




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
人教版8年級數(shù)學下冊《平行四邊形》專項訓練考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、將一張長方形紙片ABCD按如圖所示的方式折疊,AE、AF為折痕,點B、D折疊后的對應(yīng)點分別為、,若=10°,則∠EAF的度數(shù)為()A.40° B.45° C.50° D.55°2、如圖,矩形OABC的邊OA長為2,邊AB長為1,OA在數(shù)軸上,以原點O為圓心,對角線OB的長為半徑畫弧,交正半軸于一點,則這個點表示的實數(shù)是()A.2.5 B.2 C. D.3、如圖,把一張長方形紙片ABCD沿對角線AC折疊,點B的對應(yīng)點為點B′,AB′與DC相交于點E,則下列結(jié)論正確的是()A.∠DAB′=∠CAB′ B.∠ACD=∠B′CDC.AD=AE D.AE=CE4、如圖,把正方形紙片ABCD沿對邊中點所在的直線對折后展開,折痕為MN,再過點B折疊紙片,使點A落在MN上的點F處,折痕為BE,若AB的長為2,則FM的長為()A.2 B. C. D.15、如圖,已知在正方形ABCD中,厘米,,點E在邊AB上,且厘米,如果點P在線段BC上以2厘米/秒的速度由B點向C點運動,同時,點Q在線段CD上以a厘米/秒的速度由C點向D點運動,設(shè)運動時間為t秒.若存在a與t的值,使與全等時,則t的值為()A.2 B.2或1.5 C.2.5 D.2.5或26、下列條件中,能判定四邊形是正方形的是()A.對角線相等的平行四邊形 B.對角線互相平分且垂直的四邊形C.對角線互相垂直且相等的四邊形 D.對角線相等且互相垂直的平行四邊形7、如圖,在長方形ABCD中,AB=10cm,點E在線段AD上,且AE=6cm,動點P在線段AB上,從點A出發(fā)以2cm/s的速度向點B運動,同時點Q在線段BC上.以vcm/s的速度由點B向點C運動,當△EAP與△PBQ全等時,v的值為()A.2 B.4 C.4或 D.2或8、如圖,兩張等寬的紙條交叉重疊在一起,重疊的部分為四邊形ABCD,若測得點A,C之間的距離為6cm,點B,D之間的距離為8cm,則紙條的寬為()A.5cm B.4.8cm C.4.6cm D.4cm9、下列說法正確的是()A.平行四邊形的對角線互相平分且相等 B.矩形的對角線相等且互相平分C.菱形的對角線互相垂直且相等 D.正方形的對角線是正方形的對稱軸10、菱形ABCD的對角線AC,BD相交于點O,E,F(xiàn)分別是AD,CD邊上的中點,連接EF.若EF=,BD=2,則菱形ABCD的面積為()A.2 B. C.6 D.8第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、如圖,在正方形ABCD中,點O在內(nèi),,則的度數(shù)為______.2、如圖,在正方形ABCD中,AB=4,E為對角線AC上與A,C不重合的一個動點,過點E作EF⊥AB于點F,EG⊥BC于點G,連接DE,F(xiàn)G,下列結(jié)論:①DE=FG;②DE⊥FG;③∠BFG=∠ADE;④FG的最小值為3.