




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》專題測(cè)評(píng)考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計(jì)30分)1、如圖,在△ABC中,AC=BC=8,∠BCA=60°,直線AD⊥BC于點(diǎn)D,E是AD上的一個(gè)動(dòng)點(diǎn),連接EC,將線段EC繞點(diǎn)C按逆時(shí)針方向旋轉(zhuǎn)60°得到FC,連接DF,則在點(diǎn)E的運(yùn)動(dòng)過程中,DF的最小值是()A.1 B.1.5 C.2 D.42、下列命題正確的是()A.對(duì)角線相等的四邊形是平行四邊形 B.對(duì)角線相等的四邊形是矩形C.對(duì)角線互相垂直的平行四邊形是菱形 D.對(duì)角線互相垂直且相等的四邊形是正方形3、如圖,在?ABCD中,AD=2AB,F(xiàn)是AD的中點(diǎn),作CE⊥AB于E,在線段AB上,連接EF、CF.則下列結(jié)論:①∠BCD=2∠DCF;②∠ECF=∠CEF;③S△BEC=2S△CEF;④∠DFE=3∠AEF,其中一定正確的是(
)A.②④ B.①②④
C.①②③④
D.②③④4、如圖所示,公路AC、BC互相垂直,點(diǎn)M為公路AB的中點(diǎn),為測(cè)量湖泊兩側(cè)C、M兩點(diǎn)間的距離,若測(cè)得AB的長(zhǎng)為6km,則M、C兩點(diǎn)間的距離為()A.2.5km B.4.5km C.5km D.3km5、如圖,在四邊形中,,,面積為21,的垂直平分線分別交于點(diǎn),若點(diǎn)和點(diǎn)分別是線段和邊上的動(dòng)點(diǎn),則的最小值為()A.5 B.6 C.7 D.86、直角三角形的兩條直角邊分別為5和12,那么這個(gè)三角形的斜邊上的中線長(zhǎng)為()A.6 B.6.5 C.10 D.137、如圖所示,AB=CD,AD=BC,則圖中的全等三角形共有()A.1對(duì) B.2對(duì) C.3對(duì) D.4對(duì)8、如圖,已知平行四邊形ABCD的面積為8,E、F分別是BC、CD的中點(diǎn),則△AEF的面積為()A.2 B.3 C.4 D.59、下列條件中,能判定四邊形是正方形的是()A.對(duì)角線相等的平行四邊形 B.對(duì)角線互相平分且垂直的四邊形C.對(duì)角線互相垂直且相等的四邊形 D.對(duì)角線相等且互相垂直的平行四邊形10、四邊形四條邊長(zhǎng)分別是a,b,c,d,其中a,b為對(duì)邊,且滿足,則這個(gè)四邊形是()A.任意四邊形 B.平行四邊形 C.對(duì)角線相等的四邊形 D.對(duì)角線垂直的四邊形第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計(jì)40分)1、如圖,在長(zhǎng)方形ABCD中,.在DC上找一點(diǎn)E,沿直線AE把折疊,使D點(diǎn)恰好落在BC上,設(shè)這一點(diǎn)為F,若的面積是54,則的面積=______________.2、如圖,矩形ABCD中,AB=4,BC=6,點(diǎn)E為BC的中點(diǎn),將△ABE沿AE翻折至△AFE,連接CF,則CF的長(zhǎng)為___.3、如圖,在矩形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,AB=6,∠DAC=60°,點(diǎn)F在線段AO上從點(diǎn)A至點(diǎn)O運(yùn)動(dòng),連接DF,以DF為邊作等邊三角形DFE,點(diǎn)E和點(diǎn)A分別位于DF兩側(cè),下列結(jié)論:①∠BDE=∠EFC;②ED=EC;③∠ADF=∠ECF;④點(diǎn)E運(yùn)動(dòng)的路程是2,其中正確結(jié)論的序號(hào)為_____.4、如圖,在矩形ABCD中,BC=2,AB=x,點(diǎn)E在邊CD上,且CEx,將BCE沿BE折疊,若點(diǎn)C的對(duì)應(yīng)點(diǎn)落在矩形ABCD的邊上,則x的值為_______.5、在四邊形ABCD中,若AB//CD,BC_____AD,則四邊形ABCD為平行四邊形.6、如圖,已知Rt△ACB,∠ACB=90°,∠ABC=60°,AB=8,點(diǎn)D在CB所在直線上運(yùn)動(dòng),以AD為邊作等邊三角形ADE,則CB=___.在點(diǎn)D運(yùn)動(dòng)過程中,CE的最小值為___.7、如圖,已知在矩形中,,,將沿對(duì)角線AC翻折,點(diǎn)B落在點(diǎn)E處,連接,則的長(zhǎng)為_________.8、如圖,在四邊形中,,分別是的中點(diǎn),分別以為直徑作半圓,這兩個(gè)半圓面積的和為,則的長(zhǎng)為_______.9、如圖,在△ABC中,D,E分別是邊AB,AC的中點(diǎn),∠B=50°.現(xiàn)將△ADE沿DE折疊點(diǎn)A落在三角形所在平面內(nèi)的點(diǎn)為A1,則∠BDA1的度數(shù)為_____.10、如圖,正方形ABCD的面積為18,△ABE是等邊三角形,點(diǎn)E在正方形ABCD內(nèi),在對(duì)角線AC上有一點(diǎn)P,使PD+PE的和最小,則這個(gè)最小值為_____.三、解答題(5小題,每小題6分,共計(jì)30分)1、如圖,?ABCD的對(duì)角線AC,BD相交于點(diǎn)O,點(diǎn)E,點(diǎn)F在線段BD上,且DE=BF.求證:AE∥CF.2、如圖,等腰△ABC中,AB=AC,∠BAC=90°,BE平分∠ABC交AC于E,過C作CD⊥BE于D,(1)如圖1,求證:CD=BE(2)如圖2,過點(diǎn)A作AF⊥BE,寫出AF,BD,CD之間的數(shù)量關(guān)系并說明理由.3、在ABC中,D、E、F分別是AB、AC、BC的中點(diǎn),連接DE、DF.(1)如圖1,若AC=BC,求證:四邊形DECF為菱形;(2)如圖2,過C作CGAB交DE延長(zhǎng)線于點(diǎn)G,連接EF,AG,在不添加任何輔助線的情況下,寫出圖中所有與ADG面積相等的平行四邊形.4、如圖,正方形網(wǎng)格中每個(gè)小正方形的邊長(zhǎng)都是1,每個(gè)小正方形的頂點(diǎn)叫做格點(diǎn).試畫出一個(gè)頂點(diǎn)都在格點(diǎn)上,且面積為10的正方形.5、在長(zhǎng)方形紙片ABCD中,點(diǎn)E是邊CD上的一點(diǎn),將△AED沿AE所在的直線折疊,使點(diǎn)D落在點(diǎn)F處.
(1)如圖1,若點(diǎn)F落在對(duì)角線AC上,且∠BAC=54°,則∠DAE的度數(shù)為________°.(2)如圖2,若點(diǎn)F落在邊BC上,且AB=CD=6,AD=BC=10,求CE的長(zhǎng).(3)如圖3,若點(diǎn)E是CD的中點(diǎn),AF的延長(zhǎng)線交BC于點(diǎn)G,且AB=CD=6,AD=BC=10,求CG的長(zhǎng).