部分為平行四邊形,高為2,∴重疊部分的面積為(3)存在;設(shè)點(diǎn)的坐標(biāo)為,∵,,∴,∴點(diǎn)的坐標(biāo)為或.【點(diǎn)睛】本題考查了平移的性質(zhì),平行四邊形的性質(zhì),坐標(biāo)與圖形,以及求陰影部分的面積,解題的關(guān)鍵是熟練掌握平移的性質(zhì)進(jìn)行解題.6.如圖,在平面直角坐標(biāo)系中,已知△ABC,點(diǎn)A的坐標(biāo)是(4,0),點(diǎn)B的坐標(biāo)是(2,3),點(diǎn)C在x軸的負(fù)半軸上,且AC=6.(1)直接寫出點(diǎn)C的坐標(biāo).(2)在y軸上是否存在點(diǎn)P,使得S△POB=S△ABC若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.(3)把點(diǎn)C往上平移3個(gè)單位得到點(diǎn)H,作射線CH,連接BH,點(diǎn)M在射線CH上運(yùn)動(dòng)(不與點(diǎn)C、H重合).試探究∠HBM,∠BMA,∠MAC之間的數(shù)量關(guān)系,并證明你的結(jié)論.解析:(1)C(-2,0);(2)點(diǎn)P坐標(biāo)為(0,6)或(0,-6);(3)∠BMA=∠MAC±∠HBM,證明見解析.【分析】(1)由點(diǎn)A坐標(biāo)可得OA=4,再根據(jù)C點(diǎn)x軸負(fù)半軸上,AC=6即可求得答案;(2)先求出S△ABC=9,S△BOP=OP,再根據(jù)S△POB=S△ABC,可得OP=6,即可寫出點(diǎn)P的坐標(biāo);(3)先得到點(diǎn)H的坐標(biāo),再結(jié)合點(diǎn)B的坐標(biāo)可得到BH//AC,然后根據(jù)點(diǎn)M在射線CH上,分點(diǎn)M在線段CH上與不在線段CH上兩種情況分別進(jìn)行討論即可得.【詳解】(1)∵A(4,0),∴OA=4,∵C點(diǎn)x軸負(fù)半軸上,AC=6,∴OC=AC-OA=2,∴C(-2,0);(2)∵B(2,3),∴S△ABC=×6×3=9,S△BOP=OP×2=OP,又∵S△POB=S△ABC,∴OP=×9=6,∴點(diǎn)P坐標(biāo)為(0,6)或(0,-6);(3)∠BMA=∠MAC±∠HBM,證明如下:∵把點(diǎn)C往上平移3個(gè)單位得到點(diǎn)H,C(-2,0),∴H(-2,3),又∵B(2,3),∴BH//AC;如圖1,當(dāng)點(diǎn)M在線段HC上時(shí),過點(diǎn)M作MN//AC,∴∠MAC=∠AMN,MN//HB,∴∠HBM=∠BMN,∵∠BMA=∠BMN+∠AMN,∴∠BMA=∠HBM+∠MAC;如圖2,當(dāng)點(diǎn)M在射線CH上但不在線段HC上時(shí),過點(diǎn)M作MN//AC,∴∠MAC=∠AMN,MN//HB,∴∠HBM=∠BMN,∵∠BMA=∠AMN-∠BMN,∴∠BMA=∠MAC-∠HBM;綜上,∠BMA=∠MAC±∠HBM.【點(diǎn)睛】本題考查了點(diǎn)的坐標(biāo),三角形的面積,點(diǎn)的平移,平行線的判定與性質(zhì)等知識(shí),綜合性較強(qiáng),正確進(jìn)行分類并準(zhǔn)確畫出圖形是解題的關(guān)鍵.7.如圖,直線HDGE,點(diǎn)A在直線HD上,點(diǎn)C在直線GE上,點(diǎn)B在直線HD、GE之間,∠DAB=120°.(1)如圖1,若∠BCG=40°,求∠ABC的度數(shù);(2)如圖2,AF平分∠HAB,BC平分∠FCG,∠BCG=20°,比較∠B,∠F的大?。唬?)如圖3,點(diǎn)P是線段AB上一點(diǎn),PN平分∠APC,CN平分∠PCE,探究∠HAP和∠N的數(shù)量關(guān)系,并說明理由.