解析卷人教版8年級數(shù)學下冊《平行四邊形》綜合訓練試題(詳解)_第1頁
解析卷人教版8年級數(shù)學下冊《平行四邊形》綜合訓練試題(詳解)_第2頁
解析卷人教版8年級數(shù)學下冊《平行四邊形》綜合訓練試題(詳解)_第3頁
解析卷人教版8年級數(shù)學下冊《平行四邊形》綜合訓練試題(詳解)_第4頁
解析卷人教版8年級數(shù)學下冊《平行四邊形》綜合訓練試題(詳解)_第5頁
已閱讀5頁,還剩30頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

人教版8年級數(shù)學下冊《平行四邊形》綜合訓練考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、如圖,菱形OABC在平面直角坐標系中的位置如圖所示,∠AOC=45°,OA=,則點C的坐標為()A.(,1) B.(1,1) C.(1,) D.(+1,1)2、已知中,,,CD是斜邊AB上的中線,則的度數(shù)是()A. B. C. D.3、如圖,矩形ABCD的面積為1cm2,對角線交于點O;以AB、AO為鄰邊作平行四邊形AOC1B,對角線交于點O1;以AB、AO1為鄰邊作平行四邊形AO1C2B,…;依此類推,則平行四邊形AO2014C2015B的面積為()cmA.

B.

C.

D.4、順次連接對角線互相垂直的四邊形的各邊中點,所形成的新四邊形是()A.菱形 B.矩形 C.正方形 D.三角形5、如圖,在△ABC中,點E,F(xiàn)分別是AB,AC的中點.已知∠B=55°,則∠AEF的度數(shù)是()A.75° B.60° C.55° D.40°6、在△ABC中,AD是角平分線,點E、F分別是線段AC、CD的中點,若△ABD、△EFC的面積分別為21、7,則的值為()A. B. C. D.7、下列∠A:∠B:∠C:∠D的值中,能判定四邊形ABCD是平行四邊形的是()A.1:2:3:4 B.1:4:2:3C.1:2:2:1 D.3:2:3:28、如圖,矩形OABC的邊OA長為2,邊AB長為1,OA在數(shù)軸上,以原點O為圓心,對角線OB的長為半徑畫弧,交正半軸于一點,則這個點表示的實數(shù)是()A.2.5 B.2 C. D.9、如圖菱形ABCD,對角線AC,BD相交于點O,若BD=8,AC=6,則AB的長是()A.5 B.6 C.8 D.1010、如圖,已知四邊形ABCD和四邊形BCEF均為平行四邊形,∠D=60°,連接AF,并延長交BE于點P,若AP⊥BE,AB=3,BC=2,AF=1,則BE的長為()A.5 B.2 C.2 D.3第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、如圖,矩形ABCD中,AC、BD相交于點O且AC=12,如果∠AOD=60°,則DC=__.2、如圖,點E,F(xiàn)在正方形ABCD的對角線AC上,AC=10,AE=CF=3,則四邊形BFDE的面積為_____.3、如圖,在平面直角坐標系中,O是菱形ABCD對角線BD的中點,AD∥x軸,AD=4,∠A=60°.將菱形ABCD繞點O旋轉(zhuǎn),使點D落在x軸上,則旋轉(zhuǎn)后點C的對應點的坐標是_____________.4、如圖,將n個邊長都為1的正方形按如圖所示擺放,點A1,A2,…,An分別是正方形的中心,則n個正方形重疊形成的重疊部分的面積和為_____.5、如圖,菱形ABCD的兩條對角線長分別為AC=6,BD=8,點P是BC邊上的一動點,則AP的最小值為__.6、在平行四邊形ABCD中,若∠A=130°,則∠B=______,∠C=______,∠D=______.7、如圖,四邊形ABCD是矩形,延長DA到點E,使AE=DA,連接EB,點F1是CD的中點,連接EF1,BF1,得到△EF1B;點F2是CF1的中點,連接EF2,BF2,得到△EF2B;點F3是CF2的中點,連接EF3,BF3,得到△EF3B;…;按照此規(guī)律繼續(xù)進行下去,若矩形ABCD的面積等于2,則△EFnB的面積為______.