-參考答案-一、單選題1、C【解析】【分析】取線段AC的中點(diǎn)G,連接EG,根據(jù)等邊三角形的性質(zhì)以及角的計(jì)算即可得出CD=CG以及∠FCD=∠ECG,由旋轉(zhuǎn)的性質(zhì)可得出EC=FC,由此即可利用全等三角形的判定定理SAS證出△FCD≌△ECG,進(jìn)而即可得出DF=GE,再根據(jù)點(diǎn)G為AC的中點(diǎn),即可得出EG的最小值,此題得解.【詳解】解:取線段AC的中點(diǎn)G,連接EG,如圖所示.∵AC=BC=8,∠BCA=60°,∴△ABC為等邊三角形,且AD為△ABC的對(duì)稱軸,∴CD=CG=AB=4,∠ACD=60°,∵∠ECF=60°,∴∠FCD=∠ECG,在△FCD和△ECG中,,∴△FCD≌△ECG(SAS),∴DF=GE.當(dāng)EG∥BC時(shí),EG最小,∵點(diǎn)G為AC的中點(diǎn),∴此時(shí)EG=DF=CD=BC=2.故選:C.【點(diǎn)睛】本題考查了等邊三角形的性質(zhì)以及全等三角形的判定與性質(zhì),三角形中位線的性質(zhì),解題的關(guān)鍵是通過全等三角形的性質(zhì)找出DF=GE,本題屬于中檔題,難度不大,解決該題型題目時(shí),根據(jù)全等三角形的性質(zhì)找出相等的邊是關(guān)鍵.2、C【解析】【分析】根據(jù)平行四邊形、矩形、菱形以及正方形的判定方法,對(duì)選項(xiàng)逐個(gè)判斷即可.【詳解】解:A、對(duì)角線互相平分的四邊形是平行四邊形,選項(xiàng)錯(cuò)誤,不符合題意;B、對(duì)角線相等平行四邊形是矩形,選項(xiàng)錯(cuò)誤,不符合題意;C、對(duì)角線互相垂直的平行四邊形是菱形,選項(xiàng)正確,符合題意;D、對(duì)角線互相垂直且相等的平行四邊形是正方形,選項(xiàng)錯(cuò)誤,不符合題意;故選C【點(diǎn)睛】此題考查了平行四邊形、矩形、菱形以及正方形的判定,掌握它們的判定方法是解題的關(guān)鍵.3、B【解析】【分析】根據(jù)易得DF=CD,由平行四邊形的性質(zhì)AD∥BC即可對(duì)①作出判斷;延長(zhǎng)EF,交CD延長(zhǎng)線于M,可證明△AEF≌△DMF,可得EF=FM,由直角三角形斜邊上中線的性質(zhì)即可對(duì)②作出判斷;由△AEF≌△DMF可得這兩個(gè)三角形的面積相等,再由MC>BE易得S△BEC<2S△EFC,從而③是錯(cuò)誤的;設(shè)∠FEC=x,由已知及三角形內(nèi)角和可分別計(jì)算出∠DFE及∠AEF,從而可判斷④正確與否.【詳解】①∵F是AD的中點(diǎn),∴AF=FD,∵在?ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠BCD=2∠DCF,故①正確;②延長(zhǎng)EF,交CD延長(zhǎng)線于M,∵四邊形ABCD是平行四邊形,∴AB∥CD,∴∠A=∠MDF,∵F為AD中點(diǎn),∴AF=FD,在△AEF和△DFM中,,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=FE,∴∠ECF=∠CEF,故②正確;③∵EF=FM,∴S△EFC=S△CFM,∵M(jìn)C>BE,,∴S△BEC<2S△EFC,故S△BEC=2S△CEF,故③錯(cuò)誤;④設(shè)∠FEC=x,則∠FCE=x,∴∠DCF=∠DFC=90°﹣x,∴∠EFC=180°﹣2x,∴∠EFD=90°﹣x+180°﹣2x=270°﹣3x,∵∠AEF=90°﹣x,∴∠DFE=3∠AEF,故④正確,故選:B.