其中正確結(jié)論的序號為__.3、正方形ABCD的邊長為4,則圖中陰影部分的面積為___.4、菱形的對角線之比為3:4,且面積為24,則它的對角線分別為________.5、如圖,在矩形ABCD中,AD=3AB,點G,H分別在AD,BC上,連BG,DH,且,當=_______時,四邊形BHDG為菱形.6、如圖,在平行四邊形ABCD中,AB=4,BC=5,以點C為圓心,適當長為半徑畫弧,交BC于點P,交CD于點Q,再分別以點P,Q為圓心,大于PQ的長為半徑畫弧,兩弧相交于點N,射線CN交BA的延長線于點E,則AE的長是_____.7、如圖,點E,F(xiàn)在正方形ABCD的對角線AC上,AC=10,AE=CF=3,則四邊形BFDE的面積為_____.8、如圖,矩形ABCD的兩條對角線AC,BD交于點O,∠AOB=60°,AB=3,則矩形的周長為_____.9、如圖,將長方形ABCD按圖中方式折疊,其中EF、EC為折痕,折疊后、、E在一直線上,已知∠BEC=65°,那么∠AEF的度數(shù)是_____.10、如圖,Rt△ABD中,∠D=90°,AB=8,BD=4,在BD延長線上取一點C,使得DC=BD,在直線AD左側(cè)有一動點P滿足∠PAD=∠PDB,連接PC,則線段CP長的最大值為________.三、解答題(5小題,每小題6分,共計30分)1、已知:如圖,在四邊形中,,.求證:(1)BECD;(2)四邊形是矩形.2、如圖,△ABC中,點D是邊AC的中點,過D作直線PQ∥BC,∠BCA的平分線交直線PQ于點E,點G是△ABC的邊BC延長線上的點,∠ACG的平分線交直線PQ于點F.求證:四邊形AECF是矩形.3、如圖1,在平面直角坐標系中,且;(1)試說明是等腰三角形;(2)已知.寫出各點的坐標:A(,),B(,),C(,).(3)在(2)的條件下,若一動點M從點B出發(fā)沿線段BA向點A運動,同時動點N從點A出發(fā)以相同速度沿線段AC向點C運動,當其中一點到達終點時整個運動都停止.①若的一條邊與BC平行,求此時點M的坐標;②若點E是邊AC的中點,在點M運動的過程中,能否成為等腰三角形?若能,求出此時點M的坐標;若不能,請說明理由.4、如圖,四邊形ABCD為平行四邊形,∠BAD的平分線AF交CD于點E,交BC的延長線于點F.點E恰是CD的中點.求證:(1)△ADE≌△FCE;(2)BE⊥AF.5、如圖,在△ABC中,點D,E分別是AC,AB的中點,點F是CB延長線上的一點,且CF=3BF,連接DB,EF.(1)求證:四邊形DEFB是平行四邊形;(2)若∠ACB=90°,AC=12cm,DE=4cm,求四邊形DEFB的周長.-參考答案-一、單選題1、A【解析】【分析】可以設(shè)∠EAD′=α,∠FAB′=β,根據(jù)折疊可得∠DAF=∠D′AF,∠BAE=∠B′AE,用α,β表示∠DAF=10°+β,∠BAE=10°+α,根據(jù)四邊形ABCD是矩形,利用∠DAB=90°,列方程10°+β+β+10°+10°+α+α=90°,求出α+β=30°即可求解.【詳解】解:設(shè)∠EAD′=α,∠FAB′=β,根據(jù)折疊性質(zhì)可知:∠DAF=∠D′AF,∠BAE=∠B′AE,∵∠B′AD′=10°,∴∠DAF=10°+β,∠BAE=10°+α,∵四邊形ABCD是矩形∴∠DAB=90°,∴10°+β+β+10°+10°+α+α=90°,∴α+β=30°,∴∠EAF=∠B′AD′+∠D′AE+∠FAB′,=10°+α+β,=10°+30°,=40°.則∠EAF的度數(shù)為40°.故選:A.【點睛】本題通過折疊變換考查學生的邏輯思維能力,解決此類問題,應(yīng)結(jié)合題意,最好實際操作圖形的折疊,易于找到圖形間的關(guān)系.2、D【解析】【分析】利用矩形的性質(zhì),求證明,進而在中利用勾股定理求出的長度,弧長就是的長度,利用數(shù)軸上的點表示,求出弧與數(shù)軸交點表示的實數(shù)即可.【詳解】解:四邊形OABC是矩形,,在中,由勾股定理可知:,,弧長為,故在數(shù)軸上表示的數(shù)為,故選:.