(用含正整數(shù)n的式子表示)8、如圖,在矩形紙片ABCD中,AB=6,BC=4,點E是AD的中點,點F是AB上一動點將AEF沿直線EF折疊,點A落在點A′處在EF上任取一點G,連接GC,,,則的周長的最小值為________.9、如圖,在?ABCD中,點E是對角線AC上一點,過點E作AC的垂線,交邊AD于點P,交邊BC于點Q,連接PC、AQ,若AC=6,PQ=4,則PC+AQ的最小值為________________.10、已知一直角三角形的兩直角邊長分別為6和8,則斜邊上中線的長度是_____.三、解答題(5小題,每小題6分,共計30分)1、如圖,已知在Rt△ABC中,∠ACB=90°,CD是斜邊AB上的中線,點E是邊BC延長線上一點,連接AE、DE,過點C作CF⊥DE于點F,且DF=EF.(1)求證:AD=CE.(2)若CD=5,AC=6,求△AEB的面積.2、在菱形ABCD中,∠ABC=60°,P是直線BD上一動點,以AP為邊向右側(cè)作等邊APE(A,P,E按逆時針排列),點E的位置隨點P的位置變化而變化.(1)如圖1,當點P在線段BD上,且點E在菱形ABCD內(nèi)部或邊上時,連接CE,則BP與CE的數(shù)量關系是,BC與CE的位置關系是;(2)如圖2,當點P在線段BD上,且點E在菱形ABCD外部時,(1)中的結(jié)論是否還成立?若成立,請予以證明;若不成立,請說明理由;(3)當點P在直線BD上時,其他條件不變,連接BE.若AB=2,BE=2,請直接寫出APE的面積.3、(1)如圖1中,∠A=90°,請用直尺和圓規(guī)作一條直線,把ABC分割成兩個等腰三角形(不寫作法,但須保留作圖痕跡).(2)已知內(nèi)角度數(shù)的兩個三角形如圖2、圖3所示.請你判斷,能否分別畫一條直線把它們分割成兩個等腰三角形?若能,請畫出直線,并標注底角的度數(shù).(3)一個三角形有一內(nèi)角為48°,如果經(jīng)過其一個頂點作直線能把其分成兩個等腰三角形,那么它的最大的內(nèi)角可能值為.4、如圖,在四邊形ABCD中,∠ABC=∠ADC=90°,E是AC的中點,連接BD,ED,EB.求證:∠1=∠2.5、如圖,在平行四邊形中,連接.(1)請用尺規(guī)完成基本作圖:在上方作,使,射線交于點F,在線段上截取,使.(2)連接,求證:四邊形是菱形.-參考答案-一、單選題1、B【解析】【分析】作CD⊥x軸,根據(jù)菱形的性質(zhì)得到OC=OA=,在Rt△OCD中,根據(jù)勾股定理求出OD的值,即可得到C點的坐標.【詳解】:作CD⊥x軸于點D,則∠CDO=90°,∵四邊形OABC是菱形,OA=,∴OC=OA=,又∵∠AOC=45°,∴∠OCD=90°-∠AOC=90°-45°=45°,∴∠DOC=∠OCD,∴CD=OD,在Rt△OCD中,OC=,CD2+OD2=OC2,∴2OD2=OC2=2,∴OD2=1,∴OD=CD=1(負值舍去),則點C的坐標為(1,1),故選:B.