【點(diǎn)睛】本題考查了平行四邊形的性質(zhì),全等三角形的判定與性質(zhì),直角三角形斜邊上中線的性質(zhì),三角形的面積等知識(shí),構(gòu)造輔助線證明三角形全等是本題的關(guān)鍵和難點(diǎn).4、D【解析】【詳解】根據(jù)直角三角形斜邊上的中線性質(zhì)得出CM=AB,即可求出CM.【解答】解:∵公路AC,BC互相垂直,∴∠ACB=90°,∵M(jìn)為AB的中點(diǎn),∴CM=AB,∵AB=6km,∴CM=3km,即M,C兩點(diǎn)間的距離為3km,故選:D.【點(diǎn)睛】本題考查了直角三角形的性質(zhì),解題關(guān)鍵是掌握直角三角形斜邊上的中線的性質(zhì):直角三角形斜邊上的中線等于斜邊的一半.5、C【解析】【分析】連接AQ,過點(diǎn)D作,根據(jù)垂直平分線的性質(zhì)得到,再根據(jù)計(jì)算即可;【詳解】連接AQ,過點(diǎn)D作,∵,面積為21,∴,∴,∵M(jìn)N垂直平分AB,∴,∴,∴當(dāng)AQ的值最小時(shí),的值最小,根據(jù)垂線段最短可知,當(dāng)時(shí),AQ的值最小,∵,∴,∴的值最小值為7;故選C.【點(diǎn)睛】本題主要考查了四邊形綜合,垂直平分線的性質(zhì),準(zhǔn)確分析計(jì)算是解題的關(guān)鍵.6、B【解析】【分析】根據(jù)勾股定理可求得直角三角形斜邊的長(zhǎng),再根據(jù)直角三角形斜邊上的中線等于斜邊的一半即可求解.【詳解】解:∵直角三角形兩直角邊長(zhǎng)為5和12,∴斜邊=,∴此直角三角形斜邊上的中線的長(zhǎng)==6.5.故選:B.【點(diǎn)睛】本題主要考查勾股定理及直角三角形斜邊中線定理,熟練掌握勾股定理及直角三角形斜邊中線定理是解題的關(guān)鍵.7、D【解析】【分析】根據(jù)平行四邊形的判定與性質(zhì),求解即可.【詳解】解:∵AB=CD,AD=BC∴四邊形為平行四邊形∴,,,∴、又∵,∴、∴圖中的全等三角形共有4對(duì)故選:D【點(diǎn)睛】此題考查了平行四邊形的判定與性質(zhì),全等三角形的判定與性質(zhì),解題的關(guān)鍵是掌握平行四邊形的判定與性質(zhì).8、B【解析】【分析】連接AC,由平行四邊形的性質(zhì)可得,再由E、F分別是BC,CD的中點(diǎn),即可得到,,,由此求解即可.【詳解】解:如圖所示,連接AC,∵四邊形ABCD是平行四邊形,∴AD∥BC,AD=BC,AB=CD,AB∥CD,∴∵E、F分別是BC,CD的中點(diǎn),∴,,,∴,故選B.【點(diǎn)睛】本題主要考查了平行四邊形的性質(zhì),與三角形中線有關(guān)的面積問題,解題的關(guān)鍵在于能夠熟練掌握平行四邊形的性質(zhì).9、D【解析】【分析】根據(jù)正方形的判定定理進(jìn)行判斷即可.【詳解】解:A、對(duì)角線相等的平行四邊形是矩形,不符合題意;B、對(duì)角線互相平分且垂直的四邊形是菱形,不符合題意;對(duì)角線相等且互相垂直的平行四邊形是正方形,故C選項(xiàng)不符合題意;D選項(xiàng)符合題意;故選:D.【點(diǎn)睛】本題考查了正方形的判定,熟知正方形的判定定理是解本題的關(guān)鍵.10、B【解析】【分析】根據(jù)完全平方公式分解因式得到a=b,c=d,利用邊的位置關(guān)系得到該四邊形的形狀.【詳解】解:,,,,∴a=b,c=d,∵四邊形四條邊長(zhǎng)分別是a,b,c,d,其中a,b為對(duì)邊,∴c、d是對(duì)邊,∴該四邊形是平行四邊形,故選:B.【點(diǎn)睛】此題考查了完全平方公式分解因式,平行四邊形的判定方法,熟練掌握完全平方公式分解因式是解題的關(guān)鍵.