甘肅省武威市民勤實驗中學(xué)2026屆數(shù)學(xué)九上期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第1頁
甘肅省武威市民勤實驗中學(xué)2026屆數(shù)學(xué)九上期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第2頁
甘肅省武威市民勤實驗中學(xué)2026屆數(shù)學(xué)九上期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第3頁
甘肅省武威市民勤實驗中學(xué)2026屆數(shù)學(xué)九上期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第4頁
甘肅省武威市民勤實驗中學(xué)2026屆數(shù)學(xué)九上期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

甘肅省武威市民勤實驗中學(xué)2026屆數(shù)學(xué)九上期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每題4分,共48分)1.如圖,矩形ABCD是由三個全等矩形拼成的,AC與DE、EF、FG、HG、HB分別交于點P、Q、K、M、N,設(shè)△EPQ、△GKM、△BNC的面積依次為S1、S2、S1.若S1+S1=10,則S2的值為().A.6 B.8C.10 D.122.如果關(guān)于x的一元二次方程有實數(shù)根,那么m的取值范圍是()A. B. C. D.3.李老師在編寫下面這個題目的答案時,不小心打亂了解答過程的順序,你能幫他調(diào)整過來嗎?證明步驟正確的順序是()A.③②①④ B.②④①③ C.③①④② D.②③④①4.現(xiàn)有兩個不透明的袋子,一個裝有2個紅球、1個白球,另一個裝有1個黃球、2個紅球,這些球除顏色外完全相同從兩個袋子中各隨機摸出1個球,摸出的兩個球顏色相同的概率是()A. B. C. D.5.如圖,切于兩點,切于點,交于.若的周長為,則的值為()A. B. C. D.6.在RtABC中,∠C=90°,如果,那么的值是()A.90° B.60° C.45° D.30°7.一組數(shù)據(jù):2,3,6,4,3,5,這組數(shù)據(jù)的中位數(shù)、眾數(shù)分別是()A.3,3 B.3,4 C.3.5,3 D.5,38.下列各點中,在反比例函數(shù)圖像上的是()A. B. C. D.9.如圖,將△ABC繞點B順時針旋轉(zhuǎn)60°得△DBE,點C的對應(yīng)點E恰好落在AB延長線上,連接AD.下列結(jié)論一定正確的是()A.∠ABD=∠E B.∠CBE=∠C C.AD∥BC D.AD=BC10.如圖,AB是半圓O的直徑,AC為弦,OD⊥AC于D,過點O作OE∥AC交半圓O于點E,過點E作EF⊥AB于F.若AC=2,則OF的長為()A. B. C.1 D.211.若關(guān)于的一元二次方程有兩個不相等的實數(shù)根,則的取值范圍()A.且 B. C. D.12.如圖,該幾何體的主視圖是()A. B. C. D.二、填空題(每題4分,共24分)13.小亮和他弟弟在陽光下散步,小亮的身高為米,他的影子長米.若此時他的弟弟的影子長為米,則弟弟的身高為________米.14.如圖,在矩形ABCD中,AD=2,CD=1,連接AC,以對角線AC為邊,按逆時針方向作矩形ABCD的相似矩形AB1C1C,再連接AC1,以對角線AC1為邊作矩形AB1C1C的相似矩形AB2C2C1,......,按此規(guī)律繼續(xù)下去,則矩形AB2019C2019C2018的面積為_____.15.如圖,點是反比例函數(shù)的圖象上一點,直線過點與軸交于點,與軸交于點.過點做軸于點,連接,若的面積為,則的面積為_______.16.如圖,正六邊形ABCDEF內(nèi)接于O,點M是邊CD的中點,連結(jié)AM,若圓O的半徑為2,則AM=____________.17.從一副沒有“大小王”的撲克牌中隨機抽取一張,點數(shù)為“”的概率是________.18.在Rt△ABC中,∠C=90°,如果tan∠A=,那么cos∠B=_____.三、解答題(共78分)19.(8分)如圖,在△ABC中,AD是BC邊上的高,tanB=cos∠DAC.(1)求證:AC=BD;(2)若sinC=,BC=12,求△ABC的面積.20.(8分)在平面直角坐標(biāo)系xOy中,直線y=x+b(k≠0)與雙曲線一個交點為P(2,m),與x軸、y軸分別交于點A,B兩點.(1)求m的值;(2)求△ABO的面積;21.(8分)超市銷售某種兒童玩具,如果每件利潤為40元(市場管理部門規(guī)定,該種玩具每件利潤不能超過60元),每天可售出50件.根據(jù)市場調(diào)查發(fā)現(xiàn),銷售單價每增加2元,每天銷售量會減少1件.設(shè)銷售單價增加元,每天售出件.(1)請寫出與之間的函數(shù)表達(dá)式;(2)當(dāng)為多少時,超市每天銷售這種玩具可獲利潤2250元?(3)設(shè)超市每天銷售這種玩具可獲利元,當(dāng)為多少時最大,最大值是多少?22.(10分)在平面直角坐標(biāo)系中,已知點是直線上一點,過點分別作軸,軸的垂線,垂足分別為點和點,反比例函數(shù)的圖象經(jīng)過點.(1)若點是第一象限內(nèi)的點,且,求的值;(2)當(dāng)時,直接寫出的取值范圍.23.(10分)如圖,以矩形ABCD的邊CD為直徑作⊙O,點E是AB的中點,連接CE交⊙O于點F,連接AF并延長交BC于點H.(1)若連接AO,試判斷四邊形AECO的形狀,并說明理由;(2)求證:AH是⊙O的切線;(3)若AB=6,CH=2,則AH的長為.24.(10分)在一個不透明的盒子里裝有4個分別標(biāo)有:﹣1、﹣2、0、1的小球,它們的形狀、大小完全相同,小芳從盒子中隨機取出一個小球,記下數(shù)字為x,作為點M的橫坐標(biāo):小華在剩下的3個小球中隨機取出一個小球,記下數(shù)字為y,作為點M的縱坐標(biāo).(1)用畫樹狀圖或列表的方式,寫出點M所有可能的坐標(biāo);(2)求點M(x,y)在函數(shù)y=的圖象上的概率.25.(12分)如圖,△OAB中,OA=OB=10cm,∠AOB=80°,以點O為圓心,半徑為6cm的優(yōu)弧分別交OA、OB于點M、N.(1)點P在右半弧上(∠BOP是銳角),將OP繞點O逆時針旋轉(zhuǎn)80°得OP′.求證:AP=BP′;(2)點T在左半弧上,若AT與圓弧相切,求AT的長.(3)Q為優(yōu)弧上一點,當(dāng)△AOQ面積最大時,請直接寫出∠BOQ的度數(shù)為.26.如圖,在平面直角坐標(biāo)xOy中,正比例函數(shù)y=kx的圖象與反比例函數(shù)y=的圖象都經(jīng)過點A(2,﹣2).(1)分別求這兩個函數(shù)的表達(dá)式;(2)將直線OA向上平移3個單位長度后與y軸交于點B,與反比例函數(shù)圖象在第四象限內(nèi)的交點為C,連接AB,AC,求點C的坐標(biāo)及△ABC的面積.

