2026屆四川省涼山彝族自治州數(shù)學九年級第一學期期末檢測模擬試題含解析_第1頁
2026屆四川省涼山彝族自治州數(shù)學九年級第一學期期末檢測模擬試題含解析_第2頁
2026屆四川省涼山彝族自治州數(shù)學九年級第一學期期末檢測模擬試題含解析_第3頁
2026屆四川省涼山彝族自治州數(shù)學九年級第一學期期末檢測模擬試題含解析_第4頁
2026屆四川省涼山彝族自治州數(shù)學九年級第一學期期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2026屆四川省涼山彝族自治州數(shù)學九年級第一學期期末檢測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題3分,共30分)1.如圖,釣魚竿AC長6m,露在水面上的魚線BC長m,某釣者想看看魚釣上的情況,把魚竿AC轉(zhuǎn)動到AC'的位置,此時露在水面上的魚線B′C′為m,則魚竿轉(zhuǎn)過的角度是()A.60° B.45° C.15° D.90°2.若兩個相似三角形的周長之比是1:4,那么這兩個三角形的面積之比是()A.1:4 B.1:2 C.1:16 D.1:83.用配方法解方程,下列變形正確的是()A. B. C. D.4.如圖,在正方形ABCD中,點E,F(xiàn)分別在BC,CD上,AE=AF,AC與EF相交于點G,下列結(jié)論:①AC垂直平分EF;②BE+DF=EF;③當∠DAF=15°時,△AEF為等邊三角形;④當∠EAF=60°時,S△ABE=S△CEF,其中正確的是()A.①③ B.②④ C.①③④ D.②③④5.如圖,D、E分別是AB、AC上兩點,CD與BE相交于點O,下列條件中不能使△ABE和△ACD相似的是()A.∠B=∠C B.∠ADC=∠AEB C.BE=CD,AB=AC D.AD:AC=AE:AB6.二次函數(shù)圖象如圖所示,下列結(jié)論:①;②;③;④;⑤有兩個相等的實數(shù)根,其中正確的有()A.1個 B.2個 C.3個 D.4個7.如圖,中,,,,則的長為()A. B. C.5 D.8.如圖,在中,,D為AC上一點,連接BD,且,則DC長為()A.2 B. C. D.59.如圖,正五邊形內(nèi)接于⊙,為上的一點(點不與點重合),則的度數(shù)為()A. B. C. D.10.如圖,是二次函數(shù)圖象的一部分,在下列結(jié)論中:①;②;③有兩個相等的實數(shù)根;④;其中正確的結(jié)論有()A.1個 B.2個 C.3個 D.4個二、填空題(每小題3分,共24分)11.如圖,正方形的邊長為,在邊上分別取點,,在邊上分別取點,使.....依次規(guī)律繼續(xù)下去,則正方形的面積為__________.12.如圖,在?ABCD中,點E是邊AD的中點,EC交對角線BD于點F,則EF:FC等于_____.13.如圖,正比例函數(shù)y1=k1x和反比例函數(shù)y2=的圖象交于A(﹣1,2),B(1,﹣2)兩點,若y1>y2,則x的取值范圍是_____.14.