【點睛】此題考查了菱形的性質(zhì)、等腰直角三角形的性質(zhì)以及勾股定理,根據(jù)勾股定理和等腰直角三角形的性質(zhì)求出OD=CD=1是解決問題的關鍵.2、B【解析】【分析】由題意根據(jù)三角形的內(nèi)角和得到∠A=36°,由CD是斜邊AB上的中線,得到CD=AD,根據(jù)等腰三角形的性質(zhì)即可得到結(jié)論.【詳解】解:∵∠ACB=90°,∠B=54°,∴∠A=36°,∵CD是斜邊AB上的中線,∴CD=AD,∴∠ACD=∠A=36°.故選:B.【點睛】本題考查直角三角形的性質(zhì)與三角形的內(nèi)角和,熟練掌握直角三角形的性質(zhì)即直角三角形斜邊的中線等于斜邊的一半是解題的關鍵.3、C【解析】【分析】根據(jù)“同底等高”的原則可知平行四邊形AOC1B底邊AB上的高等于BC的,則有平行四邊形AOC1B的面積,平行四邊形AOC2B的邊AB上的高等于平行四邊形AOC1B底邊AB上的高的,則有平行四邊形ABC3O2的面積,…;由此規(guī)律可進行求解.【詳解】解:∵O1為矩形ABCD的對角線的交點,∴平行四邊形AOC1B底邊AB上的高等于BC的,∴平行四邊形AOC1B的面積=×1=,∵平行四邊形AO1C2B的對角線交于點O2,∴平行四邊形AOC2B的邊AB上的高等于平行四邊形AOC1B底邊AB上的高的,∴平行四邊形ABC3O2的面積=××1=,…,依此類推,平行四邊形ABC2014O2015的面積=cm2.故答案為:C.【點睛】本題主要考查矩形的性質(zhì)與平行四邊形的性質(zhì),熟練掌握矩形的性質(zhì)與平行四邊形的性質(zhì)是解題的關鍵.4、B【解析】【分析】先畫出圖形,再根據(jù)三角形中位線定理得到所得四邊形的對邊平行且相等,那么其必為平行四邊形,然后根據(jù)鄰邊互相垂直得出四邊形是矩形.【詳解】解:如圖,∵、、、分別是、、、的中點,∴,,,∴四邊形是平行四邊形,∵,∴,∴平行四邊形是矩形,又與不一定相等,與不一定相等,矩形不一定是正方形,故選:B.【點睛】本題考查了三角形中位線定理、矩形的判定等知識點,熟練掌握三角形中位線定理是解題關鍵.5、C【解析】【分析】證EF是△ABC的中位線,得EF∥BC,再由平行線的性質(zhì)即可求解.【詳解】解:∵點E,F(xiàn)分別是AB,AC的中點,∴EF是△ABC的中位線,∴EF∥BC,∴∠AEF=∠B=55°,故選:C.【點睛】本題考查了三角形中位線定理以及平行線的性質(zhì);熟練掌握三角形中位線定理,證出EF∥BC是解題的關鍵.6、B【解析】【分析】過點A作△ABC的高,設為x,過點E作△EFC的高為,可求出,,再由點E、F分別是線段AC、CD的中點,可得出,進而求出,再利用角平分線的性質(zhì)可得出的值為即可求解.【詳解】解:過點A作△ABC的高,設為x,過點E作△EFC的高為,∴,∴,,∵點E、F分別是線段AC、CD的中點,∴,∴,∵,∴,∴,過點D作DM⊥AB,DN⊥AC,∵AD為平分線,∴DM=DN,∵,∴,即:∴,故選:B.【點睛】本題考查角平分線性質(zhì)定理及三角形中位線的性質(zhì),解題關鍵是求出.7、D【解析】【分析】兩組對角分別相等的四邊形是平行四邊形,所以∠A和∠C是對角,∠B和∠D是對角,對角的份數(shù)應相等.【詳解】解:根據(jù)平行四邊形的判定:兩組對角分別相等的四邊形是平行四邊形,所以只有D符合條件.故選:D.【點睛】本題考查了平行四邊形的判定,在應用判定定理判定平行四邊形時,應仔細觀察題目所給的條件,仔細選擇適合于題目的判定方法進行解答,避免混用判定方法.8、D【解析】【分析】利用矩形的性質(zhì),求證明,進而在中利用勾股定理求出的長度,弧長就是的長度,利用數(shù)軸上的點表示,求出弧與數(shù)軸交點表示的實數(shù)即可.