




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江門市臺山市2024-2025學年中考數(shù)學模擬預測題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.若一組數(shù)據1、、2、3、4的平均數(shù)與中位數(shù)相同,則不可能是下列選項中的()A.0 B.2.5 C.3 D.52.如圖,在平面直角坐標系xOy中,等腰梯形ABCD的頂點坐標分別為A(1,1),B(2,﹣1),C(﹣2,﹣1),D(﹣1,1).以A為對稱中心作點P(0,2)的對稱點P1,以B為對稱中心作點P1的對稱點P2,以C為對稱中心作點P2的對稱點P3,以D為對稱中心作點P3的對稱點P4,…,重復操作依次得到點P1,P2,…,則點P2010的坐標是()A.(2010,2) B.(2010,﹣2) C.(2012,﹣2) D.(0,2)3.關于x的方程12x=kA.0或124.如圖,△ABC中,AD是中線,BC=8,∠B=∠DAC,則線段AC的長為()A.4 B.4 C.6 D.45.若正六邊形的邊長為6,則其外接圓半徑為()A.3 B.3 C.3 D.66.若正比例函數(shù)y=kx的圖象上一點(除原點外)到x軸的距離與到y(tǒng)軸的距離之比為3,且y值隨著x值的增大而減小,則k的值為()A.﹣ B.﹣3 C. D.37.如圖,彈性小球從點P(0,1)出發(fā),沿所示方向運動,每當小球碰到正方形OABC的邊時反彈,反彈時反射角等于入射角,當小球第1次碰到正方形的邊時的點為P1(2,0),第2次碰到正方形的邊時的點為P2,…,第n次碰到正方形的邊時的點為Pn,則點P2018的坐標是()A.(1,4) B.(4,3) C.(2,4) D.(4,1)8.下列運算正確的是()A.a2?a3=a6B.a3+a2=a5C.(a2)4=a8D.a3﹣a2=a9.二元一次方程組的解是()A. B. C. D.10.某射擊運動員練習射擊,5次成績分別是:8、9、7、8、x(單位:環(huán)).下列說法中正確的是()A.若這5次成績的中位數(shù)為8,則x=8B.若這5次成績的眾數(shù)是8,則x=8C.若這5次成績的方差為8,則x=8D.若這5次成績的平均成績是8,則x=8二、填空題(本大題共6個小題,每小題3分,共18分)11.已知反比例函數(shù)的圖像經過點,那么的值是__.12.若分式的值為正,則實數(shù)的取值范圍是__________________.13.如圖,如果兩個相似多邊形任意一組對應頂點P、P′所在的直線都是經過同一點O,且有OP′=k·OP(k≠0),那么我們把這樣的兩個多邊形叫位似多邊形,點O叫做位似中心,已知△ABC與△A′B′C′是關于點O的位似三角形,OA′=3OA,則△ABC與△A′B′C′的周長之比是________.14.如圖,點G是的重心,AG的延長線交BC于點D,過點G作交AC于點E,如果,那么線段GE的長為______.15.一機器人以0.2m/s的速度在平地上按下圖中的步驟行走,那么該機器人從開始到停止所需時間為__s.16.我們知道,四邊形具有不穩(wěn)定性.如圖,在平面直角坐標系中,邊長為2的正方形ABCD的邊AB在x軸上,AB的中點是坐標原點O,固定點A,B,把正方形沿箭頭方向推,使點D落在y軸正半軸上點D'處,則點C的對應點C'的坐標為_____.三、解答題(共8題,共72分)17.(8分)受益于國家支持新能源汽車發(fā)展和“一帶一路”發(fā)展戰(zhàn)略等多重利好因素,我市某汽車零部件生產企業(yè)的利潤逐年提高,據統(tǒng)計,2014年利潤為2億元,2016年利潤為2.88億元.求該企業(yè)從2014年到2016年利潤的年平均增長率;若2017年保持前兩年利潤的年平均增長率不變,該企業(yè)2017年的利潤能否超過3.4億元?18.