若關(guān)于x的一元二次方程有兩個不相等的實數(shù)根,則k的取值范圍是______.15.若關(guān)于x的一元二次方程(a﹣1)x2﹣x+1=0有實數(shù)根,則a的取值范圍為________.16.如圖,將矩形ABCD繞點A順時針旋轉(zhuǎn)到矩形AB′C′D′的位置,旋轉(zhuǎn)角為α(0°<α<90°),若∠1=110°,則∠α=.17.將數(shù)12500000用科學計數(shù)法表示為__________.18.如圖,已知AD∥BE∥CF,它們依次交直線、于點A、B、C和點D、E、F.如果,DF=15,那么線段DE的長是__.三、解答題(共66分)19.(10分)如圖,BD是⊙O的直徑.弦AC垂直平分OD,垂足為E.(1)求∠DAC的度數(shù);(2)若AC=6,求BE的長.20.(6分)如圖,正方形網(wǎng)格中的每個小正方形的邊長都是1,每個小正方形的頂點叫做格點.△ABC的三個頂點A,B,C都在格點上,將△ABC繞點A按順時針方向旋轉(zhuǎn)90°得到△AB′C′.(1)在正方形網(wǎng)格中,畫出△AB′C′;(2)計算線段AB在變換到AB′的過程中掃過區(qū)域的面積.21.(6分)(1)2y2+4y=y(tǒng)+2(用因式分解法)(2)x2﹣7x﹣18=0(用公式法)(3)4x2﹣8x﹣3=0(用配方法)22.(8分)如圖,是的弦,于,交于,若,求的半徑.23.(8分)某電子廠商投產(chǎn)一種新型電子產(chǎn)品,每件制造成本為16元,每月銷售量y(萬件)與銷售單價x(元)之間的函數(shù)關(guān)系如下表格所示:銷售單價x(元)…25303540…每月銷售量y(萬件)…50403020…(1)求每月的利潤W(萬元)與銷售單價x(元)之間的函數(shù)關(guān)系式;(2)當銷售單價為多少元時,廠商每月獲得的總利潤為480萬元?(3)如果廠商每月的制造成本不超過480萬元,那么當銷售單價為多少元時,廠商每月獲得的利潤最大?最大利潤為多少萬元?24.(8分)解方程:4x2﹣8x+3=1.25.(10分)一位美術(shù)老師在課堂上進行立體模型素描教學時,把由圓錐與圓柱組成的幾何體(如圖所示,圓錐在圓柱上底面正中間放置)擺在講桌上,請你在指定的方框內(nèi)分別畫出這個幾何體的三視圖(從正面、左面、上面看得到的視圖).26.(10分)如圖1是實驗室中的一種擺動裝置,在地面上,支架是底邊為的等腰直角三角形,,擺動臂可繞點旋轉(zhuǎn),.(1)在旋轉(zhuǎn)過程中①當、、三點在同一直線上時,求的長,②當、、三點為同一直角三角形的頂點時,求的長.(2)若擺動臂順時針旋轉(zhuǎn),點的位置由外的點轉(zhuǎn)到其內(nèi)的點處,如圖2,此時,,求的長.(3)若連接(2)中的,將(2)中的形狀和大小保持不變,把繞點在平面內(nèi)自由旋轉(zhuǎn),分別取、、的中點、、,連接、、、隨著繞點在平面內(nèi)自由旋轉(zhuǎn),的面積是否發(fā)生變化,若不變,請直接寫出的面積;若變化,的面積是否存在最大與最小?若存在,請直接寫出面積的最大值與最小值,(溫馨提示)

