2025山東省棲霞市中考數(shù)學(xué)通關(guān)題庫及答案詳解(名校卷)_第1頁
2025山東省棲霞市中考數(shù)學(xué)通關(guān)題庫及答案詳解(名校卷)_第2頁
2025山東省棲霞市中考數(shù)學(xué)通關(guān)題庫及答案詳解(名校卷)_第3頁
2025山東省棲霞市中考數(shù)學(xué)通關(guān)題庫及答案詳解(名校卷)_第4頁
2025山東省棲霞市中考數(shù)學(xué)通關(guān)題庫及答案詳解(名校卷)_第5頁
已閱讀5頁,還剩31頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

山東省棲霞市中考數(shù)學(xué)通關(guān)題庫考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、如圖,DC是⊙O的直徑,弦AB⊥CD于M,則下列結(jié)論不一定成立的是()A.AM=BM B.CM=DM C. D.2、如圖,,是上直徑兩側(cè)的兩點.設(shè),則(

)A. B. C. D.3、三孔橋橫截面的三個孔都呈拋物線形,兩小孔形狀、大小完全相同.當水面剛好淹沒小孔時,大孔水面寬度為10米,孔頂離水面1.5米;當水位下降,大孔水面寬度為14米時,單個小孔的水面寬度為4米,若大孔水面寬度為20米,則單個小孔的水面寬度為()A.4米 B.5米 C.2米 D.7米4、如圖,PA,PB是⊙O的切線,A,B為切點,PA=4,則PB的長度為()A.3 B.4 C.5 D.65、下列各式中表示二次函數(shù)的是()A.y=x2+ B.y=2﹣x2C.y= D.y=(x﹣1)2﹣x2二、多選題(5小題,每小題3分,共計15分)1、如圖,在中,為直徑,,點D為弦的中點,點E為上任意一點,則的大小不可能是(

)A. B. C. D.2、下列方程中是一元二次方程的有(

)A.B.C.D.E.F.3、如圖,O是正△ABC內(nèi)一點,OA=3,OB=4,OC=5,將線段BO以點B為旋轉(zhuǎn)中心逆時針旋轉(zhuǎn)60°得到線段BO′,下列結(jié)論中正確的結(jié)論是()A.△BO′A可以由△BOC繞點B逆時針旋轉(zhuǎn)60°得到B.點O與O′的距離為4C.∠AOB=150°D.S四邊形AOBO′=6+3E.S△AOC+S△AOB=6+4、二次函數(shù)(,,為常數(shù),)的部分圖象如圖所示,圖象頂點的坐標為,與軸的一個交點在點和點之間,給出的四個結(jié)論中正確的有(

)A. B.C. D.時,方程有解5、已知A、B兩點的坐標分別是(-2,3)和(2,3),則下面四個結(jié)論正確的有(

)A.A、B關(guān)于x軸對稱; B.A、B關(guān)于y軸對稱;C.A、B關(guān)于原點對稱; D.若A、B之間的距離為4第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、如圖,正方形ABCD的邊長為1,⊙O經(jīng)過點C,CM為⊙O的直徑,且CM=1.過點M作⊙O的切線分別交邊AB,AD于點G,H.BD與CG,CH分別交于點E,F(xiàn),⊙O繞點C在平面內(nèi)旋轉(zhuǎn)(始終保持圓心O在正方形ABCD內(nèi)部).給出下列四個結(jié)論:①HD=2BG;②∠GCH=45°;③H,F(xiàn),E,G四點在同一個圓上;④四邊形CGAH面積的最大值為2.其中正確的結(jié)論有_____(填寫所有正確結(jié)論的序號).2、將拋物線向上平移()個單位長度,<k<,平移后的拋物線與雙曲線y=(x>0)交于點P(p,q),M(1+,n),則下列結(jié)論正確的是__________.(寫出所有正確結(jié)論的序號)①0<p<1-;