(8分)如圖,在五邊形ABCDE中,∠C=100°,∠D=75°,∠E=135°,AP平分∠EAB,BP平分∠ABC,求∠P的度數(shù).19.(8分)﹣(﹣1)2018+﹣()﹣120.(8分)為響應“學雷鋒、樹新風、做文明中學生”號召,某校開展了志愿者服務活動,活動項目有“戒毒宣傳”、“文明交通崗”、“關愛老人”、“義務植樹”、“社區(qū)服務”等五項,活動期間,隨機抽取了部分學生對志愿者服務情況進行調查,結果發(fā)現(xiàn),被調查的每名學生都參與了活動,最少的參與了1項,最多的參與了5項,根據調查結果繪制了如圖所示不完整的折線統(tǒng)計圖和扇形統(tǒng)計圖.被隨機抽取的學生共有多少名?在扇形統(tǒng)計圖中,求活動數(shù)為3項的學生所對應的扇形圓心角的度數(shù),并補全折線統(tǒng)計圖;該校共有學生2000人,估計其中參與了4項或5項活動的學生共有多少人?21.(8分)已知,數(shù)軸上三個點A、O、P,點O是原點,固定不動,點A和B可以移動,點A表示的數(shù)為,點B表示的數(shù)為.(1)若A、B移動到如圖所示位置,計算的值.(2)在(1)的情況下,B點不動,點A向左移動3個單位長,寫出A點對應的數(shù),并計算.(3)在(1)的情況下,點A不動,點B向右移動15.3個單位長,此時比大多少?請列式計算.22.(10分)“大美濕地,水韻鹽城”.某校數(shù)學興趣小組就“最想去的鹽城市旅游景點”隨機調查了本校部分學生,要求每位同學選擇且只能選擇一個最想去的景點,下面是根據調查結果進行數(shù)據整理后繪制出的不完整的統(tǒng)計圖:請根據圖中提供的信息,解答下列問題:(1)求被調查的學生總人數(shù);(2)補全條形統(tǒng)計圖,并求扇形統(tǒng)計圖中表示“最想去景點D”的扇形圓心角的度數(shù);(3)若該校共有800名學生,請估計“最想去景點B“的學生人數(shù).23.(12分)在平面直角坐標系xOy中,已知兩點A(0,3),B(1,0),現(xiàn)將線段AB繞點B按順時針方向旋轉90°得到線段BC,拋物線y=ax2+bx+c經過點C.(1)如圖1,若拋物線經過點A和D(﹣2,0).①求點C的坐標及該拋物線解析式;②在拋物線上是否存在點P,使得∠POB=∠BAO,若存在,請求出所有滿足條件的點P的坐標,若不存在,請說明理由;(2)如圖2,若該拋物線y=ax2+bx+c(a<0)經過點E(2,1),點Q在拋物線上,且滿足∠QOB=∠BAO,若符合條件的Q點恰好有2個,請直接寫出a的取值范圍.24.如圖,直線與軸交于點,與軸交于點,且與雙曲線的一個交點為,將直線在軸下方的部分沿軸翻折,得到一個“”形折線的新函數(shù).若點是線段上一動點(不包括端點),過點作軸的平行線,與新函數(shù)交于另一點,與雙曲線交于點.(1)若點的橫坐標為,求的面積;(用含的式子表示)(2)探索:在點的運動過程中,四邊形能否為平行四邊形?若能,求出此時點的坐標;若不能,請說明理由.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】
解:這組數(shù)據1、a、2、1、4的平均數(shù)為:(1+a+2+1+4)÷5=(a+10)÷5=0.2a+2,(1)將這組數(shù)據從小到大的順序排列后為a,1,2,1,4,中位數(shù)是2,平均數(shù)是0.2a+2,∵這組數(shù)據1、a、2、1、4的平均數(shù)與中位數(shù)相同,∴0.2a+2=2,解得a=0,符合排列順序.(2)將這組數(shù)據從小到大的順序排列后為1,a,2,1,4,中位數(shù)是2,平均數(shù)是0.2a+2,∵這組數(shù)據1、a、2、1、4的平均數(shù)與中位數(shù)相同,∴0.2a+2=2,解得a=0,不符合排列順序.