參考答案一、選擇題(每小題3分,共30分)1、C【解析】試題解析:∵sin∠CAB=∴∠CAB=45°.∵,∴∠C′AB′=60°.∴∠CAC′=60°-45°=15°,魚竿轉(zhuǎn)過的角度是15°.故選C.考點:解直角三角形的應用.2、C【分析】根據(jù)相似三角形的面積的比等于相似比的平方可得答案.【詳解】解:∵相似三角形的周長之比是1:4,∴對應邊之比為1:4,∴這兩個三角形的面積之比是:1:16,故選C.此題主要考查了相似三角形的性質(zhì),關(guān)鍵是掌握相似三角形的周長的比等于相似比;相似三角形的面積的比等于相似比的平方.3、D【解析】等式兩邊同時加上一次項系數(shù)一半的平方,利用完全平方公式進行整理即可.【詳解】解:原方程等式兩邊同時加上一次項系數(shù)一半的平方得,,整理后得,,故選擇D.本題考查了配方法的概念.4、C【解析】①通過條件可以得出△ABE≌△ADF,從而得出∠BAE=∠DAF,BE=DF,由正方形的性質(zhì)就可以得出EC=FC,就可以得出AC垂直平分EF,②設BC=a,CE=y,由勾股定理就可以得出EF與x、y的關(guān)系,表示出BE與EF,即可判斷BE+DF與EF關(guān)系不確定;③當∠DAF=15°時,可計算出∠EAF=60°,即可判斷△EAF為等邊三角形,④當∠EAF=60°時,設EC=x,BE=y,由勾股定理就可以得出x與y的關(guān)系,表示出BE與EF,利用三角形的面積公式分別表示出S△CEF和S△ABE,再通過比較大小就可以得出結(jié)論.【詳解】①四邊形ABCD是正方形,∴AB═AD,∠B=∠D=90°.在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF∵BC=CD,∴BC-BE=CD-DF,即CE=CF,∵AE=AF,∴AC垂直平分EF.(故①正確).②設BC=a,CE=y,∴BE+DF=2(a-y)EF=y,∴BE+DF與EF關(guān)系不確定,只有當y=(2?)a時成立,(故②錯誤).③當∠DAF=15°時,∵Rt△ABE≌Rt△ADF,∴∠DAF=∠BAE=15°,∴∠EAF=90°-2×15°=60°,又∵AE=AF∴△AEF為等邊三角形.(故③正確).④當∠EAF=60°時,設EC=x,BE=y,由勾股定理就可以得出:(x+y)2+y2=(x)2∴x2=2y(x+y)∵S△CEF=x2,S△ABE=y(x+y),∴S△ABE=S△CEF.(故④正確).綜上所述,正確的有①③④,故選C.本題考查了正方形的性質(zhì)的運用,全等三角形的判定及性質(zhì)的運用,勾股定理的運用,等邊三角形的性質(zhì)的運用,三角形的面積公式的運用,解答本題時運用勾股定理的性質(zhì)解題時關(guān)鍵.5、C【解析】試題分析:∵∠A=∠A,∴當∠B=∠C或∠ADC=∠AEB或AD:AC=AE:AB時,△ABE和△ACD相似.故選C.考點:相似三角形的判定.6、D【分析】根據(jù)圖象與x軸有兩個交點可判定①;根據(jù)對稱軸為可判定②;根據(jù)開口方向、對稱軸和與y軸的交點可判定③;根據(jù)當時以及對稱軸為可判定④;利用二次函數(shù)與一元二次方程的聯(lián)系可判定⑤.【詳解】解:①根據(jù)圖象與x軸有兩個交點可得,此結(jié)論正確;②對稱軸為,即,整理可得,此結(jié)論正確;③拋物線開口向下,故,所以,拋物線與y軸的交點在y軸的正半軸,所以,故,此結(jié)論錯誤;④當時,對稱軸為,所以當時,即,此結(jié)論正確;⑤當時,只對應一個x的值,即有兩個相等的實數(shù)根,此結(jié)論正確;綜上所述,正確的有4個,故選:D.本題考查二次函數(shù)圖象與系數(shù)的關(guān)系、二次函數(shù)與一元二次方程,掌握二次函數(shù)的圖象與性質(zhì)是解題的關(guān)鍵.7、C【解析】過C作CD⊥AB于D,根據(jù)含30度角的直角三角形求出CD,解直角三角形求出AD,在△BDC中解直角三角形求出BD,相加即可求出答案.【詳解】過C作CD⊥AB于D,則∠ADC=∠BDC=90,∵∠A=30,AC=,∴CD=AC=,由勾股定理得:AD=CD=3,∵tanB==,∴BD=2,∴AB=2+3=5,故選C.本題考查解直角三角形.8、C【分析】利用等腰三角形的性質(zhì)得出∠ABC=∠C=∠BDC,可判定△ABC∽△BCD,利用相似三角形對應邊成比例即可求出DC的長.【詳解】∵AB=AC=6∴∠ABC=∠C∵BD=BC=4∴∠C=∠BDC∴∠ABC=∠BCD,∠ACB=∠BDC∴△ABC∽△BCD∴∴故選C.本題考查了等腰三角形的性質(zhì),相似三角形的判定與性質(zhì),解題的關(guān)鍵是找到兩組對應角相等判定相似三角形.9、B【分析】根據(jù)圓周角的性質(zhì)即可求解.【詳解】連接CO、DO,正五邊形內(nèi)心與相鄰兩點的夾角為72°,即∠COD=72°,同一圓中,同弧或同弦所對應的圓周角為圓心角的一半,故∠CPD=,故選B.此題主要考查圓內(nèi)接多邊形的性質(zhì),解題的關(guān)鍵是熟知圓周角定理的應用.10、C【分析】由拋物線的開口方向判斷a的符號,由拋物線與y軸的交點判斷c的符號,然后根據(jù)對稱軸及拋物線與x軸交點情況進行推理,進而對各個結(jié)論進行判斷.【詳解】解:由拋物線的開口方向向上可推出a>0,