參考答案一、選擇題(每題4分,共48分)1、D【分析】根據(jù)矩形的性質(zhì)和平行四邊形的性質(zhì)判斷出△AQE∽△AMG∽△ACB,得到,,再通過證明得到△PQE∽△KMG∽△NCB,利用面積比等于相似比的平方,得到S1、S2、S1的關(guān)系,進(jìn)而可得到答案.【詳解】解:∵矩形ABCD是由三個全等矩形拼成的,

∴AE=EG=GB=DF=FH=HC,∠AEQ=∠AGM=∠ABC=90°,AB∥CD,AD∥EF∥GH∥BC∴∠AQE=∠AMG=∠ACB,

∴△AQE∽△AMG∽△ACB,

∴,∵EG=DF=GB=FHAB∥CD,(已證)∴四邊形DEGF,四邊形FGBH是平行四邊形,∴DE∥FG∥HB∴∠QPE=∠MKG=∠CNB,∴△PQE∽△KMG∽△NCB

∴,

∴,

∵S1+S1=10,∴S2=2.

故選:D.本題考查了矩形的性質(zhì)、平行四邊形的性質(zhì)、三角形相似的性質(zhì)的綜合應(yīng)用,能找到對應(yīng)邊的比是解答此題的關(guān)鍵.2、D【詳解】解:由題意得:,,,∴△===,解得:,故選D.本題考查一元二次方程根的判別式,熟記公式正確計算是本題的解題關(guān)鍵.3、B【分析】根據(jù)相似三角形的判定定理,即可得到答案.【詳解】∵DE∥BC,∴∠B=∠ADE,∵DF∥AC,∴∠A=∠BDF,∴?ADE~?DBF.故選:B.本題主要考查三角形相似的判定定理,掌握“有兩個角對應(yīng)相等的兩個三角形相似”是解題的關(guān)鍵.4、C【分析】根據(jù)列表法列出所有的可能情況,從中找出兩個球顏色相同的結(jié)果數(shù),再利用概率的公式計算即可得到答案.【詳解】解:列表如圖所示:由表可知,共有9種等可能結(jié)果,其中摸出的兩個球顏色相同的有4種結(jié)果所以摸出兩個球顏色相同的概率是故選:C.本題考查的是列表法與樹狀圖的知識,解題的關(guān)鍵是能夠用列表或者樹狀圖將所有等可能結(jié)果列舉出來.5、A【分析】利用切線長定理得出,然后再根據(jù)的周長即可求出PA的長.【詳解】∵切于兩點,切于點,交于∴的周長為∴故選:A.本題主要考查切線長定理,掌握切線長定理是解題的關(guān)鍵.6、C【分析】根據(jù)銳角三角函數(shù)的定義解得即可.【詳解】解:由已知,,∵∴∵∠C=90°∴=45°故選:C本題考查了銳角三角函數(shù)的定義,解答關(guān)鍵是根據(jù)定義和已知條件構(gòu)造等式求解.7、C【分析】把這組數(shù)據(jù)按照從小到大的順序排列,第1、4個數(shù)的平均數(shù)是中位數(shù),在這組數(shù)據(jù)中出現(xiàn)次數(shù)最多的是1,得到這組數(shù)據(jù)的眾數(shù).【詳解】要求一組數(shù)據(jù)的中位數(shù),把這組數(shù)據(jù)按照從小到大的順序排列2,1,1,4,5,6,第1、4個兩個數(shù)的平均數(shù)是(1+4)÷2=1.5,所以中位數(shù)是1.5,在這組數(shù)據(jù)中出現(xiàn)次數(shù)最多的是1,即眾數(shù)是1.故選:C.本題考查一組數(shù)據(jù)的中位數(shù)和眾數(shù),在求中位數(shù)時,首先要把這列數(shù)字按照從小到大或從的大到小排列,找出中間一個數(shù)字或中間兩個數(shù)字的平均數(shù)即為所求.8、C【分析】把每個點的坐標(biāo)代入函數(shù)解析式,從而可得答案.【詳解】解:當(dāng)時,故A錯誤;當(dāng)時,故B錯誤;當(dāng)時,故C正確;當(dāng)時,故D錯誤;故選C.本題考查的是反比例函數(shù)圖像上點的坐標(biāo)特點,掌握以上知識是解題的關(guān)鍵.9、C【解析】根據(jù)旋轉(zhuǎn)的性質(zhì)得,∠ABD=∠CBE=60°,∠E=∠C,則△ABD為等邊三角形,即AD=AB=BD,得∠ADB=60°因為∠ABD=∠CBE=60°,則∠CBD=60°,所以,∠ADB=∠CBD,得AD∥BC.故選C.10、C【詳解】解:∵OD⊥AC,∴AD=AC=1,∵OE∥AC,∴∠DAO=∠FOE,∵OD⊥AC,EF⊥AB,∴∠ADO=∠EFO=90°,在△ADO和△OFE,∵∠DAO=∠FOE,∠ADO=∠EFO,AO=OE,∴△ADO≌△OFE,∴OF=AD=1,故選C.本題考查1.全等三角形的判定與性質(zhì);2.垂徑定理,掌握相關(guān)性質(zhì)定理正確推理論證是解題關(guān)鍵.11、A【分析】根據(jù)題意可得k滿足兩個條件,一是此方程是一元二次方程,所以二次項系數(shù)k不等于0,二是方程有兩個不相等的實數(shù)根,所以b2-4ac>0,根據(jù)這兩點列式求解即可.【詳解】解:根據(jù)題意得,k≠0,且(-6)2-36k>0,解得,且.故選:A.本題考查一元二次方程的定義及利用一元二次方程根的情況確定字母系數(shù)的取值范圍,根據(jù)需滿足定義及根的情況列式求解是解答此題的重要思路.12、D【解析】試題分析:根據(jù)主視圖是從正面看到的圖形,因此可知從正面看到一個長方形,但是還得包含看不到的一天線(虛線表示),因此第四個答案正確.故選D考點:三視圖二、填空題(每題4分,共24分)13、1.4【解析】∵同一時刻物高與影長成正比例,