(1)將這組數(shù)據從小到大的順序排列后1,2,a,1,4,中位數(shù)是a,平均數(shù)是0.2a+2,∵這組數(shù)據1、a、2、1、4的平均數(shù)與中位數(shù)相同,∴0.2a+2=a,解得a=2.5,符合排列順序.(4)將這組數(shù)據從小到大的順序排列后為1,2,1,a,4,中位數(shù)是1,平均數(shù)是0.2a+2,∵這組數(shù)據1、a、2、1、4的平均數(shù)與中位數(shù)相同,∴0.2a+2=1,解得a=5,不符合排列順序.(5)將這組數(shù)據從小到大的順序排列為1,2,1,4,a,中位數(shù)是1,平均數(shù)是0.2a+2,∵這組數(shù)據1、a、2、1、4的平均數(shù)與中位數(shù)相同,∴0.2a+2=1,解得a=5;符合排列順序;綜上,可得:a=0、2.5或5,∴a不可能是1.故選C.本題考查中位數(shù);算術平均數(shù).2、B【解析】分析:根據題意,以A為對稱中心作點P(0,1)的對稱點P1,即A是PP1的中點,結合中點坐標公式即可求得點P1的坐標;同理可求得其它各點的坐標,分析可得規(guī)律,進而可得答案.詳解:根據題意,以A為對稱中心作點P(0,1)的對稱點P1,即A是PP1的中點,又∵A的坐標是(1,1),結合中點坐標公式可得P1的坐標是(1,0);同理P1的坐標是(1,﹣1),記P1(a1,b1),其中a1=1,b1=﹣1.根據對稱關系,依次可以求得:P3(﹣4﹣a1,﹣1﹣b1),P4(1+a1,4+b1),P5(﹣a1,﹣1﹣b1),P6(4+a1,b1),令P6(a6,b1),同樣可以求得,點P10的坐標為(4+a6,b1),即P10(4×1+a1,b1),∵1010=4×501+1,∴點P1010的坐標是(1010,﹣1),故選:B.點睛:本題考查了對稱的性質,坐標與圖形的變化---旋轉,根據條件求出前邊幾個點的坐標,得到規(guī)律是解題關鍵.3、A【解析】方程兩邊同乘2x(x+3),得x+3=2kx,(2k-1)x=3,∵方程無解,∴當整式方程無解時,2k-1=0,k=12當分式方程無解時,①x=0時,k無解,②x=-3時,k=0,∴k=0或12故選A.4、B【解析】
由已知條件可得,可得出,可求出AC的長.【詳解】解:由題意得:∠B=∠DAC,∠ACB=∠ACD,所以,根據“相似三角形對應邊成比例”,得,又AD是中線,BC=8,得DC=4,代入可得AC=,故選B.本題主要考查相似三角形的判定與性質.靈活運用相似的性質可得出解答.5、D【解析】
連接正六邊形的中心和各頂點,得到六個全等的正三角形,于是可知正六邊形的邊長等于正三角形的邊長,為正六邊形的外接圓半徑.【詳解】如圖為正六邊形的外接圓,ABCDEF是正六邊形,∴∠AOF=10°,∵OA=OF,∴△AOF是等邊三角形,∴OA=AF=1.所以正六邊形的外接圓半徑等于邊長,即其外接圓半徑為1.故選D.本題考查了正六邊形的外接圓的知識,解題的關鍵是畫出圖形,找出線段之間的關系.6、B【解析】
設該點的坐標為(a,b),則|b|=1|a|,利用一次函數(shù)圖象上的點的坐標特征可得出k=±1,再利用正比例函數(shù)的性質可得出k=-1,此題得解.【詳解】設該點的坐標為(a,b),則|b|=1|a|,∵點(a,b)在正比例函數(shù)y=kx的圖象上,∴k=±1.又∵y值隨著x值的增大而減小,∴k=﹣1.故選:B.本題考查了一次函數(shù)圖象上點的坐標特征以及正比例函數(shù)的性質,利用一次函數(shù)圖象上點的坐標特征,找出k=±1是解題的關鍵.7、D【解析】