②1-<p<1;

③q<n;

④q>2k-k.3、如圖是拋物線型拱橋,當拱頂離水面2m時,水面寬4m,水面下降2m,水面寬度增加______m.4、在平面直角坐標系中,點關(guān)于原點對稱的點的坐標是______.5、若函數(shù)圖像與x軸的兩個交點坐標為和,則__________.四、簡答題(2小題,每小題10分,共計20分)1、(1)計算:.(2)解方程:.2、如圖,在平面直角坐標系中,O為坐標原點,點A坐標為(3,0),四邊形OABC為平行四邊形,反比例函數(shù)y=(x>0)的圖象經(jīng)過點C,與邊AB交于點D,若OC=2,tan∠AOC=1.(1)求反比例函數(shù)解析式;(2)點P(a,0)是x軸上一動點,求|PC-PD|最大時a的值;(3)連接CA,在反比例函數(shù)圖象上是否存在點M,平面內(nèi)是否存在點N,使得四邊形CAMN為矩形,若存在,請直接寫出點M的坐標;若不存在,請說明理由.五、解答題(4小題,每小題10分,共計40分)1、電影《長津湖》以抗美援朝戰(zhàn)爭第二次戰(zhàn)役中的長津湖戰(zhàn)役為背景,講述71年前,中國人民志愿軍赴朝作戰(zhàn),在極寒嚴酷環(huán)境下,東線作戰(zhàn)部隊憑著鋼鐵意志和英勇無畏的戰(zhàn)斗精神一路追擊,奮勇殺敵的真實歷史.為紀念歷史,緬懷先烈,我校團委將電影中的四位歷史英雄人物頭像制成編號為A、B、C、D的四張卡片(除編號和頭像外其余完全相同),活動時學(xué)生根據(jù)所抽取的卡片來講述他們在影片中波瀾壯闊、可歌可泣的歷史事跡.規(guī)則如下:先將四張卡片背面朝上,洗勻放好,小強從中隨機抽取一張,然后放回并洗勻,小葉再從中隨機抽取一張.請用列表或畫樹狀圖的方法求小強和小葉抽到的兩張卡片恰好是同一英雄人物的概率.2、如圖1,在等腰直角三角形中,.點,分別為,的中點,為線段上一動點(不與點,重合),將線段繞點逆時針方向旋轉(zhuǎn)得到,連接,.(1)證明:;(2)如圖2,連接,,交于點.①證明:在點的運動過程中,總有;②若,當?shù)拈L度為多少時,為等腰三角形?3、水果批發(fā)市場有一種高檔水果,如果每千克盈利(毛利)10元,每天可售出600kg.經(jīng)市場調(diào)查發(fā)現(xiàn),在進貨價不變的情況下,若每千克漲價1元,日銷量將減少20kg.(1)若以每千克能盈利17元的單價出售,求每天的總毛利潤為多少元;(2)現(xiàn)市場要保證每天總毛利潤為7500元,同時又要使顧客得到實惠,求每千克應(yīng)漲價多少元;(3)現(xiàn)需按毛利潤的10%繳納各種稅費,人工費每日按銷售量每千克支出1.5元,水電房租費每日300元.若每天剩下的總純利潤要達到6000元,求每千克應(yīng)漲價多少元.4、如圖,和中,,,,連接,點M,N,P分別是的中點.(1)請你判斷的形狀,并證明你的結(jié)論.(2)將繞點A旋轉(zhuǎn),若,請直接寫出周長的最大值與最小值.-參考答案-一、單選題1、B【分析】根據(jù)垂徑定理“垂直于弦的直徑平分這條弦,并且平分弦所對的兩條弧”進行判斷即可得.【詳解】解:∵弦AB⊥CD,CD過圓心O,∴AM=BM,,,即選項A、C、D選項說法正確,不符合題意,當根據(jù)已知條件得CM和DM不一定相等,故選B.【點睛】本題考查了垂徑定理,解題的關(guān)鍵是掌握垂徑定理.2、D【解析】【分析】先利用直徑所對的圓周角是直角得到∠ACB=90°,從而求出∠BAC,再利用同弧所對的圓周角相等即可求出∠BDC.