與y軸的交點為在y軸的負半軸上可推出c=-1<0,

對稱軸為,a>0,得b<0,

故abc>0,故①正確;

由對稱軸為直線,拋物線與x軸的一個交點交于(2,0),(3,0)之間,則另一個交點在(0,0),(-1,0)之間,

所以當x=-1時,y>0,

所以a-b+c>0,故②正確;

拋物線與y軸的交點為(0,-1),由圖象知二次函數(shù)y=ax2+bx+c圖象與直線y=-1有兩個交點,

故ax2+bx+c+1=0有兩個不相等的實數(shù)根,故③錯誤;

由對稱軸為直線,由圖象可知,所以-4a<b<-2a,故④正確.

所以正確的有3個,故選:C.本題考查了二次函數(shù)的圖象與系數(shù)的關(guān)系,解答此類問題的關(guān)鍵是掌握二次函數(shù)y=ax2+bx+c系數(shù)符號由拋物線開口方向、對稱軸、拋物線與y軸的交點、拋物線與x軸交點的個數(shù)確定,解題時要注意數(shù)形結(jié)合思想的運用.二、填空題(每小題3分,共24分)11、【分析】利用勾股定理可得A1B12=a2,即正方形A1B1C1D1的面積,同理可求出正方形A2B2C2D2的面積,得出規(guī)律即可得答案.【詳解】∵正方形ABCD的邊長為a,,∴A1B12=A1B2+BB12==a2,A1B1=a,∴正方形A1B1C1D1的面積為a2,∵,∴A2B22==()2a2,∴正方形A2B2C2D2的面積為()2a2,……∴正方形的面積為()na2,故答案為:()na2本題考查正方形的性質(zhì)及勾股定理,正確計算各正方形的面積并得出規(guī)律是解題關(guān)鍵.12、2:2【解析】試題分析:此題主要考查了平行四邊形的性質(zhì)以及相似三角形的判定與性質(zhì)等知識,得出△DEF∽△BCF是解題關(guān)鍵.根據(jù)題意得出△DEF∽△BCF,進而得出DE:BC=EF:FC,利用點E是邊AD的中點得出答案即可.解:∵?ABCD,故AD∥BC,∴△DEF∽△BCF,∴DE:BC=EF:FC,∵點E是邊AD的中點,∴AE=DE=AD,∴EF:FC=2:2.故選B.考點:2.平行四邊形的性質(zhì);2.相似三角形的判定與性質(zhì).13、x<﹣2或0<x<2【解析】仔細觀察圖像,圖像在上面的函數(shù)值大,圖像在下面的函數(shù)值小,當y2>y2,即正比例函數(shù)的圖像在上,反比例函數(shù)的圖像在下時,根據(jù)圖像寫出x的取值范圍即可.【詳解】解:如圖,結(jié)合圖象可得:①當x<﹣2時,y2>y2;②當﹣2<x<0時,y2<y2;③當0<x<2時,y2>y2;④當x>2時,y2<y2.綜上所述:若y2>y2,則x的取值范圍是x<﹣2或0<x<2.故答案為x<﹣2或0<x<2.本題考查了圖像法解不等式,解題的關(guān)鍵是仔細觀察圖像,全面寫出符合條件的x的取值范圍.14、k<5且k≠1.【解析】試題解析:∵關(guān)于x的一元二次方程有兩個不相等的實數(shù)根,解得:且故答案為且15、a≤且a≠1.【分析】根據(jù)一元二次方程有實數(shù)根的條件列出關(guān)于a的不等式組,求出a的取值范圍即可.【詳解】由題意得:△≥0,即(-1)2-4(a-1)×1≥0,解得a≤,又a-1≠0,∴a≤且a≠1.故答案為a≤且a≠1.點睛:本題考查的是根的判別式及一元二次方程的定義,根據(jù)題意列出關(guān)于a的不等式組是解答此題的關(guān)鍵.16、.【解析】試題分析:根據(jù)矩形的性質(zhì)得∠B=∠D=∠BAD=90°,根據(jù)旋轉(zhuǎn)的性質(zhì)得∠D′=∠D=90°,∠4=α,利用對頂角相等得到∠1=∠2=110°,再根據(jù)四邊形的內(nèi)角和為360°可計算出∠3=70°,然后利用互余即可得到∠α的度數(shù).解:如圖,∵四邊形ABCD為矩形,∴∠B=∠D=∠BAD=90°,∵矩形ABCD繞點A順時針旋轉(zhuǎn)得到矩形AB′C′D′,∴∠D′=∠D=90°,∠4=α,∵∠1=∠2=110°,∴∠3=360°﹣90°﹣90°﹣110°=70°,∴∠4=90°﹣70°=20°,∴∠α=20°.故答案為20°.17、【分析】根據(jù)科學記數(shù)法的定義以及應用將數(shù)進行表示即可.【詳解】故答案為:.本題考查了科學記數(shù)法的定義以及應用,掌握科學記數(shù)法的定義以及應用是解題的關(guān)鍵.18、6【分析】由平行得比例,求出的長即可.