【點睛】本題主要是考查了矩形的性質(zhì)、勾股定理解三角形以及數(shù)軸上的點的表示,熟練利用矩形性質(zhì),得到直角三角形,然后通過勾股定理求邊長,是解決該類問題的關(guān)鍵.3、D【解析】【分析】根據(jù)翻折變換的性質(zhì)可得∠BAC=∠CAB′,根據(jù)兩直線平行,內(nèi)錯角相等可得∠BAC=∠ACD,從而得到∠ACD=∠CAB′,然后根據(jù)等角對等邊可得AE=CE,從而得解.【詳解】解:∵矩形紙片ABCD沿對角線AC折疊,點B的對應(yīng)點為B′,∴∠BAC=∠CAB′,∵AB∥CD,∴∠BAC=∠ACD,∴∠ACD=∠CAB′,∴AE=CE,∴結(jié)論正確的是D選項.故選D.【點睛】本題考查了翻折變換的性質(zhì),平行線的性質(zhì),矩形的對邊互相平行,等角對等邊的性質(zhì),熟記各性質(zhì)并準確識圖是解題的關(guān)鍵.4、B【解析】【分析】由折疊的性質(zhì)可得,∠BMN=90°,F(xiàn)B=AB=2,由此利用勾股定理求解即可.【詳解】解:∵把正方形紙片ABCD沿對邊中點所在的直線對折后展開,折痕為MN,AB=2,∴,∠BMN=90°,∵四邊形ABCD為正方形,AB=2,過點B折疊紙片,使點A落在MN上的點F處,∴FB=AB=2,則在Rt△BMF中,,故選B.【點睛】本題主要考查了正方形與折疊,勾股定理,解題的關(guān)鍵在于能夠熟練掌握折疊的性質(zhì).5、D【解析】【分析】根據(jù)題意分兩種情況討論若△BPE≌△CQP,則BP=CQ,BE=CP;若△BPE≌△CPQ,則BP=CP=5厘米,BE=CQ=6厘米進行求解即可.【詳解】解:當,即點Q的運動速度與點P的運動速度都是2厘米/秒,若△BPE≌△CQP,則BP=CQ,BE=CP,∵AB=BC=10厘米,AE=4厘米,∴BE=CP=6厘米,∴BP=10-6=4厘米,∴運動時間t=4÷2=2(秒);當,即點Q的運動速度與點P的運動速度不相等,∴BP≠CQ,∵∠B=∠C=90°,∴要使△BPE與△OQP全等,只要BP=PC=5厘米,CQ=BE=6厘米,即可.∴點P,Q運動的時間t=(秒).綜上t的值為2.5或2.故選:D.【點睛】本題主要考查正方形的性質(zhì)以及全等三角形的判定,解決問題的關(guān)鍵是掌握正方形的四條邊都相等,四個角都是直角;兩邊及其夾角分別對應(yīng)相等的兩個三角形全等.同時要注意分類思想的運用.6、D【解析】【分析】根據(jù)正方形的判定定理進行判斷即可.【詳解】解:A、對角線相等的平行四邊形是矩形,不符合題意;B、對角線互相平分且垂直的四邊形是菱形,不符合題意;對角線相等且互相垂直的平行四邊形是正方形,故C選項不符合題意;D選項符合題意;故選:D.【點睛】本題考查了正方形的判定,熟知正方形的判定定理是解本題的關(guān)鍵.7、D【解析】【分析】根據(jù)題意可知當△EAP與△PBQ全等時,有兩種情況:①當EA=PB時,△APE≌△BQP,②當AP=BP時,△AEP≌△BQP,分別按照全等三角形的性質(zhì)及行程問題的基本數(shù)量關(guān)系求解即可.【詳解】解:當△EAP與△PBQ全等時,有兩種情況:①當EA=PB時,△APE≌△BQP(SAS),∵AB=10cm,AE=6cm,∴BP=AE=6cm,AP=4cm,∴BQ=AP=4cm;∵動點P在線段AB上,從點A出發(fā)以2cm/s的速度向點B運動,∴點P和點Q的運動時間為:4÷2=2s,∴v的值為:4÷2=2cm/s;②當AP=BP時,△AEP≌△BQP(SAS),∵AB=10cm,AE=6cm,∴AP=BP=5cm,BQ=AE=6cm,∵5÷2=2.5s,∴2.5v=6,∴v=.