解析:(1)∠ABC=100°;(2)∠ABC>∠AFC;(3)∠N=90°﹣∠HAP;理由見解析.【分析】(1)過點(diǎn)B作BMHD,則HDGEBM,根據(jù)平行線的性質(zhì)求得∠ABM與∠CBM,便可求得最后結(jié)果;(2)過B作BPHDGE,過F作FQHDGE,由平行線的性質(zhì)得,∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,由角平分線的性質(zhì)和已知角的度數(shù)分別求得∠HAF,∠FCG,最后便可求得結(jié)果;(3)過P作PKHDGE,先由平行線的性質(zhì)證明∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,再根據(jù)角平分線求得∠NPC與∠PCN,由后由三角形內(nèi)角和定理便可求得結(jié)果.【詳解】解:(1)過點(diǎn)B作BMHD,則HDGEBM,如圖1,∴∠ABM=180°﹣∠DAB,∠CBM=∠BCG,∵∠DAB=120°,∠BCG=40°,∴∠ABM=60°,∠CBM=40°,∴∠ABC=∠ABM+∠CBM=100°;(2)過B作BPHDGE,過F作FQHDGE,如圖2,∴∠ABP=∠HAB,∠CBP=∠BCG,∠AFQ=∠HAF,∠CFQ=∠FCG,∴∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,∵∠DAB=120°,∴∠HAB=180°﹣∠DAB=60°,∵AF平分∠HAB,BC平分∠FCG,∠BCG=20°,∴∠HAF=30°,∠FCG=40°,∴∠ABC=60°+20°=80°,∠AFC=30°+40°=70°,∴∠ABC>∠AFC;(3)過P作PKHDGE,如圖3,∴∠APK=∠HAP,∠CPK=∠PCG,∴∠APC=∠HAP+∠PCG,∵PN平分∠APC,∴∠NPC=∠HAP+∠PCG,∵∠PCE=180°﹣∠PCG,CN平分∠PCE,∴∠PCN=90°﹣∠PCG,∵∠N+∠NPC+∠PCN=180°,∴∠N=180°﹣∠HAP﹣∠PCG﹣90°+∠PCG=90°﹣∠HAP,即:∠N=90°﹣∠HAP.【點(diǎn)睛】本題考查了角平分線的定義,平行線性質(zhì)和判定:兩直線平行,同位角相等;兩直線平行,同旁內(nèi)角互補(bǔ);兩直線平行,內(nèi)錯(cuò)角相等.此題難度適中,注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想與方程思想的應(yīng)用,理清各角度之間的關(guān)系是解題的關(guān)鍵,也是本題的難點(diǎn).8.如圖①,將一張長(zhǎng)方形紙片沿對(duì)折,使落在的位置;(1)若的度數(shù)為,試求的度數(shù)(用含的代數(shù)式表示);(2)如圖②,再將紙片沿對(duì)折,使得落在的位置.①若,的度數(shù)為,試求的度數(shù)(用含的代數(shù)式表示);②若,的度數(shù)比的度數(shù)大,試計(jì)算的度數(shù).解析:(1);(2)①;②【分析】(1)由平行線的性質(zhì)得到,由折疊的性質(zhì)可知,∠2=∠BFE,再根據(jù)平角的定義求解即可;(2)①由(1)知,,根據(jù)平行線的性質(zhì)得到,再由折疊的性質(zhì)及平角的定義求解即可;②由(1)知,∠BFE=,由可知:,再根據(jù)條件和折疊的性質(zhì)得到,即可求解.【詳解】解:(1)如圖,由題意可知,∴,∵,∴,,由折疊可知.(2)①由題(1)可知,∵,,再由折疊可知:,;②由可知:,由(1)知,,又的度數(shù)比的度數(shù)大,,,,.【點(diǎn)睛】此題考查了平行線的性質(zhì),屬于綜合題,有一定難度,熟記“兩直線平行,同位角相等”、“兩直線平行,內(nèi)錯(cuò)角相等”及折疊的性質(zhì)是解題的關(guān)鍵.9.