二、填空題1、6【解析】【分析】根據(jù)三角形的面積求出BF,利用勾股定理列式求出AF,再根據(jù)翻折變換的性質(zhì)可得AD=AF,然后求出CF,設(shè)DE=x,表示出EF、EC,然后在Rt△CEF中,利用勾股定理列方程求解和三角形的面積公式解答即可.【詳解】解:∵四邊形ABCD是矩形∴AB=CD=9,BC=AD∵?AB?BF=54,∴BF=12.在Rt△ABF中,AB=9,BF=12,由勾股定理得,.∴BC=AD=AF=15,∴CF=BC-BF=15-12=3.設(shè)DE=x,則CE=9-x,EF=DE=x.則x2=(9-x)2+32,解得,x=5.∴DE=5.∴EC=DC-DE=9-5=4.∴△FCE的面積=×4×3=6.【點(diǎn)睛】本題考查了翻折變換的性質(zhì),矩形的性質(zhì),三角形的面積,勾股定理,熟記各性質(zhì)并利用勾股定理列出方程是解題的關(guān)鍵.2、3.6【解析】【分析】連接BF,根據(jù)三角形的面積公式求出BH,得到BF,根據(jù)直角三角形的判定得到∠BFC=90°,根據(jù)勾股定理求出答案.【詳解】解:連接BF,∵BC=6,點(diǎn)E為BC的中點(diǎn),∴BE=3,又∵AB=4,∴AE=,∴BH=,則BF=,∵點(diǎn)E為BC的中點(diǎn),∴BE=EC,∵△ABE沿AE翻折至△AFE,∴FE=BE,∴FE=BE=EC,∴∠CBF=∠EFB,∠BCF=∠EFC,∴2∠EFB+2∠EFC=180°,∴∠EFB+∠EFC=90°∴∠BFC=90°,∴CF=.故答案為:3.6.【點(diǎn)睛】本題考查的是翻折變換的性質(zhì)和矩形的性質(zhì),掌握折疊是一種對(duì)稱變換,它屬于軸對(duì)稱,折疊前后圖形的形狀和大小不變,位置變化,對(duì)應(yīng)邊和對(duì)應(yīng)角相等是解題的關(guān)鍵.3、①②③④【解析】【分析】①根據(jù)∠DAC=60°,OD=OA,得出△OAD為等邊三角形,再由△DFE為等邊三角形,得∠DOA=∠DEF=60°,再利用角的等量代換,即可得出結(jié)論①正確;②連接OE,利用SAS證明△DAF≌△DOE,再證明△ODE≌△OCE,即可得出結(jié)論②正確;③通過等量代換即可得出結(jié)論③正確;④延長(zhǎng)OE至,使=OD,連接,通過△DAF≌△DOE,∠DOE=60°,可分析得出點(diǎn)F在線段AO上從點(diǎn)A至點(diǎn)O運(yùn)動(dòng)時(shí),點(diǎn)E從點(diǎn)O沿線段運(yùn)動(dòng)到,從而得出結(jié)論④正確;【詳解】解:①設(shè)與的交點(diǎn)為如圖所示:∵∠DAC=60°,OD=OA,∴△OAD為等邊三角形,∴∠DOA=∠DAO=∠ADO=60°,∵△DFE為等邊三角形,∴∠DEF=60°,∴∠DOA=∠DEF=60°,∴,∴故結(jié)論①正確;②如圖,連接OE,在△DAF和△DOE中,,∴△DAF≌△DOE(SAS),∴∠DOE=∠DAF=60°,∵∠COD=180°﹣∠AOD=120°,∴∠COE=∠COD﹣∠DOE=120°﹣60°=60°,∴∠COE=∠DOE,在△ODE和△OCE中,,∴△ODE≌△OCE(SAS),∴ED=EC,∠OCE=∠ODE,故結(jié)論②正確;③∵∠ODE=∠ADF,∴∠ADF=∠OCE,即∠ADF=∠ECF,故結(jié)論③正確;④如圖,延長(zhǎng)OE至,使=OD,連接,∵△DAF≌△DOE,∠DOE=60°,∴點(diǎn)F在線段AO上從點(diǎn)A至點(diǎn)O運(yùn)動(dòng)時(shí),點(diǎn)E從點(diǎn)O沿線段運(yùn)動(dòng)到,∵∴設(shè),則∴在中,即解得:∴=OD=AD=,∴點(diǎn)E運(yùn)動(dòng)的路程是,故結(jié)論④正確;故答案為:①②③④.