【詳解】解:四邊形OABC是矩形,,在中,由勾股定理可知:,,弧長為,故在數(shù)軸上表示的數(shù)為,故選:.【點睛】本題主要是考查了矩形的性質(zhì)、勾股定理解三角形以及數(shù)軸上的點的表示,熟練利用矩形性質(zhì),得到直角三角形,然后通過勾股定理求邊長,是解決該類問題的關鍵.9、A【解析】【分析】由菱形的性質(zhì)可得OA=OC=3,OB=OD=4,AO⊥BO,由勾股定理求出AB.【詳解】解:∵四邊形ABCD是菱形,AC=6,BD=8,∴OA=OC=3,OB=OD=4,AO⊥BO,在Rt△AOB中,由勾股定理得:,故選:A.【點睛】本題考查了菱形的性質(zhì)、勾股定理等知識;熟練掌握菱形對角線互相垂直且平分的性質(zhì)是解題的關鍵.10、D【解析】【分析】過點D作DH⊥BC,交BC的延長線于點H,連接BD,DE,先證∠DHC=90o,再證四邊形ADEF是平行四邊形,最后利用勾股定理得出結(jié)果.【詳解】過點D作DH⊥BC,交BC的延長線于點H,連接BD,DE,∵四邊形ABCD是平行四邊形,AB=3,∠ADC=60o,∴CD=AB=3,∠DCH=∠ABC=∠ADC=60o,∵DH⊥BC,∴∠DHC=90o,∴∠ADC+∠CDH=90°,∴∠CDH=30°,在Rt△DCH中,CH=CD=,DH=,∴,∵四邊形BCEF是平行四邊形,∴AD=BC=EF,AD∥EF,∴四邊形ADEF是平行四邊形,∴AF∥DE,AF=DE=1,∵AF⊥BE,∴DE⊥BE,∴,∴,故選D.【點睛】本題考查了平行四邊形的判定與性質(zhì),勾股定理,解題的關鍵是熟練運用這些性質(zhì)解決問題.二、填空題1、【解析】【分析】根據(jù)矩形的對角線互相平分且相等可得OA=OD,然后判斷出△AOD是等邊三角形,再根據(jù)勾股定理解答即可.【詳解】解:∵四邊形ABCD是矩形,∴OA=OD=AC=×12=6,∠ADC=90°,∵∠AOD=60°,∴△AOD是等邊三角形,∴AD=OA=6,∴.故答案為:.【點睛】本題考查了矩形的性質(zhì)和勾股定理以及等邊三角形的判定,解題關鍵是根據(jù)矩形的性質(zhì)得出△AOD是等邊三角形.2、20【解析】【分析】連接BD,交AC于O,根據(jù)題意和正方形的性質(zhì)可求得EF=4,AC⊥BD,由即可求解.【詳解】解:如圖,連接BD,交AC于O,∵四邊形ABCD是正方形,AC=10,∴AC=BD=10,AC⊥BD,OA=OC=OB=OD=5,∵AE=CF=3,∴EO=FO=2,∴EF=EO+FO=4,∴故答案為:20.【點睛】本題主要考查了正方形的性質(zhì),熟練掌握正方形的對角線相等且互相垂直平分是解題的關鍵.3、或##或【解析】【分析】分當D落在x軸正半軸時和當D落在x軸負半軸時,兩種情況討論求解即可.【詳解】解:如圖1所示,當D落在x軸正半軸時,∵O是菱形ABCD對角線BD的中點,∴AO⊥DO,∴當D落在x軸正半軸時,A點在y軸正半軸,∴同理可得A、B、C三點均在坐標軸上,且點C在y軸負半軸,∵∠BAD=60°,∴∠OAD=30°,∴,∴,∴點C的坐標為(0,);如圖2所示,當D落在x軸負半軸時,同理可得,∴點C的坐標為(0,);∴綜上所述,點C的坐標為(0,)或(0,),故答案為:(0,)或(0,).【點睛】本題主要考查了菱形的性質(zhì),坐標與圖形,含30度角的直角三角形的性質(zhì),勾股定理,熟練掌握菱形的性質(zhì)是解題的關鍵.4、【解析】【分析】根據(jù)題意可得,陰影部分的面積是正方形的面積的,已知兩個正方形可得到一個陰影部分,則n個這樣的正方形重疊部分即為(n-1)個陰影部分的和.