故選:D.【點睛】本題考查矩形的性質(zhì)及全等三角形的判定與性質(zhì)等知識點,注意數(shù)形結(jié)合和分類討論并熟練掌握相關(guān)性質(zhì)及定理是解題的關(guān)鍵.8、B【解析】【分析】由題意作AR⊥BC于R,AS⊥CD于S,根據(jù)題意先證出四邊形ABCD是平行四邊形,再由AR=AS得平行四邊形ABCD是菱形,再根據(jù)勾股定理求出AB,最后利用菱形ABCD的面積建立關(guān)系得出紙條的寬AR的長.【詳解】解:作AR⊥BC于R,AS⊥CD于S,連接AC、BD交于點O.由題意知:AD∥BC,AB∥CD,∴四邊形ABCD是平行四邊形,∵兩個矩形等寬,∴AR=AS,∵AR?BC=AS?CD,∴BC=CD,∴平行四邊形ABCD是菱形,∴AC⊥BD,在Rt△AOB中,∵OA=3cm,OB=4cm,∴AB==5cm,∵平行四邊形ABCD是菱形,∴AB=BC=5cm,∴菱形ABCD的面積,即,解得:cm.故選:B.【點睛】本題主要考查菱形的判定以及勾股定理等知識,解題的關(guān)鍵是掌握一組鄰邊相等的平行四邊形是菱形以及菱形的面積等于對角線相乘的一半.9、B【解析】【分析】根據(jù)平行四邊形、矩形、菱形、正方形的性質(zhì)定理判斷即可.【詳解】解:平行四邊形的對角線互相平分,不一定相等,A錯誤;矩形的對角線相等且互相平分,B正確;菱形的對角線互相垂直,不一定相等,C錯誤;正方形的對角線所在的直線是正方形的對稱軸,D錯誤;故選:B.【點睛】本題考查了命題的真假判斷,掌握平行四邊形、矩形、菱形、正方形的性質(zhì)是解題的關(guān)鍵.10、A【解析】【分析】根據(jù)中位線定理可得對角線AC的長,再由菱形面積等于對角線乘積的一半可得答案.【詳解】解:∵E,F(xiàn)分別是AD,CD邊上的中點,EF=,∴AC=2EF=2,又∵BD=2,∴菱形ABCD的面積S=×AC×BD=×2×2=2,故選:A.【點睛】本題主要考查菱形的性質(zhì)與中位線定理,熟練掌握中位線定理和菱形面積公式是關(guān)鍵.二、填空題1、135°【解析】【分析】先根據(jù)正方形的性質(zhì)得到∠OAC+∠OAD=45°,再由∠OAC=∠ODA,推出∠ODA+∠OAD=45°,即可利用三角形內(nèi)角和定理求解.【詳解】解:∵四邊形ABCD是正方形,∴∠CAD=45°,∴∠OAC+∠OAD=45°,又∵∠OAC=∠ODA,∴∠ODA+∠OAD=45°,∴∠AOD=180°-∠ODA-∠OAD=135°,故答案為:135°.【點睛】本題主要考查了正方形的性質(zhì),三角形內(nèi)角和定理,解題的關(guān)鍵在于能夠熟練掌握正方形的性質(zhì).2、①②③【解析】【分析】①連接BE,可得四邊形EFBG為矩形,可得BE=FG;由△AEB≌△AED可得DE=BE,所以DE=FG;②由矩形EFBG可得OF=OB,則∠OBF=∠OFB;由∠OBF=∠ADE,則∠OFB=∠ADE;由四邊形ABCD為正方形可得∠BAD=90°,即∠AHD+∠ADH=90°,所以∠AHD+∠OFH=90°,即∠FMH=90°,可得DE⊥FG;③由②中的結(jié)論可得∠BFG=∠ADE;④由于點E為AC上一動點,當DE⊥AC時,根據(jù)垂線段最短可得此時DE最小,最小值為2,由①知FG=DE,所以FG的最小值為2.【詳解】解:①連接BE,交FG于點O,如圖,∵EF⊥AB,EG⊥BC,∴∠EFB=∠EGB=90°.∵∠ABC=90°,∴四邊形EFBG為矩形.∴FG=BE,OB=OF=OE=OG.∵四邊形ABCD為正方形,∴AB=AD,∠BAC=∠DAC=45°.在△ABE和△ADE中,,∴△ABE≌△ADE(SAS).