【詳解】解:∵C,D是⊙O上直徑AB兩側(cè)的兩點,∴∠ACB=90°,∵∠ABC=25°,∴∠BAC=90°-25°=65°,∴∠BDC=∠BAC=65°,故選:D.【考點】本題考查了圓周角定理的推論,即直徑所對的圓周角是90°和同弧或等弧所對的圓周角相等,解決本題的關(guān)鍵是牢記相關(guān)概念與推論,本題蘊含了屬性結(jié)合的思想方法.3、B【解析】【分析】根據(jù)題意,可以畫出相應(yīng)的拋物線,然后即可得到大孔所在拋物線解析式,再求出頂點為A的小孔所在拋物線的解析式,將x=﹣10代入可求解.【詳解】解:如圖,建立如圖所示的平面直角坐標系,由題意可得MN=4,EF=14,BC=10,DO=,設(shè)大孔所在拋物線解析式為y=ax2+,∵BC=10,∴點B(﹣5,0),∴0=a×(﹣5)2+,∴a=-,∴大孔所在拋物線解析式為y=-x2+,設(shè)點A(b,0),則設(shè)頂點為A的小孔所在拋物線的解析式為y=m(x﹣b)2,∵EF=14,∴點E的橫坐標為-7,∴點E坐標為(-7,-),

∴-=m(x﹣b)2,∴x1=+b,x2=-+b,∴MN=4,∴|+b-(-+b)|=4∴m=-,∴頂點為A的小孔所在拋物線的解析式為y=-(x﹣b)2,∵大孔水面寬度為20米,∴當x=-10時,y=-,∴-=-(x﹣b)2,∴x1=+b,x2=-+b,∴單個小孔的水面寬度=|(+b)-(-+b)|=5(米),故選:B.【考點】本題考查二次函數(shù)的應(yīng)用,解答本題的關(guān)鍵是明確題意,利用二次函數(shù)的性質(zhì)和數(shù)形結(jié)合的思想解答.4、B【分析】由切線的性質(zhì)可推出,.再根據(jù)直角三角形全等的判定條件“HL”,即可證明,即得出.【詳解】∵PA,PB是⊙O的切線,A,B為切點,∴,,∴在和中,,∴,∴.故選:B【點睛】本題考查切線的性質(zhì),三角形全等的判定和性質(zhì).熟練掌握切線的性質(zhì)是解答本題的關(guān)鍵.5、B【解析】【分析】利用二次函數(shù)的定義逐項判斷即可.【詳解】解:A、y=x2+,含有分式,不是二次函數(shù),故此選項錯誤;B、y=2﹣x2,是二次函數(shù),故此選項正確;C、y=,含有分式,不是二次函數(shù),故此選項錯誤;D、y=(x﹣1)2﹣x2=﹣2x+1,是一次函數(shù),故此選項錯誤.故選:B.【考點】本題考查了二次函數(shù)的概念,屬于應(yīng)知應(yīng)會題型,熟知二次函數(shù)的定義是解題關(guān)鍵.二、多選題1、ACD【解析】【分析】延長ED交⊙O于N,連接OD,并延長交⊙O于M,根據(jù)已知條件知的度數(shù)是80°,根據(jù)點D為弦AC的中點得出,求出、的度數(shù)=40°,即可求出40°<的度數(shù)<80°,再得出答案即可.【詳解】解:延長ED交⊙O于N,連接OD,并延長交⊙O于M,∵∠AOC=80°,∴的度數(shù)是80°,∵點D為弦AC的中點,OA=OC,∴∠AOD=∠COD,∴,即M為的中點,∴、的度數(shù)都是×80°=40°,∵>,∴40°<的度數(shù)<80°,∴20°<∠CED<40°,∴選項ACD符合題意;選項B不符合題意;故選:ACD.【考點】本題考查了圓心角、弧、弦之間的關(guān)系,圓周角定理,等腰三角形的性質(zhì)等知識點,能求出的范圍是解此題的關(guān)鍵.2、BCD【解析】【分析】根據(jù)一元二次方程的定義對6個選項逐一進行分析.