∴1.75:2=弟弟的身高:1.6,

∴弟弟的身高為1.4米.故答案是:1.4.14、【分析】利用勾股定理可求得AC的長,根據(jù)面積比等于相似比的平方可得矩形AB1C1C的面積,同理可求出矩形AB2C2C1、AB3C3C2,……的面積,從而可發(fā)現(xiàn)規(guī)律,根據(jù)規(guī)律即可求得第2019個矩形的面積,即可得答案.【詳解】∵在矩形ABCD中,AD=2,CD=1,∴AC==,∵矩形ABCD與矩形AB1C1C相似,∴矩形AB1C1C與矩形ABCD的相似比為,∴矩形AB1C1C與矩形ABCD的面積比為,∵矩形ABCD的面積為1×2=2,∴矩形AB1C1C的面積為2×=,同理:矩形AB2C2C1的面積為×==,矩形AB3C3C2的面積為×==,……∴矩形ABnCnCn-1面積為,∴矩形AB2019C2019C2018的面積為=,故答案為:本題考查了矩形的性質(zhì),勾股定理,相似多邊形的性質(zhì),根據(jù)求出的結(jié)果得出規(guī)律并熟記相似圖形的面積比等于相似比的平方是解題關(guān)鍵..15、【分析】先由△BOC的面積得出①,再判斷出△BOC∽△ADC,得出②,聯(lián)立①②求出,即可得出結(jié)論.【詳解】設(shè)點A的坐標(biāo)為,