∴BE=DE.∴DE=FG.∴①正確;②延長DE,交FG于M,交FB于點H,∵△ABE≌△ADE,∴∠ABE=∠ADE.由①知:OB=OF,∴∠OFB=∠ABE.∴∠OFB=∠ADE.∵∠BAD=90°,∴∠ADE+∠AHD=90°.∴∠OFB+∠AHD=90°.即:∠FMH=90°,∴DE⊥FG.∴②正確;③由②知:∠OFB=∠ADE.即:∠BFG=∠ADE.∴③正確;④∵點E為AC上一動點,∴根據(jù)垂線段最短,當DE⊥AC時,DE最?。逜D=CD=4,∠ADC=90°,∴AC==4.∴DE=AC=2.由①知:FG=DE,∴FG的最小值為2,∴④錯誤.綜上,正確的結(jié)論為:①②③.故答案為:①②③.【點睛】本題考查了全等三角形的性質(zhì)與判定,正方形的性質(zhì),勾股定理,垂線段最短,掌握正方形的性質(zhì)是解題的關(guān)鍵.3、8【解析】【分析】根據(jù)正方形的軸對稱的性質(zhì)可得陰影部分的面積等于正方形的面積的一半,然后列式進行計算即可得解.【詳解】解:×4×4=8.故答案為:8.【點睛】本題考查正方形的性質(zhì),軸對稱的性質(zhì),將陰影面積轉(zhuǎn)化為三角形面積是解題的關(guān)鍵,學會于轉(zhuǎn)化的思想思考問題.4、6和8##8和6【解析】【分析】根據(jù)比例設(shè)兩條對角線分別為3x、4x,再根據(jù)菱形的面積等于兩對角線乘積的一半列式求出x的值即可.【詳解】解:設(shè)兩條對角線分別為3x、4x,根據(jù)題意得,×3x?4x=24,解得x=2(負值舍去),∴菱形的兩對角線的長分別為,.故答案為:6和8.【點睛】本題考查了菱形的面積,主要利用了菱形的對角線互相垂直平分的性質(zhì),菱形的面積的求法,需熟記.5、【解析】【分析】設(shè)則再利用矩形的性質(zhì)建立方程求解從而可得答案.【詳解】解:四邊形BHDG為菱形,設(shè)AD=3AB,設(shè)則矩形ABCD,解得:故答案為:【點睛】本題考查的是勾股定理的應(yīng)用,矩形的性質(zhì),菱形的性質(zhì),利用圖形的性質(zhì)建立方程確定之間的關(guān)系是解本題的關(guān)鍵.6、1【解析】【分析】根據(jù)基本作圖,得到EC是∠BCD的平分線,由AB∥CD,得到∠BEC=∠ECD=∠ECB,從而得到BE=BC,利用線段差計算即可.【詳解】根據(jù)基本作圖,得到EC是∠BCD的平分線,∴∠ECD=∠ECB,∵四邊形ABCD是平行四邊形,∴AB∥CD,∴∠BEC=∠ECD,∴∠BEC=∠ECB,∴BE=BC=5,∴AE=BE-AB=5-4=1,故答案為:1.【點睛】本題考查了角的平分線的尺規(guī)作圖,等腰三角形的判定,平行線的性質(zhì),平行四邊形的性質(zhì),熟練掌握尺規(guī)作圖,靈活運用等腰三角形的判定定理是解題的關(guān)鍵.7、20【解析】【分析】連接BD,交AC于O,根據(jù)題意和正方形的性質(zhì)可求得EF=4,AC⊥BD,由即可求解.【詳解】解:如圖,連接BD,交AC于O,∵四邊形ABCD是正方形,AC=10,∴AC=BD=10,AC⊥BD,OA=OC=OB=OD=5,∵AE=CF=3,∴EO=FO=2,∴EF=EO+FO=4,∴故答案為:20.【點睛】本題主要考查了正方形的性質(zhì),熟練掌握正方形的對角線相等且互相垂直平分是解題的關(guān)鍵.8、##【解析】【分析】根據(jù)矩形性質(zhì)得出AD=BC,AB=CD,∠BAD=90°,OA=OC=AC,BO=OD=BD,AC=BD,推出OA=OB=OC=OD,得出等邊三角形AOB,求出BD,根據(jù)勾股定理求出AD即可.