先根據反射角等于入射角先找出前幾個點,直至出現(xiàn)規(guī)律,然后再根據規(guī)律進行求解.【詳解】由分析可得p(0,1)、、、、、、等,故該坐標的循環(huán)周期為7則有則有,故是第2018次碰到正方形的點的坐標為(4,1).本題主要考察規(guī)律的探索,注意觀察規(guī)律是解題的關鍵.8、C【解析】
根據同底數(shù)冪的乘法法則:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加;合并同類項的法則:把同類項的系數(shù)相加,所得結果作為系數(shù),字母和字母的指數(shù)不變;冪的乘方法則:底數(shù)不變,指數(shù)相乘進行計算即可.【詳解】A、a2?a3=a5,故原題計算錯誤;B、a3和a2不是同類項,不能合并,故原題計算錯誤;C、(a2)4=a8,故原題計算正確;D、a3和a2不是同類項,不能合并,故原題計算錯誤;故選:C.此題主要考查了冪的乘方、同底數(shù)冪的乘法,以及合并同類項,關鍵是掌握計算法則.9、B【解析】
利用加減消元法解二元一次方程組即可得出答案【詳解】解:①﹣②得到y(tǒng)=2,把y=2代入①得到x=4,∴,故選:B.此題考查了解二元一次方程組,解方程組利用了消元的思想,消元的方法有:代入消元法與加減消元法.10、D【解析】
根據中位數(shù)的定義判斷A;根據眾數(shù)的定義判斷B;根據方差的定義判斷C;根據平均數(shù)的定義判斷D.【詳解】A、若這5次成績的中位數(shù)為8,則x為任意實數(shù),故本選項錯誤;B、若這5次成績的眾數(shù)是8,則x為不是7與9的任意實數(shù),故本選項錯誤;C、如果x=8,則平均數(shù)為(8+9+7+8+8)=8,方差為[3×(8-8)2+(9-8)2+(7-8)2]=0.4,故本選項錯誤;D、若這5次成績的平均成績是8,則(8+9+7+8+x)=8,解得x=8,故本選項正確;
故選D.本題考查中位數(shù)、眾數(shù)、平均數(shù)和方差:一般地設n個數(shù)據,x1,x2,…xn的平均數(shù)為,則方差,它反映了一組數(shù)據的波動大小,方差越大,波動性越大,反之也成立.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】
將點的坐標代入,可以得到-1=,然后解方程,便可以得到k的值.【詳解】∵反比例函數(shù)y=的圖象經過點(2,-1),
∴-1=
∴k=?;
故答案為k=?.本題主要考查函數(shù)圖像上的點滿足其解析式,可以結合代入法進行解答12、x>0【解析】【分析】分式值為正,則分子與分母同號,據此進行討論即可得.【詳解】∵分式的值為正,∴x與x2+2的符號同號,∵x2+2>0,∴x>0,故答案為x>0.【點睛】本題考查了分式值為正的情況,熟知分式值為正時,分子分母同號是解題的關鍵.13、1:1【解析】分析:根據相似三角形的周長比等于相似比解答.詳解:∵△ABC與△A′B′C′是關于點O的位似三角形,∴△ABC∽△A′B′C′.∵OA′=1OA,∴△ABC與△A′B′C′的周長之比是:OA:OA′=1:1.故答案為1:1.點睛:本題考查的是位似變換的性質,位似變換的性質:①兩個圖形必須是相似形;②對應點的連線都經過同一點;③對應邊平行.14、2【解析】分析:由點G是△ABC重心,BC=6,易得CD=3,AG:AD=2:3,又由GE∥BC,可證得△AEG∽△ACD,然后由相似三角形的對應邊成比例,即可求得線段GE的長.詳解:∵點G是△ABC重心,BC=6,∴CD=BC=3,AG:AD=2:3,∵GE∥BC,∴△AEG∽△ADC,∴GE:CD=AG:AD=2:3,∴GE=2.故答案為2.點睛:本題考查了三角形重心的定義和性質、相似三角形的判定和性質.