∴,

∵直線過點A并且與兩坐標(biāo)軸分別交于點B,C,

∴,∴,,

∵△BOC的面積是3,

∴,

∴,

∴①

∵AD⊥x軸,

∴OB∥AD,

∴△BOC∽△ADC,

∴,

∴,

∴②,

聯(lián)立①②解得,(舍)或,

∴.故答案為:.本題是反比例函數(shù)與幾何的綜合題,主要考查了坐標(biāo)軸上點的特點,反比例函數(shù)上點的特點,相似三角形的判定和性質(zhì),得出是解本題的關(guān)鍵.16、【分析】連接AD,過M作MG⊥AD于G,根據(jù)正六邊形的相關(guān)性質(zhì),求得AD,MD的值,再根據(jù)∠CDG=60°,求出DG,MG的值,最后利用勾股定理求出AM的值.【詳解】解:連接AD,過M作MG⊥AD于G,則由正六邊形可得,AD=2AB=4,∠CDA=60°,又MD=CD=1,∴DG=,MG=,∴AG=AD-DG=,∴AM=故答案為.本題考查了正多邊形和圓、正六邊形的性質(zhì)、三角函數(shù)、勾股定理;熟練掌握正六邊形的性質(zhì),作出輔助線構(gòu)造直角三角形是解題的關(guān)鍵.17、【分析】讓點數(shù)為6的撲克牌的張數(shù)除以沒有大小王的撲克牌總張數(shù)即為所求的概率.【詳解】∵沒有大小王的撲克牌共52張,其中點數(shù)為6的撲克牌4張,