【詳解】A中最高次數(shù)是3不是2,故本選項錯誤;B符合一元二次方程的定義,故本選項正確;C原式可化為4x2—=0,符合一元二次方程的定義,故本選項正確;D原式可化為2x2十x-1=0,符合一元二次方程的定義,故本選項正確;E原式可化為2x+1=0,不符合一元二次方程的定義,故本選項錯誤;Fax2+bx+c=0,只有在滿足a≠0的條件下才是一元二次方程,故本選項錯誤.故答案為:BCD【考點】本題考查了一元二次方程的概念,只有一個未知數(shù)且未知數(shù)最高次數(shù)為2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0)特別要注意a≠0的條件,這是在做題過程中容易忽視的知識點.3、ABCE【解析】【分析】證明可判斷證明是等邊三角形,可判斷利用是等邊三角形,證明可判斷由是等邊三角形,可得四邊形的面積,可判斷如圖,將繞點逆時針旋轉(zhuǎn)與重合,對應(yīng),同理可得:是邊長為的等邊三角形,是邊長為的直角三角形,從而可判斷【詳解】解:由題意得:為等邊三角形,△BO′A可以由△BOC繞點B逆時針旋轉(zhuǎn)60°得到,故符合題意;如圖,連接,由是等邊三角形,則點O與O′的距離為4,故符合題意;故符合題意;如圖,過作于是等邊三角形,S四邊形AOBO′=故不符合題意;如圖,將繞點逆時針旋轉(zhuǎn)與重合,對應(yīng),同理可得:是邊長為的等邊三角形,是邊長為的直角三角形,同理可得:故符合題意;故選:【考點】本題考查的是等邊三角形的判定與性質(zhì),旋轉(zhuǎn)的性質(zhì),勾股定理與勾股定理的逆定理的應(yīng)用,全等三角形的判定與性質(zhì),熟練的做出正確的輔助線是解題的關(guān)鍵.4、BCD【解析】【分析】根據(jù)拋物線與軸有兩個交點,可知,即可判斷A選項;根據(jù)時,,即可判斷B選項;根據(jù)對稱軸,即可判斷C選項;D.根據(jù)拋物線的頂點坐標為,函數(shù)有最大即可判定D.【詳解】解:由圖象可知,拋物線開口向下,對稱軸在軸的右側(cè),與軸的交點在軸的負半軸,∵拋物線與軸有兩個交點,∴,∴,即,故A錯誤;由圖象可知,時,,∴,故B正確;∵拋物線的頂點坐標為,∴,,∵,∴,即,故C正確;∵拋物線的開口向下,頂點坐標為,∴(為任意實數(shù)),即時,方程有解.故D正確.故選BCD.【考點】本題主要考查了二次函數(shù)的性質(zhì)、二次函數(shù)圖像等知識點,掌握二次函數(shù)的性質(zhì)與解析式的關(guān)系是解答本題的關(guān)鍵.5、BD【解析】【分析】根據(jù)點坐標關(guān)于原點對稱、軸對稱的特點,求出對應(yīng)點坐標即可.【詳解】點A(-2,3)關(guān)于x軸對稱的點為(-2,-3),故A錯誤點A(-2,3)關(guān)于y軸對稱的點為(2,3),故B正確點A(-2,3)關(guān)于原點對稱的點為(2,-3),故C錯誤點A、點B的縱坐標相同,故A、B之間的距離為,故D正確故選BD【考點】本題考查了點坐標關(guān)于x,y軸對稱,關(guān)于原點中心對稱的特點,以及兩點間距離公式,熟悉對應(yīng)知識點是解決本題的關(guān)鍵.三、填空題1、②③④【分析】根據(jù)切線的性質(zhì),正方形的性質(zhì),通過三角形全等,證明HD=HM,∠HCM=∠HCD,GM=GB,∠GCB=∠GCM,可判斷前兩個結(jié)論;運用對角互補的四邊形內(nèi)接于圓,證明∠GHF+∠GEF=180°,取GH的中點P,連接PA,則PA+PC≥AC,當PC最大時,PA最小,根據(jù)直徑是圓中最大的弦,故PC=1時,PA最小,計算即可.