【詳解】解:,,,,解得:,故答案為:6.此題考查了平行線分線段成比例,熟練掌握平行線分線段成比例性質(zhì)是解本題的關(guān)鍵.三、解答題(共66分)19、(1)30°;(2)3【分析】(1)由題意證明△CDE≌△COE,從而得到△OCD是等邊三角形,然后利用同弧所對的圓周角等于圓心角的一半求解;(2)由垂徑定理求得AE=AC=3,然后利用30°角的正切值求得DE=,然后根據(jù)題意求得OD=2DE=2,直徑BD=2OD=4,從而使問題得解.【詳解】解:連接OA,OC∵弦AC垂直平分OD∴DE=OE,∠DEC=∠OEC=90°又∵CE=CE∴△CDE≌△COE∴CD=OC又∵OC=OD∴CD=OC=OD∴△OCD是等邊三角形∴∠DOC=60°∴∠DAC=30°(2)∵弦AC垂直平分OD∴AE=AC=3又∵由(1)可知,在Rt△DAE中,∠DAC=30°∴,即∴DE=∵弦AC垂直平分OD∴OD=2DE=2∴直徑BD=2OD=4∴BE=BD-DE=4-=3本題考查垂徑定理,全等三角形的判定和性質(zhì)及銳角三角函數(shù),掌握相關(guān)定理正確進行推理判斷是本題的解題關(guān)鍵.20、(1)見解析;(2)π.【分析】(1)分別作出點、繞點按順時針方向旋轉(zhuǎn)得到的對應點,再順次連接可得;(2)根據(jù)扇形的面積公式列式計算可得.【詳解】(1)解:如圖所示:△AB′C′即為所求(2)解:∵AB==5,∴線段AB在變換到AB′的過程中掃過區(qū)域的面積為:=π本題主要考查作圖以及旋轉(zhuǎn)變換,解題的關(guān)鍵是根據(jù)旋轉(zhuǎn)的性質(zhì)作出變換后的對應點及扇形的面積公式.21、(1)y1=﹣2,y2=;(2)x1=9,x2=﹣2;(3)x1=1+,x2=1﹣.【分析】(1)先變形為2y(y+2)﹣(y+2)=0,然后利用因式分解法解方程;(2)先計算出判別式的值,然后利用求根公式法解方程;(3)先把二次項系數(shù)化為1,再兩邊加上一次項系數(shù)一半的平方,配方法得到(x﹣1)2=,然后利用直接開平方法解方程.【詳解】解:(1)2y(y+2)﹣(y+2)=0,∴(y+2)(2y﹣1)=0,∴y+2=0或2y﹣1=0,所以y1=﹣2,y2=;(2)a=1,b=﹣7,c=﹣18,∴△=(﹣7)2﹣4×(﹣18)=121,∴x=,∴x1=9,x2=﹣2;(3)x2﹣2x=,∴x2﹣2x+1=+1,∴(x﹣1)2=,∴x﹣1=±,∴x1=1+,x2=1﹣.本題考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,這種方法簡便易用,是解一元二次方程最常用的方法.也考查了配方法和公式法.22、5.【分析】連接OB,由垂徑定理得BE=CE=4,在中,根據(jù)勾股定理列方程求解.【詳解】解:連接設的半徑為,則在中,由勾股定理得,即解得的半徑為本題考查了圓的垂徑定理,利用勾股定理列方程求解是解答此題的關(guān)鍵.23、(1);(2)26元或40元;(3)當銷售單價為35元時,廠商每月獲得的利潤最大,最大利潤為570萬元.【分析】(1)先根據(jù)表格求出y與x之間的函數(shù)關(guān)系式,再根據(jù)“利潤(單價單件成本)銷售量”即可得;(2)令代入(1)的結(jié)論求出x的值即可得;(3)先根據(jù)“制造成本不超過480萬元”求出y的取值范圍,從而可得x的取值范圍,再利用二次函數(shù)的性質(zhì)求解即可得.【詳解】(1)由表格可知,y與x之間的函數(shù)關(guān)系是一次函數(shù),設y與x之間的函數(shù)關(guān)系式為,將和代入得:,解得,則y與x之間的函數(shù)關(guān)系式為,因此,,即;(2)由題意得:,整理得:,解得或,答:當銷售單價為26元或40元時,廠商每月獲得的總利潤為480萬元;(3)由題意得:,則,解得,將二次函數(shù)化成頂點式為,由二次函數(shù)的性質(zhì)可知,在范圍內(nèi),隨x的增大而減小,則當時,取得最大值,最大值為(萬元),答:當銷售單價為35元時,廠商每月獲得的利潤最大,最大利潤為570萬元.本題考查了利用待定系數(shù)法求一次函數(shù)的解析式、二次函數(shù)的性質(zhì)、解一元二次方程、解一元一次不等式組

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論