∴隨機抽取一張點數(shù)為6的撲克,其概率是

故答案為本題考查的是隨機事件概率的求法,如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.18、【分析】直接利用特殊角的三角函數(shù)值得出∠A=30°,進(jìn)而得出∠B的度數(shù),進(jìn)而得出答案.【詳解】∵tan∠A=,∴∠A=30°,∵∠C=90°,∴∠B=180°﹣30°﹣90°=60°,∴cos∠B=.故答案為:.此題主要考查了特殊角的三角函數(shù)值,正確理解三角函數(shù)的計算公式是解題關(guān)鍵.三、解答題(共78分)19、(1)證明見解析;(2)△ABC的面積為42.【分析】(1)在直角三角形中,表示,根據(jù)它們相等,即可得出結(jié)論(2)利用和勾股定理表示出線段長,根據(jù),求出長【詳解】(1)∵AD是BC上的高∴AD⊥BC.∴∠ADB=90°,∠ADC=90°.在Rt△ABD和Rt△ADC中,∵=,=又已知∴=.∴AC=BD.(2)在Rt△ADC中,,故可設(shè)AD=1k,AC=13k.∴CD==5k.∵BC=BD+CD,又AC=BD,∴BC=13k+5k=12k由已知BC=1,∴12k=1.∴k=.∴AD=1k=1=2.20、(1)m=4,(1)△ABO的面積為1.【分析】(1)將點P的坐標(biāo)代入雙曲線即可求得m的值;(1)將點P代入直線,先求出直線的解析式,進(jìn)而得出點A、B的坐標(biāo),從而得出△ABO的面積.【詳解】(1)∵點P(1,m)在雙曲線上∴m=解得:m=4(1)∴P(1,4),代入直線得:4=1+b,解得:b=1,故直線解析式為y=x+1A,B兩點時直線與坐標(biāo)軸交點,圖形如下:則A(-1,0),B(0,1)∴.本題考查一次函數(shù)與反比例函數(shù)的綜合,注意提干中告知點P是雙曲線與直線的交點,即代表點P即在雙曲線上,也在直線上.21、(1)(2)當(dāng)為10時,超市每天銷售這種玩具可獲利潤2250元(3)當(dāng)為20時最大,最大值是2400元【分析】(1)根據(jù)題意列函數(shù)關(guān)系式即可;(2)根據(jù)題意列方程即可得到結(jié)論;(3)根據(jù)題意得到,根據(jù)二次函數(shù)的性質(zhì)得到當(dāng)時,隨的增大而增大,于是得到結(jié)論.【詳解】(1)根據(jù)題意得,;(2)根據(jù)題意得,,解得:,,∵每件利潤不能超過60元,∴,答:當(dāng)為10時,超市每天銷售這種玩具可獲利潤2250元;(3)根據(jù)題意得,,∵,∴當(dāng)時,隨的增大而增大,∴當(dāng)時,,答:當(dāng)為20時最大,最大值是2400元.本題考查了一次函數(shù)、二次函數(shù)的應(yīng)用,弄清題目中包含的數(shù)量關(guān)系是解題關(guān)鍵.22、(1);(2)且.【分析】(1)設(shè)點,根據(jù),得到,代入,求得的坐標(biāo),即可求得答案;(2)依照(1),求得時的A點的坐標(biāo),根據(jù)題意,畫出函數(shù)圖象,然后根據(jù)函數(shù)的圖象直接求出k的取值范圍即可.