【詳解】∵GH是⊙O的切線,M為切點,且CM是⊙O的直徑,∴∠CMH=90°,∵四邊形ABCD是正方形,∴∠CMH=∠CDH=90°,∵CM=CD,CH=CH,∴△CMH≌△CDH,∴HD=HM,∠HCM=∠HCD,同理可證,∴GM=GB,∠GCB=∠GCM,∴GB+DH=GH,無法確定HD=2BG,故①錯誤;∵∠HCM+∠HCD+∠GCB+∠GCM=90°,∴2∠HCM+2∠GCM=90°,∴∠HCM+∠GCM=45°,即∠GCH=45°,故②正確;∵△CMH≌△CDH,BD是正方形的對角線,∴∠GHF=∠DHF,∠GCH=∠HDF=45°,∴∠GHF+∠GEF=∠DHF+∠GCH+∠EFC=∠DHF+∠HDF+∠HFD=180°,根據(jù)對角互補的四邊形內(nèi)接于圓,∴H,F(xiàn),E,G四點在同一個圓上,故③正確;∵正方形ABCD的邊長為1,∴=1=,∠GAH=90°,AC=取GH的中點P,連接PA,∴GH=2PA,∴=,∴當PA取最小值時,有最大值,連接PC,AC,則PA+PC≥AC,∴PA≥AC-PC,∴當PC最大時,PA最小,∵直徑是圓中最大的弦,∴PC=1時,PA最小,∴當A,P,C三點共線時,且PC最大時,PA最小,∴PA=-1,∴最大值為:1-(-1)=2-,∴四邊形CGAH面積的最大值為2,∴④正確;故答案為:②③④.【點睛】本題考查了切線的性質(zhì),直徑是最大的弦,三角形的全等,直角三角形斜邊上的中線,四點共圓,正方形的性質(zhì),熟練掌握圓的性質(zhì),靈活運用直角三角形的性質(zhì),線段最短原理是解題的關(guān)鍵.2、②④##④②【解析】【分析】先畫出函數(shù)圖像,判斷出當時拋物線和反比例函數(shù)圖象上的點的縱坐標的關(guān)系,確定拋物線右支與反比例函數(shù)圖象的交點個數(shù),再利用拋物線的對稱性與反比例函數(shù)的圖象與性質(zhì)直接判斷即可.【詳解】解:∵拋物線,∴該拋物線對稱軸為,頂點坐標為(1,),將該拋物線向上平移()個單位長度,則頂點坐標為(1,),當時,反比例函數(shù)圖象上點的坐標為(1,),如圖所示,拋物線平移后的頂點縱坐標即為m,反比例函數(shù)上橫坐標為1的點的縱坐標即為s,∴m-s=,∵<k<,∴∴拋物線的右支與反比例函數(shù)圖象只有一個交點,且該交點橫坐標大于1;∵平移后的拋物線與雙曲線y=(x>0)交于點P(p,q),M(1+,n),∴點M為拋物線右支與反比例函數(shù)圖象的交點,∴點P為拋物線左支與反比例函數(shù)圖象的交點,由于反比例函數(shù)的圖像在第一象限內(nèi)y隨x的增大而減小,且拋物線關(guān)于直線對稱∴1-<p<1;q>2k-k.∴②④正確;故答案為:②④.【考點】本題考查了拋物線與反比例函數(shù)的圖像與性質(zhì),解題關(guān)鍵是弄清楚這兩個交點分別位于拋物線的左支和右支上,再利用拋物線的軸對稱性和反比例函數(shù)圖像的增減性進行判斷.3、【解析】【分析】根據(jù)已知建立平面直角坐標系,進而求出二次函數(shù)解析式,再通過把代入拋物線解析式得出水面寬度,即可得出答案.【詳解】建立平面直角坐標系,設(shè)橫軸x通過AB,縱軸y通過AB中點O且通過C點,則通過畫圖可得知O為原點,拋物線以y軸為對稱軸,且經(jīng)過A,B兩點,OA和OB可求出為AB的一半2米,拋物線頂點C坐標為通過以上條件可設(shè)頂點式,其中可通過代入A點坐標代入到拋物線解析式得出:所以拋物線解析式為當水面下降2米,通過拋物線在圖上的觀察可轉(zhuǎn)化為:當時,對應(yīng)的拋物線上兩點之間的距離,也就是直線與拋物線相交的兩點之間的距離,可以通過把代入拋物線解析式得出:解得:

所以水面寬度增加到米,比原先的寬度當然是增加了故答案是:【考點】考查了二次函數(shù)的應(yīng)用,根據(jù)已知建立坐標系從而得出二次函數(shù)解析式是解決問題的關(guān)鍵.4、(3,4)【分析】關(guān)于原點對稱的點,橫坐標與縱坐標都互為相反數(shù).【詳解】:由題意,得點(-3,-4)關(guān)于原點對稱的點的坐標是(3,4),故答案為:(3,4).【點睛】本題考查了關(guān)于原點對稱的點的坐標,解決本題的關(guān)鍵是掌握好對稱點的坐標規(guī)律:關(guān)于原點對稱的點,橫坐標與縱坐標都互為相反數(shù).5、-2【解析】【分析】根據(jù)二次函數(shù)圖象對稱軸所在的直線與x軸的交點的坐標,即為它的圖象與x軸兩交點之間線段中點的橫坐標,即可求得.【詳解】解:函數(shù)圖像與x軸的兩個交點坐標為和由對稱軸所在的直線為:解得故答案為:-2.【考點】本題考查了二次函數(shù)的性質(zhì)及中點坐標的求法,熟練掌握和運用二次函數(shù)的性質(zhì)及中點坐標的求法是解決本題的關(guān)鍵.四、簡答題1、(1)10;(2)無解.【解析】【分析】(1)原式利用絕對值的代數(shù)意義,特殊角三角函數(shù)值,二次根式性質(zhì),負整數(shù)指數(shù)冪法則計算即可求出值;(2)分式方程去分母轉(zhuǎn)化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗即可得到分式方程的解.【詳解】解:(1)原式;(2)去分母得:2+1?x=2x?6,解得:x=3,經(jīng)檢驗x=3是增根,分式方程無解.【考點】此題考查了解分式方程以及實數(shù)的運算,熟記特殊角三角函數(shù)值,實數(shù)的運算法則以及分式方程的解法是解本題的關(guān)鍵.2、(1)(2)|PC?PD|最大時a的值為6(3)存在,點M的坐標為(,)【解析】【分析】(1)先確定出OE=CE=2,即可得出點C坐標,最后用待定系數(shù)法即可得出結(jié)論;(2)先求出OC解析式,由平行四邊形的性質(zhì)可得BC=OA=3,BC∥OA,AB∥OC,利用待定系數(shù)法可求AB解析式,求出點D的坐標,再根據(jù)三角形關(guān)系可得出當點P,C,D三點共線時,|PC-PD|最大,求出直線CD的解析式,令y=0即可求解;(3)若四邊形CAMN為矩形,則△CAM是直角三角形且AC為一條直角邊,根據(jù)直角頂點需要分兩種情況,畫出圖形分別求解即可.(1)解:如圖1,過點C作CE⊥x軸于E,∴∠CEO=90°,∵tan∠AOC=1,∴∠COA=45°,∴∠OCE=45°,∵OC=2,∴OE=CE=2,∴C(2,2),∵點C在反比例函數(shù)圖象上,∴k=2×2=4,∴反比例函數(shù)解析式為y=;(2)解:∵點C(2,2),點O(0,0),∴OC解析式為:y=x,∵四邊形OABC是平行四邊形,點A坐標為(3,0),∴BC=OA=3,BC∥OA,AB∥OC,∴點B(5,2),∴設(shè)AB解析式為:y=x+b,∴2=5+b,∴b=-3,∴AB解析式為:y=x-3,聯(lián)立方程組可得:,∴或(舍去),∴點D(4,1);在△PCD中,|PC-PD|<CD,則當點P,C,D三點共線時,|PC-PD|=CD,此時,|PC-PD|取得最大值,由(1)知C(2,2),D(4,1),設(shè)直線CD的解析式為:y=mx+n,∴,解得,∴直線CD的解析式為:y=