【點(diǎn)睛】本題主要考查了幾何綜合,其中涉及到了等邊三角形判定及性質(zhì),相似三角形的判定及性質(zhì),全等三角形的性質(zhì)及判定,三角函數(shù)的比值關(guān)系,矩形的性質(zhì)等知識(shí)點(diǎn),熟悉掌握幾何圖形的性質(zhì)合理做出輔助線是解題的關(guān)鍵.4、或【解析】【分析】分兩種情況進(jìn)行解答,即當(dāng)點(diǎn)落在邊上和點(diǎn)落在邊上,分別畫出相應(yīng)的圖形,利用翻折變換的性質(zhì),勾股定理進(jìn)行計(jì)算即可.【詳解】解:如圖1,當(dāng)點(diǎn)落在邊上,由翻折變換可知,,,在△中,由勾股定理得,,,在中,由勾股定理得,,即,解得,或(舍去),如圖2,當(dāng)點(diǎn)落在邊上,由翻折變換可知,四邊形是正方形,,,故答案為:或.【點(diǎn)睛】本題考查翻折變換,解題的關(guān)鍵是掌握翻折變換的性質(zhì)以及勾股定理是解決問題的前提.5、【解析】【分析】根據(jù)平行四邊形的判定:兩組對(duì)邊分別平行的四邊形是平行四邊形即可解決問題.【詳解】解:根據(jù)兩組對(duì)邊分別平行的四邊形是平行四邊形可知:∵AB//CD,BC//AD,∴四邊形ABCD為平行四邊形.故答案為://.【點(diǎn)睛】本題考查了平行四邊形的判定,熟練掌握平行四邊形的判定方法是解題的關(guān)鍵.6、4【解析】【分析】以AC為邊作正△AFC,并作FH⊥AC,垂足為點(diǎn)H,連接FD、CE,由直角三角形可求BC=4,,由“SAS”可證△FAD≌△CAE,得CE=FD,CE最小即是FD最小,此時(shí),故CE的最小值是.【詳解】解:以AC為邊作正△AFC,并作FH⊥AC,垂足為點(diǎn)H,連接FD、CE,如圖:在Rt△ACB中,∠ACB=90°,∠ABC=60°,∴∠BAC=30°,∴,∴∵△AFC,△ADE都是等邊三角形,∴AD=AE,AF=AC,∠DAE=∠FAC=60°,∴∠FAD+∠DAC=∠CAE+∠DAC,即∠FAD=∠CAE,在△FAD和△CAE中,,∴△FAD≌△CAE(SAS),∴CE=FD,∴CE最小即是FD最小,∴當(dāng)FD⊥BD時(shí),F(xiàn)D最小,此時(shí)∠FDC=∠DCH=∠CHF=90°,∴四邊形FDCH是矩形,∴,∴CE的最小值是.故答案為:4,.【點(diǎn)睛】本題主要考查了等邊三角形的性質(zhì),全等三角形的性質(zhì)與判定,矩形的性質(zhì)與判定,含30度角的直角三角形的性質(zhì),勾股定理等等,解題的關(guān)鍵在于能夠熟練掌握等邊三角形的性質(zhì).7、【解析】【分析】過點(diǎn)E作EF⊥AD于點(diǎn)F,先證明CG=AG,再利用勾股定理列方程,求出AG的值,結(jié)合三角形的面積法和勾股定理,即可求解.【詳解】解:如圖所示:過點(diǎn)E作EF⊥AD于點(diǎn)F,有折疊的性質(zhì)可知:∠ACB=∠ACE,∵AD∥BC,∴∠ACB=∠CAD,∴∠CAD=∠ACE,∴CG=AG,設(shè)CG=x,則DG=8-x,∵在中,,∴x=5,∴AG=5,在中,EG=,EF⊥AD,∠AEG=90°,∴,∵在中,,、∴DF=8-=,∴在中,,故答案是:.