【詳解】(1)依題意,設(shè)點,∴,∵,∴,∵點在直線上,∴點的坐標(biāo)為,∵點在函數(shù)的圖像上,∴;(2)依題意,設(shè)點,∴,∵,∴,∵點在直線上,∴點的坐標(biāo)為或,∵點在函數(shù)的圖像上,∴或,觀察圖象,當(dāng)且時,.此題屬于反比例函數(shù)與一次函數(shù)的綜合題,涉及的知識有:待定系數(shù)法求函數(shù)解析式,一次函數(shù)與反比例函數(shù)的交點,坐標(biāo)與圖形性質(zhì),此類題要先求特殊位置時對應(yīng)的k值,利用數(shù)形結(jié)合的思想,依照題意畫出圖形,利用數(shù)形結(jié)合找出k的取值范圍.23、(1)詳見解析;(2)詳見解析;(3)【分析】(1)根據(jù)矩形的性質(zhì)得到AE∥OC,AE=OC即可證明;(2)根據(jù)平行四邊形的性質(zhì)得到∠AOD=∠OCF,∠AOF=∠OFC,再根據(jù)等腰三角形的性質(zhì)得到∠OCF=∠OFC.故可得∠AOD=∠AOF,利用SAS證明△AOD≌△AOF,由ADO=90°得到AH⊥OF,即可證明;(3)根據(jù)切線長定理可得AD=AF,CH=FH=2,設(shè)AD=x,則AF=x,AH=x+2,BH=x-2,再利用在Rt△ABH中,AH2=AB2+BH2,代入即可求x,即可得到AH的長.【詳解】(1)解:連接AO,四邊形AECO是平行四邊形.∵四邊形ABCD是矩形,∴AB∥CD,AB=CD.∵E是AB的中點,∴AE=AB.∵CD是⊙O的直徑,∴OC=CD.∴AE∥OC,AE=OC.∴四邊形AECO為平行四邊形.(2)證明:由(1)得,四邊形AECO為平行四邊形,∴AO∥EC∴∠AOD=∠OCF,∠AOF=∠OFC.∵OF=OC∴∠OCF=∠OFC.∴∠AOD=∠AOF.∵在△AOD和△AOF中,AO=AO,∠AOD=∠AOF,OD=OF∴△AOD≌△AOF.∴∠ADO=∠AFO.∵四邊形ABCD是矩形,∴∠ADO=90°.∴∠AFO=90°,即AH⊥OF.∵點F在⊙O上,∴AH是⊙O的切線.(3)∵HC、FH為圓O的切線,AD、AF是圓O的切線∴AD=AF,CH=FH=2,設(shè)AD=x,則AF=x,AH=x+2,BH=x-2,在Rt△ABH中,AH2=AB2+BH2,即(x+2)2=62+(x-2)2,解得x=∴AH=+2=.此題主要考查直線與圓的關(guān)系,解題法的關(guān)鍵是熟知切線的判定定理與性質(zhì),及勾股定理的運用.24、(1)見解析;(2)【分析】(1)畫樹狀圖即可得到12種等可能的結(jié)果數(shù);(2)利用反比例函數(shù)圖象上點的坐標(biāo)特征得到點(﹣2,1)和點(1,﹣2)滿足條件,然后根據(jù)概率公式計算,即可.【詳解】(1)畫樹狀圖為:共有12種等可能的結(jié)果,它們?yōu)椋ī?,﹣2),(﹣1,0),(﹣1,1),(﹣2,﹣1),(﹣2,0),(﹣2,1),(0,﹣1),(0,﹣2),(0,1),(1,﹣1),(1,﹣2),(1,0);(2)∵點M(x,y)在函數(shù)y=的圖象上的點有(﹣2,1),(1,﹣2),∴點M(x,y)在函數(shù)y=的圖象上的概率==

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論