利用三角形重心的性質得出AG:AD=2:3是解題的關鍵.15、240【解析】根據圖示,得出機器人的行走路線是沿著一個正八邊形的邊長行走一周,是解決本題的關鍵,考察了計算多邊形的周長,本題中由于機器人最后必須回到起點,可知此機器人一共轉了360°,我們可以計算機器人所轉的回數(shù),即360°÷45°=8,則機器人的行走路線是沿著一個正八邊形的邊長行走一周,故機器人一共行走6×8=48m,根據時間=路程÷速度,即可得出結果.本題解析:依據題中的圖形,可知機器人一共轉了360°,∵360°÷45°=8,∴機器人一共行走6×8=48m.∴該機器人從開始到停止所需時間為48÷0.2=240s.16、(2,)【解析】過C作CH于H,由題意得2AO=AD’,所以∠D’AO=60°,AO=1,AD’=2,勾股定理知OD’=,BH=AO所以C’(2,).故答案為(2,).三、解答題(共8題,共72分)17、(1)20%;(2)能.【解析】
(1)設年平均增長率為x,則2015年利潤為2(1+x)億元,則2016年的年利潤為2(1+x)(1+x),根據2016年利潤為2.88億元列方程即可.(2)2017年的利潤在2016年的基礎上再增加(1+x),據此計算即可.【詳解】(1)設該企業(yè)從2014年到2016年利潤的年平均增長率為x.根據題意,得2(1+x)2=2.88,解得x1=0.2=20%,x2=-2.2(不合題意,舍去).答:該企業(yè)從2014年到2016年利潤的年平均增長率為20%.(2)如果2017年仍保持相同的年平均增長率,那么2017年該企業(yè)年利潤為2.88×(1+20%)=3.456(億元),因為3.456>3.4,所以該企業(yè)2017年的利潤能超過3.4億元.此題考查一元二次方程的應用---增長率問題,根據題意尋找相等關系列方程是關鍵,難度不大.18、65°【解析】∵∠EAB+∠ABC+∠C+∠D+∠E=(5-2)×180°=540°,∠C=100°,∠D=75°,∠E=135°,∴∠EAB+∠ABC=540°-∠C-∠D-∠E=230°.∵AP平分∠EAB,∴∠PAB=12∠EAB.同理可得,∠ABP=∠ABC.∵∠P+∠PAB+∠PBA=180°,∴∠P=180°-∠PAB-∠PBA=180°-∠EAB-∠ABC=180°-(∠EAB+∠ABC)=180°-×230°=65°.19、-1.【解析】
直接利用負指數(shù)冪的性質以及算術平方根的性質分別化簡得出答案.【詳解】原式=﹣1+1﹣3=﹣1.本題主要考查了實數(shù)運算,正確化簡各數(shù)是解題的關鍵.20、(1)被隨機抽取的學生共有50人;(2)活動數(shù)為3項的學生所對應的扇形圓心角為72°,(3)參與了4項或5項活動的學生共有720人.【解析】分析:(1)利用活動數(shù)為2項的學生的數(shù)量以及百分比,即可得到被隨機抽取的學生數(shù);(2)利用活動數(shù)為3項的學生數(shù),即可得到對應的扇形圓心角的度數(shù),利用活動數(shù)為5項的學生數(shù),即可補全折線統(tǒng)計圖;(3)利用參與了4項或5項活動的學生所占的百分比,即可得到全校參與了4項或5項活動的學生總數(shù).詳解:(1)被隨機抽取的學生共有14÷28%=50(人);(2)活動數(shù)為3項的學生所對應的扇形圓心角=×360°=72°,活動數(shù)為5項的學生為:50﹣8﹣14﹣10﹣12=6,如圖所示:(3)參與了4項或5項活動的學生共有×2000=720(人).點睛:本題主要考查折線統(tǒng)計圖與扇形統(tǒng)計圖及概率公式,根據折線統(tǒng)計圖和扇形統(tǒng)計圖得出解題所需的數(shù)據是解題的關鍵.21、(1)a+b的值為2;(2)a的值為3,b|a|的值為3;(1)b比a大27.1.【解析】