【詳解】解:∵四邊形ABCD是矩形,∴∠BAD=90°,OA=OC=AC,BO=OD=BD,AC=BD,∴OA=OB=OC=OD,∵∠AOB=60°,OB=OA,∴△AOB是等邊三角形,∵AB=3,∴OA=OB=AB=3,∴BD=2OB=6,在Rt△BAD中,AB=3,BD=6,由勾股定理得:AD=3,∵四邊形ABCD是矩形,∴AB=CD=3,AD=BC=3,∴矩形ABCD的周長是AB+BC+CD+AD=6+6.故答案為:6+6.【點睛】本題考查了矩形性質(zhì),等邊三角形的性質(zhì)和判定,勾股定理等知識點,關(guān)鍵是求出AD的長.9、25°【解析】【分析】利用翻折變換的性質(zhì)即可解決.【詳解】解:由折疊可知,∠EF=∠AEF,∠EC=∠BEC=65°,∵∠EF+∠AEF+∠EC+∠BEC=180°,∴∠EF+∠AEF=50°,∴∠AEF=25°,故答案為:25°.【點睛】本題考查了折疊的性質(zhì),熟練掌握折疊的性質(zhì)是解題的關(guān)鍵.10、##【解析】【分析】如圖,取AD的中點O,連接OP、OC,然后求出OP、OC的長,最后根據(jù)三角形的三邊關(guān)系即可解答.【詳解】解:如圖,取AD的中點O,連接OP、OC∵∠PAD=∠PDB,∠PDB+∠ADP=90°,∴∠PAD+∠ADP=90°,即∠APD=90°,∵AO=OD,∴PO=OA=AD,∴∴OP=,∵BD=CD=4,OD=,∴∵PC≤OP+OC,∴PC≤,∴PC的最大值為.故填:.【點睛】本題主要考查了直角三角形斜邊中線的性質(zhì)、勾股定理等知識點,解題的關(guān)鍵在于正確添加常用輔助線,進而求得OP、OC的長.三、解答題1、(1)見詳解;(2)見詳解【分析】(1)根據(jù)平行四邊形的判定定理得四邊形是平行四邊形,進而即可得到結(jié)論;(2)先推出∠EBC=∠DCB,進而可得∠EBC=∠DCB=90°,然后得到結(jié)論.【詳解】(1)證明:∵,∴BE=CD,∵,∴四邊形是平行四邊形,∴BECD;(2)∵,∴AB=AC,∠ABE=∠ACD,∴∠ABC=∠ACB,∴∠ABE+∠ABC=∠ACD+∠ACB,即:∠EBC=∠DCB,∵BE∥CD,∴∠EBC+∠DCB=180°,∴∠EBC=∠DCB=90°,∴四邊形是矩形.【點睛】本題主要考查平行四邊形的判定和性質(zhì),矩形的判定定理,全等三角形的性質(zhì),熟練掌握矩形的判定定理是關(guān)鍵.2、見解析【分析】先根據(jù)平行線的性質(zhì)得到∠DEC=∠BCE,∠DFC=∠GCF,再由角平分線的定義得到,,則∠DEC=∠DCE,∠DFC=∠DCF,推出DE=DC,DF=DC,則DE=DF,再由AD=CD,即可證明四邊形AECF是平行四邊形,再由∠ECF=∠DCE+∠DCF=,即可得證.【詳解】證明:∵PQ∥BC,∴∠DEC=∠BCE,∠DFC=∠GCF,∵CE平分∠BCA,CF平分∠ACG,∴,,∴∠DEC=∠DCE,∠DFC=∠DCF,∴DE=DC,DF=DC,∴DE=DF,∵點D是邊AC的中點,∴AD=CD,∴四邊形AECF是平行四邊形,∵∠BCA+∠ACG=180°,∴∠ECF=∠DCE+∠DCF=,∴平行四邊形AECF是矩形.【點睛】本題主要考查了矩形的判定,平行線的性質(zhì),角平分線的定義,等腰三角形的性質(zhì)與判定,等等,熟練掌握矩形的判定條件是解題的關(guān)鍵.3、(1)見解析;(2)12,0;-8,0;0,16;(3)①當M的坐標為(2,0)或(4,0)時,△OMN的一條邊與BC平行;②當M的坐標為(0,10)或(12,0)或(,0)時,,△MOE是等腰三角形.