如圖,∠EBF=50°,點(diǎn)C是∠EBF的邊BF上一點(diǎn).動(dòng)點(diǎn)A從點(diǎn)B出發(fā)在∠EBF的邊BE上,沿BE方向運(yùn)動(dòng),在動(dòng)點(diǎn)A運(yùn)動(dòng)的過程中,始終有過點(diǎn)A的射線AD∥BC.(1)在動(dòng)點(diǎn)A運(yùn)動(dòng)的過程中,(填“是”或“否”)存在某一時(shí)刻,使得AD平分∠EAC?(2)假設(shè)存在AD平分∠EAC,在此情形下,你能猜想∠B和∠ACB之間有何數(shù)量關(guān)系?并請(qǐng)說明理由;(3)當(dāng)AC⊥BC時(shí),直接寫出∠BAC的度數(shù)和此時(shí)AD與AC之間的位置關(guān)系.解析:(1)是;(2)∠B=∠ACB,證明見解析;(3)∠BAC=40°,AC⊥AD.【分析】(1)要使AD平分∠EAC,則要求∠EAD=∠CAD,由平行線的性質(zhì)可得∠B=∠EAD,∠ACB=∠CAD,則當(dāng)∠ACB=∠B時(shí),有AD平分∠EAC;(2)根據(jù)角平分線可得∠EAD=∠CAD,由平行線的性質(zhì)可得∠B=∠EAD,∠ACB=∠CAD,則有∠ACB=∠B;(3)由AC⊥BC,有∠ACB=90°,則可求∠BAC=40°,由平行線的性質(zhì)可得AC⊥AD.【詳解】解:(1)是,理由如下:要使AD平分∠EAC,則要求∠EAD=∠CAD,由平行線的性質(zhì)可得∠B=∠EAD,∠ACB=∠CAD,則當(dāng)∠ACB=∠B時(shí),有AD平分∠EAC;故答案為:是;(2)∠B=∠ACB,理由如下:∵AD平分∠EAC,∴∠EAD=∠CAD,∵AD∥BC,∴∠B=∠EAD,∠ACB=∠CAD,∴∠B=∠ACB.(3)∵AC⊥BC,∴∠ACB=90°,∵∠EBF=50°,∴∠BAC=40°,∵AD∥BC,∴AD⊥AC.【點(diǎn)睛】此題考查了角平分線和平行線的性質(zhì),熟練掌握角平分線和平行線的有關(guān)性質(zhì)是解題的關(guān)鍵.10.如圖,已知,是的平分線.(1)若平分,求的度數(shù);(2)若在的內(nèi)部,且于,求證:平分;(3)在(2)的條件下,過點(diǎn)作,分別交、于點(diǎn)、,繞著點(diǎn)旋轉(zhuǎn),但與、始終有交點(diǎn),問:的值是否發(fā)生變化?若不變,求其值;若變化,求其變化范圍.解析:(1)90°;(2)見解析;(3)不變,180°【分析】(1)根據(jù)鄰補(bǔ)角的定義及角平分線的定義即可得解;(2)根據(jù)垂直的定義及鄰補(bǔ)角的定義、角平分線的定義即可得解;(3),過,分別作,,根據(jù)平行線的性質(zhì)及平角的定義即可得解.【詳解】解(1),分別平分和,,,,;(2),,即,,是的平分線,,,又,,又在的內(nèi)部,平分;(3)如圖,不發(fā)生變化,,過,分別作,,則有,,,,,,,,,,,,不變.【點(diǎn)睛】此題考查了平行線的性質(zhì),熟記平行線的性質(zhì)及作出合理的輔助線是解題的關(guān)鍵.11.已知AB∥CD,∠ABE與∠CDE的角分線相交于點(diǎn)F.(1)如圖1,若BM、DM分別是∠ABF和∠CDF的角平分線,且∠BED=100°,求∠M的度數(shù);(2)如圖2,若∠ABM=∠ABF,∠CDM=∠CDF,∠BED=α°,求∠M的度數(shù);(3)若∠ABM=∠ABF,∠CDM=∠CDF,請(qǐng)直接寫出∠M與∠BED之間的數(shù)量關(guān)系解析:(1)65°;(2);(3)2n∠M+∠BED=360°【分析】(1)首先作EG∥AB,F(xiàn)H∥AB,連結(jié)MF,利用平行線的性質(zhì)可得∠ABE+∠CDE=260°,再利用角平分線的定義得到∠ABF+∠CDF=130°,從而得到∠BFD的度數(shù),再根據(jù)角平分線的定義和三角形外角的性質(zhì)可求∠M的度數(shù);(2)先由已知得到∠ABE=6∠ABM,∠CDE=6∠CDM,由(1)得∠ABE+∠CDE=360°-∠BED,∠M=∠ABM+∠CDM,等量代換即可求解;(3)由(2)的方法可得到2n∠M+∠BED=360°.