【點(diǎn)睛】本題主要考查矩形的性質(zhì),折疊的性質(zhì),勾股定理,等腰三角形的判定定理,添加輔助線構(gòu)造直角三角形,是解題的關(guān)鍵.8、4【解析】【分析】根據(jù)題意連接BD,取BD的中點(diǎn)M,連接EM、FM,EM交BC于N,根據(jù)三角形的中位線定理推出EM=AB,F(xiàn)M=CD,EM∥AB,F(xiàn)M∥CD,推出∠ABC=∠ENC,∠MFN=∠C,求出∠EMF=90°,根據(jù)勾股定理求出ME2+FM2=EF2,根據(jù)圓的面積公式求出陰影部分的面積即可.【詳解】解:連接BD,取BD的中點(diǎn)M,連接EM、FM,延長(zhǎng)EM交BC于N,∵∠ABC+∠DCB=90°,∵E、F、M分別是AD、BC、BD的中點(diǎn),∴EM=AB,F(xiàn)M=CD,EM∥AB,F(xiàn)M∥CD,∴∠ABC=∠ENC,∠MFN=∠C,∴∠MNF+∠MFN=90°,∴∠NMF=180°-90°=90°,∴∠EMF=90°,由勾股定理得:ME2+FM2=EF2,∴陰影部分的面積是:π(ME2+FM2)=EF2π=8π,∴EF=4.故答案為:4.【點(diǎn)睛】本題主要考查對(duì)勾股定理,三角形的內(nèi)角和定理,多邊形的內(nèi)角和定理,三角形的中位線定理,圓的面積,平行線的性質(zhì),面積與等積變形等知識(shí)點(diǎn)的理解和掌握,能正確作輔助線并求出ME2+FM2的值是解答此題的關(guān)鍵.9、80°【解析】【分析】由翻折的性質(zhì)得∠ADE=∠A1DE,由中位線的性質(zhì)得DE//BC,由平行線的性質(zhì)得∠ADE=∠B=50°,即可解決問題.【詳解】解:由題意得:∠ADE=∠A1DE;∵D、E分別是邊AB、AC的中點(diǎn),∴DE//BC,∴∠ADE=∠B=∠A1DE=50°,∴∠A1DA=100°,∴∠BDA1=180°?100°=80°.故答案為:80°.【點(diǎn)睛】本題主要考查了翻折變換及其應(yīng)用問題;同時(shí)還考查了三角形的中位線定理等幾何知識(shí)點(diǎn).熟練掌握各性質(zhì)是解題的關(guān)鍵.10、【解析】【分析】由正方形的對(duì)稱性可知,PB=PD,當(dāng)B、P、E共線時(shí)PD+PE最小,求出BE即可.【詳解】解:∵正方形中B與D關(guān)于AC對(duì)稱,∴PB=PD,∴PD+PE=PB+PE=BE,此時(shí)PD+PE最小,∵正方形ABCD的面積為18,△ABE是等邊三角形,∴BE=3,∴PD+PE最小值是3,故答案為:3.【點(diǎn)睛】本題考查軸對(duì)稱求最短距離,熟練掌握正方形的性質(zhì)是解題的關(guān)鍵.三、解答題1、見解析【分析】首先根據(jù)平行四邊形的性質(zhì)推出AD=CB,AD∥BC,得到∠ADE=∠CBF,從而證明△ADE≌△CBF,得到∠AED=∠CFB,即可證明結(jié)論.【詳解】證:∵四邊形ABCD是平行四邊形,∴AD=CB,AD∥BC,∴∠ADE=∠CBF,在△ADE和△CBF中,∴△ADE≌△CBF(SAS),∴∠AED=∠CFB,∴AE∥CF.【點(diǎn)睛】本題考查平行四邊形的性質(zhì),以及全等三角形的判定與性質(zhì)等,掌握平行四邊形的基本性質(zhì),準(zhǔn)確證明全等三角形并利用其性質(zhì)是解題關(guān)鍵.2、(1)證明見解析;(2)BD=CD+2AF,理由見解析【分析】(1)延長(zhǎng)BA與CD的延長(zhǎng)線交于點(diǎn)G,先證明△ABE≌△ACG得到BE=CG,由BD是∠ABC的角平分線,得到∠GBD=∠CBD,即可證明△BDG≌△BDC得到CD=GD,則;(2)如圖所示,連接AD,取BE中點(diǎn)H,連接AH,由直角三角形斜邊上的中線等于斜邊的一半可得,,則,再由∠BAC=90°,AB=AC,得到∠ABC=45°,根據(jù)BD平分∠ABC,即可推出∠AHF=∠ABH+∠BAH=45°,從而得到AF=HF,則DH=2AF,由此即可推出BD=BH+HD=BH+2AF=CD+2AF.