【詳解】解:由題意可得一個陰影部分面積等于正方形面積的,即是,n個這樣的正方形重疊部分(陰影部分)的面積和為:.故答案為:.【點睛】本題考查了正方形的性質(zhì),解題的關鍵是得到n個這樣的正方形重疊部分(陰影部分)的面積和的計算方法,難點是求得一個陰影部分的面積.5、4.8【解析】【分析】由垂線段最短,可得AP⊥BC時,AP有最小值,由菱形的性質(zhì)和勾股定理可求BC的長,由菱形的面積公式可求解.【詳解】設AC與BD的交點為O,∵點P是BC邊上的一動點,∴AP⊥BC時,AP有最小值,∵四邊形ABCD是菱形,∴AC⊥BD,AO=CO=AC=3,BO=DO=BD=4,∴,∵,∴,故答案為:4.8.【點睛】本題考查了菱形的性質(zhì),勾股定理,確定當AP⊥BC時,AP有最小值是本題關鍵.6、【解析】【分析】利用平行四邊形的性質(zhì):鄰角互補,對角相等,即可求得答案.【詳解】解:在平行四邊形ABCD中,、是的鄰角,是的對角,,,故答案為:,,.【點睛】本題主要是考查了平行四邊形的性質(zhì):對角相等,鄰角互補,熟練掌握平行四邊形的性質(zhì),求解決本題的關鍵.7、.【解析】【分析】由AE=DA,點F1是CD的中點,矩形ABCD的面積等于2,結(jié)合矩形的性質(zhì)可得△EF1D和△EAB的面積都等于1,結(jié)合三角形中線的性質(zhì)可得△EF1F2的面積等于,同理可得△EFn﹣1Fn的面積為,△BCFn的面積為22,即可得出結(jié)論.【詳解】∵AE=DA,點F1是CD的中點,矩形ABCD的面積等于2,∴△EF1D和△EAB的面積都等于1,∵點F2是CF1的中點,∴△EF1F2的面積等于,同理可得△EFn﹣1Fn的面積為,∵△BCFn的面積為22,∴△EFnB的面積為2+1﹣12﹣(1).故答案為:.【點睛】本題考查了矩形的性質(zhì),三角形中線的性質(zhì),解題的關鍵是根據(jù)面積找出規(guī)律.8、【解析】【分析】連接AC交EF于G,連接A′G,此時△CGA′的周長最小,最小值=A′G+GC+CA′=GA+GC+CA′=AC+CA′.當CA′最小時,△CGA′的周長最小,求出CA′的最小值即可解決問題.【詳解】解:如圖,連接AC交EF于G,連接A′G,連接EC,由折疊的性質(zhì)可知A′G=GA,此時△A′GC的周長最小,最小值=A′G+GC+CA′=GA+GC+CA′=AC+CA′.∵四邊形ABCD是矩形,∴∠D=90°,AD=BC=4,CD=AB=6,∴AC2,∴△A′CG的周長的最小值+CA′,當CA′最小時,△CGA′的周長最小,∵AE=DE=EA′=2,∴CE2,∵CA′≥EC﹣EA′,∴CA′≥2-2,∴CA′的最小值為2-2,∴△CGA′的周長的最小值為2-2,故答案為:.【點睛】本題考查翻折變換,矩形的性質(zhì),勾股定理,最短路徑問題等知識,解題的關鍵是學會用轉(zhuǎn)化的思想思考問題,屬于中考填空題中的壓軸題.9、【解析】【分析】利用平行四邊形的知識,將的最小值轉(zhuǎn)化為的最小值,再利用勾股定理求出MC的長度,即可求解;【詳解】過點A作且,連接MP,∴四邊形是平行四邊形,∴,將的最小值轉(zhuǎn)化為的最小值,當M、P、C三點共線時,的最小,∵,,∴,在中,;故答案是:.【點睛】本題主要考查了平行線的判定與性質(zhì),勾股定理,準確計算是解題的關鍵.10、5【解析】【分析】直角三角形中,斜邊長為斜邊中線長的2倍,所以求斜邊上中線的長求斜邊長即可.【詳解】解:在直角三角形中,兩直角邊長分別為6和8,則斜邊長==10,∴斜邊中線長為×10=5,故答案為5.