【詳解】解:(1)如圖1,作,,連結(jié),,,,,,,,,,和的角平分線相交于,,,、分別是和的角平分線,,,,;(2)如圖1,,,,,與兩個(gè)角的角平分線相交于點(diǎn),,,,,,;(3)由(2)結(jié)論可得,,,則.【點(diǎn)睛】本題主要考查了平行線的性質(zhì)和四邊形的內(nèi)角和,關(guān)鍵在于掌握兩直線平行同位角相等,內(nèi)錯(cuò)角相等,同旁內(nèi)角互補(bǔ)的性質(zhì).12.已知,如圖:射線分別與直線、相交于、兩點(diǎn),的角平分線與直線相交于點(diǎn),射線交于點(diǎn),設(shè),且.(1)________,________;直線與的位置關(guān)系是______;(2)如圖,若點(diǎn)是射線上任意一點(diǎn),且,試找出與之間存在一個(gè)什么確定的數(shù)量關(guān)系?并證明你的結(jié)論.(3)若將圖中的射線繞著端點(diǎn)逆時(shí)針方向旋轉(zhuǎn)(如圖)分別與、相交于點(diǎn)和點(diǎn)時(shí),作的角平分線與射線相交于點(diǎn),問在旋轉(zhuǎn)的過程中的值變不變?若不變,請(qǐng)求出其值;若變化,請(qǐng)說明理由.解析:(1)35,35,平行;(2)∠FMN+∠GHF=180°,證明見解析;(3)不變,2【分析】(1)根據(jù)(α-35)2+|β-α|=0,即可計(jì)算α和β的值,再根據(jù)內(nèi)錯(cuò)角相等可證AB∥CD;(2)先根據(jù)內(nèi)錯(cuò)角相等證GH∥PN,再根據(jù)同旁內(nèi)角互補(bǔ)和等量代換得出∠FMN+∠GHF=180°;(3)作∠PEM1的平分線交M1Q的延長(zhǎng)線于R,先根據(jù)同位角相等證ER∥FQ,得∠FQM1=∠R,設(shè)∠PER=∠REB=x,∠PM1R=∠RM1B=y,得出∠EPM1=2∠R,即可得=2.【詳解】解:(1)∵(α-35)2+|β-α|=0,∴α=β=35,∴∠PFM=∠MFN=35°,∠EMF=35°,∴∠EMF=∠MFN,∴AB∥CD;(2)∠FMN+∠GHF=180°;理由:由(1)得AB∥CD,∴∠MNF=∠PME,∵∠MGH=∠MNF,∴∠PME=∠MGH,∴GH∥PN,∴∠GHM=∠FMN,∵∠GHF+∠GHM=180°,∴∠FMN+∠GHF=180°;(3)的值不變,為2,理由:如圖3中,作∠PEM1的平分線交M1Q的延長(zhǎng)線于R,∵AB∥CD,∴∠PEM1=∠PFN,∵∠PER=∠PEM1,∠PFQ=∠PFN,∴∠PER=∠PFQ,∴ER∥FQ,∴∠FQM1=∠R,設(shè)∠PER=∠REB=x,∠PM1R=∠RM1B=y,則有:,可得∠EPM1=2∠R,∴∠EPM1=2∠FQM1,∴==2.【點(diǎn)睛】本題主要考查平行線的判定與性質(zhì),熟練掌握內(nèi)錯(cuò)角相等證平行,平行線同旁內(nèi)角互補(bǔ)等知識(shí)是解題的關(guān)鍵.13.如圖1,已知直線CD∥EF,點(diǎn)A,B分別在直線CD與EF上.P為兩平行線間一點(diǎn).(1)若∠DAP=40°,∠FBP=70°,則∠APB=(2)猜想∠DAP,∠FBP,∠APB之間有什么關(guān)系?