【詳解】解:(1)如圖所示,延長(zhǎng)BA與CD的延長(zhǎng)線交于點(diǎn)G,∵∠BAC=90°,∴∠CAG=90°,∵CD⊥BE,∴∠EDC=∠GDB=∠BAE=90°,又∵∠AEB=∠DEC,∴∠ABE=∠DCE,在△ABE和△ACG中,,∴△ABE≌△ACG(ASA),∴BE=CG,∵BD是∠ABC的角平分線,∴∠GBD=∠CBD,在△BDG和△BDC中,,∴△BDG≌△BDC(ASA),∴CD=GD,∴;(2)BD=CD+2AF,理由如下:如圖所示,連接AD,取BE中點(diǎn)H,連接AH,由(1)得CD=GD,,∵△BAE和△CAG都是直角三角形,H為BE中點(diǎn),D為CG中點(diǎn),∴,,∴,∴∠ABH=∠BAH,∵∠BAC=90°,AB=AC,∴∠ABC=45°,又∵BD平分∠ABC,∴∠ABH=∠BAH=22.5°,∴∠AHF=∠ABH+∠BAH=45°,∵AF⊥DH,∴HF=DF,∠AFH=90°,∴∠HAF=45°,∴AF=HF,∴DH=2AF,∴BD=BH+HD=BH+2AF=CD+2AF.【點(diǎn)睛】.本題主要考查了全等三角形的性質(zhì)與判定,角平分線的性質(zhì),等腰三角形的性質(zhì)與判定,直角三角形斜邊上的中線,解題的關(guān)鍵在于能夠熟練掌握全等三角形的性質(zhì)與判定條件.3、(1)見解析;(2)DECF,DEFB,EGCF,AEFD【分析】(1)根據(jù)鄰邊相等的平行四邊形是菱形即可證明;(2)利用等高模型即可解決問題.【詳解】解:(1)∵D、E、F分別是AB、AC、BC的中點(diǎn),∴DE、DF分別是△ABC中BC邊、AC邊上的中位線,∴DE∥BC,DE=BC,DF∥AC,DF=AC,∵DE∥FC,DF∥EC,∴四邊形DECF為平行四邊形,又∵AC=B
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 安全培訓(xùn)師資課件缺失問題
- 南京考安全員試題題庫(kù)及答案解析
- 安全監(jiān)控工國(guó)家題庫(kù)及答案解析
- 茅臺(tái)酒店安全培訓(xùn)試題庫(kù)及答案解析
- 鐵嶺建筑安全員考試題庫(kù)及答案解析
- 安全培訓(xùn)師的師德課件
- 樣品管理員崗前考試題及答案解析
- 編制安全知識(shí)題庫(kù)目的及答案解析
- 用電安全知識(shí)測(cè)試題及答案解析
- 西藏昌都市會(huì)計(jì)從業(yè)考試及答案解析
- 迪爾凱姆社會(huì)學(xué)主義的巨擎匯總課件
- 家庭經(jīng)濟(jì)困難學(xué)生認(rèn)定申請(qǐng)表
- 血栓性血小板減少性紫癜ttp匯編課件
- 閥門安裝及閥門安裝施工方案
- 大學(xué)數(shù)學(xué)《實(shí)變函數(shù)》電子教案
- YY/T 0640-2008無源外科植入物通用要求
- GB/T 29531-2013泵的振動(dòng)測(cè)量與評(píng)價(jià)方法
- GB/T 2637-2016安瓿
- 循環(huán)系統(tǒng)查體培訓(xùn)課件
- 數(shù)軸上的動(dòng)點(diǎn)問題課件
- 省級(jí)公開課(一等獎(jiǎng))雨巷-戴望舒課件
評(píng)論
0/150
提交評(píng)論