【點睛】本題考查了直角三角形斜邊上的中線等于斜邊的一半,勾股定理,根據(jù)勾股定理求得斜邊長是解題的關鍵.三、解答題1、(1)見解析;(2)39【分析】(1)首先根據(jù)CF⊥DE,DF=EF得出CF為DE的中垂線,然后根據(jù)垂直平分線的性質(zhì)得到CD=CE,然后根據(jù)直角三角形斜邊上的中線等于斜邊的一半得到CD=AD,即可證明AD=CE;(2)由(1)得CD=CE=AB=5,由勾股定理求出BC,然后結(jié)合三角形的面積公式進行計算.【詳解】(1)證明:∵DF=EF∴點F為DE的中點又∵CF⊥DE∴CF為DE的中垂線∴CD=CE又∵在Rt△ABC中,∠ACB=90°,CD是斜邊AB上的中線∴CD==AD∴AD=CE(2)解:由(1)得CD=CE==5∴AB=10∴在Rt△ABC中,BC==8∴EB=EC+BC=13∴.【點睛】此題考查了垂直平分線的判定和性質(zhì),直角三角形性質(zhì),三角形面積公式等知識,解題的關鍵是熟練掌握垂直平分線的判定和性質(zhì),直角三角形性質(zhì),三角形面積公式.2、(1)BP=CE,CE⊥BC;(2)仍然成立,見解析;(3)31【分析】(1)連接AC,根據(jù)菱形的性質(zhì)和等邊三角形的性質(zhì)證明△BAP≌△CAE即可證得結(jié)論;(2)(1)中的結(jié)論成立,用(1)中的方法證明△BAP≌△CAE即可;(3)分兩種情形:當點P在BD的延長線上時或點P在線段DB的延長線上時,連接AC交BD于點O,由∠BCE=90°,根據(jù)勾股定理求出CE的長即得到BP的長,再求AO、PO、PD的長及等邊三角形APE的邊長可得結(jié)論.【詳解】解:(1)如圖1,連接AC,延長CE交AD于點H,∵四邊形ABCD是菱形,∴AB=BC,∵∠ABC=60°,∴△ABC是等邊三角形,∴AB=AC,∠BAC=60°;∵△APE是等邊三角形,∴AP=AE,∠PAE=60°,∴∠BAP=∠CAE=60°﹣∠PAC,∴△BAP≌△CAE(SAS),∴BP=CE;∵四邊形ABCD是菱形,∴∠ABP=∠ABC=30°,∴∠ABP=∠ACE=30°,∵∠ACB=60°,∴∠BCE=60°+30°=90°,∴CE⊥BC;故答案為:BP=CE,CE⊥BC;(2)(1)中的結(jié)論:BP=CE,CE⊥AD仍然成立,理由如下:如圖2中,連接AC,設CE與AD交于H,∵菱形ABCD,∠ABC=60°,∴△ABC和△ACD都是等邊三角形,∴AB=AC,∠BAD=120°,∠BAP=120°+∠DAP,∵△APE是等邊三角形,∴AP=AE,∠PAE=60°,∴∠CAE=60°+60°+∠DAP=120°+∠DAP,∴∠BAP=∠CAE,∴△ABP≌△ACE(SAS),∴BP=CE,∠ACE=∠ABD=30°,∴∠DCE=30°,∵∠ADC=60°,∴∠DCE+∠ADC=90°,∴∠CHD=90°,∴CE⊥AD;∴(1)中的結(jié)論:BP=CE,CE⊥AD仍然成立;(3)如圖3中,當點P在BD的延長線上時,連接AC交BD于點O,連接CE,BE,作EF⊥AP于F,∵四邊形ABCD是菱形,∴AC⊥BDBD平分∠ABC,∵∠ABC=60°,AB=2,∴∠ABO=30°,∴AO=AB=,OB=AO=3,∴BD=6,由(2)知CE⊥AD,∵AD∥BC,∴CE⊥BC,∵BE=2,BC=AB=2,∴CE==8,由(2)知BP=CE=8,∴DP=2,∴OP=5,∴AP===2,∵△APE是等邊三角形,∴S△A

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論