并說明理由;(3)利用(2)的結(jié)論解答:①如圖2,AP1,BP1分別平分∠DAP,∠FBP,請(qǐng)你寫出∠P與∠P1的數(shù)量關(guān)系,并說明理由;②如圖3,AP2,BP2分別平分∠CAP,∠EBP,若∠APB=β,求∠AP2B.(用含β的代數(shù)式表示)解析:(1)110°;(2)猜想:∠APB=∠DAP+∠FBP,理由見解析;(3)①∠P=2∠P1,理由見解析;②∠AP2B=.【分析】(1)過P作PM∥CD,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠APM=∠DAP,再根據(jù)平行公理求出CD∥EF然后根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠MPB=∠FBP,最后根據(jù)∠APM+∠MPB=∠DAP+∠FBP等量代換即可得證;(2)結(jié)論:∠APB=∠DAP+∠FBP.(3)①根據(jù)(2)的規(guī)律和角平分線定義解答;②根據(jù)①的規(guī)律可得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,然后根據(jù)角平分線的定義和平角等于180°列式整理即可得解.【詳解】(1)證明:過P作PM∥CD,∴∠APM=∠DAP.(兩直線平行,內(nèi)錯(cuò)角相等),∵CD∥EF(已知),∴PM∥CD(平行于同一條直線的兩條直線互相平行),∴∠MPB=∠FBP.(兩直線平行,內(nèi)錯(cuò)角相等),∴∠APM+∠MPB=∠DAP+∠FBP.(等式性質(zhì))即∠APB=∠DAP+∠FBP=40°+70°=110°.(2)結(jié)論:∠APB=∠DAP+∠FBP.理由:見(1)中證明.(3)①結(jié)論:∠P=2∠P1;理由:由(2)可知:∠P=∠DAP+∠FBP,∠P1=∠DAP1+∠FBP1,∵∠DAP=2∠DAP1,∠FBP=2∠FBP1,∴∠P=2∠P1.②由①得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,∵AP2、BP2分別平分∠CAP、∠EBP,∴∠CAP2=∠CAP,∠EBP2=∠EBP,∴∠AP2B=∠CAP+∠EBP,=(180°-∠DAP)+(180°-∠FBP),=180°-(∠DAP+∠FBP),=180°-∠APB,=180°-β.【點(diǎn)睛】本題考查了平行線的性質(zhì),角平分線的定義,熟記性質(zhì)與概念是解題的關(guān)鍵,此類題目,難點(diǎn)在于過拐點(diǎn)作平行線.14.已知,AB∥CD,點(diǎn)E在CD上,點(diǎn)G,F(xiàn)在AB上,點(diǎn)H在AB,CD之間,連接FE,EH,HG,∠AGH=∠FED,F(xiàn)E⊥HE,垂足為E.(1)如圖1,求證:HG⊥HE;(2)如圖2,GM平分∠HGB,EM平分∠HED,GM,EM交于點(diǎn)M,求證:∠GHE=2∠GME;(3)如圖3,在(2)的條件下,F(xiàn)K平分∠AFE交CD于點(diǎn)K,若∠KFE:∠MGH=13:5,求∠HED的度數(shù).解析:(1)見解析;(2)見解析;(3)40°【分析】(1)根據(jù)平行線的性質(zhì)和判定解答即可;(2)過點(diǎn)H作HP∥AB,根據(jù)平行線的性質(zhì)解答即可;(3)過點(diǎn)H作HP∥AB,根據(jù)平行線的性質(zhì)解答即可.【詳解】證明:(1)∵AB∥CD,∴∠AFE=∠FED,∵∠AGH=∠FED,∴∠AFE=∠AGH,∴EF∥GH,∴∠FEH+∠H=180°,∵FE⊥HE,∴∠FEH=90°,∴∠H=180°﹣∠FEH=90°,∴HG⊥HE;(2)過點(diǎn)M作MQ∥AB,∵AB∥CD,∴MQ∥CD,過點(diǎn)H作HP∥AB,∵AB∥CD,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論