(1)根據數(shù)軸即可得到a,b數(shù)值,即可得出結果.(2)由B點不動,點A向左移動1個單位長,可得a=3,b=2,即可求解.(1)點A不動,點B向右移動15.1個單位長,所以a=10,b=17.1,再b-a即可求解.【詳解】(1)由圖可知:a=10,b=2,∴a+b=2故a+b的值為2.(2)由B點不動,點A向左移動1個單位長,可得a=3,b=2∴b|a|=b+a=23=3故a的值為3,b|a|的值為3.(1)∵點A不動,點B向右移動15.1個單位長∴a=10,b=17.1∴ba=17.1(10)=27.1故b比a大27.1.本題主要考查了數(shù)軸,關鍵在于數(shù)形結合思想.22、(1)40;(2)72;(3)1.【解析】
(1)用最想去A景點的人數(shù)除以它所占的百分比即可得到被調查的學生總人數(shù);(2)先計算出最想去D景點的人數(shù),再補全條形統(tǒng)計圖,然后用360°乘以最想去D景點的人數(shù)所占的百分比即可得到扇形統(tǒng)計圖中表示“最想去景點D”的扇形圓心角的度數(shù);(3)用800乘以樣本中最想去A景點的人數(shù)所占的百分比即可.【詳解】(1)被調查的學生總人數(shù)為8÷20%=40(人);(2)最想去D景點的人數(shù)為40﹣8﹣14﹣4﹣6=8(人),補全條形統(tǒng)計圖為:扇形統(tǒng)計圖中表示“最想去景點D”的扇形圓心角的度數(shù)為×360°=72°;(3)800×=1,所以估計“最想去景點B“的學生人數(shù)為1人.23、(1)①y=﹣x2+x+3;②P(,)或P'(,﹣);(2)≤a<1;【解析】
(1)①先判斷出△AOB≌△GBC,得出點C坐標,進而用待定系數(shù)法即可得出結論;②分兩種情況,利用平行線(對稱)和直線和拋物線的交點坐標的求法,即可得出結論;(2)同(1)②的方法,借助圖象即可得出結論.【詳解】(1)①如圖2,∵A(1,3),B(1,1),∴OA=3,OB=1,由旋轉知,∠ABC=91°,AB=CB,∴∠ABO+∠CBE=91°,過點C作CG⊥OB于G,∴∠CBG+∠BCG=91°,∴∠ABO=∠BCG,∴△AOB≌△GBC,∴CG=OB=1,BG=OA=3,∴OG=OB+BG=4∴C(4,1),拋物線經過點A(1,3),和D(﹣2,1),∴,∴,∴拋物線解析式為y=﹣x2+x+3;②由①知,△AOB≌△EBC,∴∠BAO=∠CBF,∵∠POB=∠BAO,∴∠POB=∠CBF,如圖1,OP∥BC,∵B(1,1),C(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025廣東廣州市中山大學孫逸仙紀念醫(yī)院超聲科醫(yī)教研崗位招聘考前自測高頻考點模擬試題附答案詳解(突破訓練)
- 高鐵防疫考試題及答案
- 公司財務合法合規(guī)責任承諾書(3篇)
- 綿陽護師考試試題及答案
- 高考理想考試題目及答案
- 高級素養(yǎng)考試題及答案解析
- 2025年病案管理專項測試卷附答案
- 肝脾破裂考試題及答案
- 助理醫(yī)師筆試試題及答案
- 2025年自考數(shù)學統(tǒng)計真題及答案
- 第三單元 一共有多少第1課時 說課稿-2022-2023學年數(shù)學一年級上冊-北師大版
- 年度安全資金投入計劃
- 2023年蘇州職業(yè)大學高職單招(數(shù)學)試題庫含答案解析
- GB/T 39554.1-2020全國一體化政務服務平臺政務服務事項基本目錄及實施清單第1部分:編碼要求
- GB/T 2942-2009硫化橡膠與纖維簾線靜態(tài)粘合強度的測定H抽出法
- 電梯設計系統(tǒng)
- 勞動保障協(xié)理員考試復習資料
- DB3301T 0286-2019 城市綠地養(yǎng)護管理質量標準
- 道路護欄設計和路側安全凈區(qū)寬度的計算
- 高處作業(yè)安全技術交底-
- 軸類零件工藝工序卡片
評論
0/150
提交評論