x+3,令y=0,即x+3=0,得x=6,∴|PC-PD|最大時a的值為6;(3)(3)存在,理由如下:若四邊形CAMN為矩形,則△CAM是直角三角形,則①當點A為直角頂點時,如圖2,過點A作AC的垂線與y=交于點M,分別過點C,M作x軸的垂線,垂足分別為點F,G,由“一線三等角”模型可得△AFC∽△MGA,則AF:MG=CF:AG,∵C(2,2),A(3,0),∴OF=CF=2,AF=1,∴1:MG=2:AG,即MG:AG=1:2,設(shè)MG=t,則AG=2t,∴M(2t+3,t),∵點M在反比例函數(shù)y=的圖象上,則t(2t+3)=4,解得t=,(負值舍去),∴M(,);②當點C為直角頂點時,這種情況不成立;綜上,點M的坐標為(,).【考點】本題考查了反比例函數(shù)綜合問題,涉及矩形的判定與性質(zhì),相似三角形的性質(zhì)與判定.第一問的關(guān)鍵是求出點C的坐標,第二問的關(guān)鍵是知道當點P,C,D三點共線時,|PC-PD|取得最大值,第三問的關(guān)鍵是利用矩形的內(nèi)角是直角進行分類討論,利用相似三角形的性質(zhì)建立等式.五、解答題1、【分析】根據(jù)題意列出樹狀圖,根據(jù)概率公式即可求解.【詳解】由題意做樹狀圖如下:故小強和小葉抽到的兩張卡片恰好是同一英雄人物的概率為.【點睛】此題考查了用列表法或樹狀圖法求概率,解題時要注意此題是放回試驗還是不放回試驗,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.2、(1)見詳解;(2)①見詳解;②當?shù)拈L度為2或時,為等腰三角形【解析】【分析】(1)由旋轉(zhuǎn)的性質(zhì)得AH=AG,∠HAG=90°,從而得∠BAH=∠CAG,進而即可得到結(jié)論;(2)①由,得AH=AG,再證明,進而即可得到結(jié)論;②為等腰三角形,分3種情況:(a)當∠QAG=∠QGA=45°時,(b)當∠GAQ=∠GQA=67.5°時,(c)當∠AQG=∠AGQ=45°時,分別畫出圖形求解,即可.【詳解】解:(1)∵線段繞點A逆時針方向旋轉(zhuǎn)得到,∴AH=AG,∠HAG=90°,∵在等腰直角三角形中,,AB=AC,∴∠BAH=90°-∠CAH=∠CAG,∴;(2)①∵在等腰直角三角形中,AB=AC,點,分別為,的中點,∴AE=AF,是等腰直角三角形,∵AH=AG,∠BAH=∠CAG,∴,∴∠AEH=∠AFG=45°,∴∠HFG=∠AFG+∠AFE=45°+45°=90°,即:;②∵,點,分別為,的中點,∴AE=AF=2,∵∠AGH=45°,為等腰三角形,分3種情況:(a)當∠QAG=∠QGA=45°時,如圖,則∠HAF=90°-45°=45°,∴AH平分∠EAF,∴點H是EF的中點,∴EH=;(b)當∠GAQ=∠GQA=(180°-45°)÷2=67.5°時,如圖,則∠EAH=∠GAQ=67.5°,∴∠EHA=180°-45°-67.5°=67.5°,∴∠EHA=∠EAH,∴EH=EA=2;(c)當∠AQG=∠AGQ=45°時,點H與點F重合,不符合題意,舍去,綜上所述:當?shù)拈L度為2或時,為等腰三角形.【考點】本題主要考查等腰直角三角形的性質(zhì),旋轉(zhuǎn)的性質(zhì),全等三角形的判定和性質(zhì),勾股定理,熟練掌握全等三角形的判定定理,根據(jù)題意畫出圖形,進行分類討論,是解題的關(guān)鍵.3、(1)每天的總毛利潤為7820元;(2)每千克應(yīng)漲

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論