【分析】(1)設(shè),,,則,由勾股定理求出,即可得出結(jié)論;(2)由的面積求出m的值,從而得到、、的長,即可得到A、B、C的坐標;(3)①分當時,;當時,;得出方程,解方程即可;②由直角三角形的性質(zhì)得出,根據(jù)題意得出為等腰三角形,有3種可能:如果;如果;如果;分別得出方程,解方程即可.【詳解】解:(1)證明:設(shè),,,則,在中,,,∴是等腰三角形;(2)∵,,∴,∴,,,.∴A點坐標為(12,0),B點坐標為(-8,0),C點坐標為(0,16),故答案為:12,0;-8,0;0,16;(3)①如圖3-1所示,當MN∥BC時,∵AB=AC,∴∠ABC=∠ACB,∵MN∥BC,∴∠AMN=∠ABC,∠ANM=∠ACB,∴∠AMN=∠ANM,∴AM=AN,∴AM=BM,∴M為AB的中點,∵,∴,∴,∴點M的坐標為(2,0);如圖3-2所示,當ON∥BC時,同理可得,∴,∴M點的坐標為(4,0);∴綜上所述,當M的坐標為(2,0)或(4,0)時,△OMN的一條邊與BC平行;
②如圖3-3所示,當OM=OE時,∵E是AC的中點,∠AOC=90°,,∴,∴此時M的坐標為(0,10);如圖3-4所示,當時,∴此時M點與A點重合,∴
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年詞匯英語中考試題及答案
- 古詩考試題型選擇及答案
- 2025年理論考查課考試題及答案
- 師大附小筆試題目及答案
- 化學與極地科學研究(極地環(huán)境)聯(lián)系試題
- 化學情景判斷題專項試題
- 古羅馬考試題目及答案
- 中國工商考試試題及答案
- 2025年高考物理“壓軸題解密”思路方法試題(一)
- 2025廣西科技大學招聘附屬醫(yī)院(臨床醫(yī)學院)領(lǐng)導干部3人考前自測高頻考點模擬試題及1套參考答案詳解
- 自考:【00107現(xiàn)代管理學】自考真題2018年4月、10月2套真題
- 組織學與胚胎學課件 組織與胚胎學筆記學習資料
- 《公路技術(shù)狀況評定》課件-任務(wù)六:公路技術(shù)狀況指數(shù)MQI
- Unit 3 Amazing animals Section A What pets do you know 說課(教學設(shè)計)-2024-2025學年人教PEP版(2024)英語三年級上冊
- 中級財務(wù)會計知到課后答案智慧樹章節(jié)測試答案2025年春云南財經(jīng)大學
- 2025青海省建筑安全員B證考試題庫及答案
- 現(xiàn)代紡織物清潔技術(shù)培訓匯報教程
- 臨床檢驗基礎(chǔ)知到智慧樹章節(jié)測試課后答案2024年秋上海健康醫(yī)學院
- 鑄牢中華民族共同體意識心得感悟7篇
- 《中國海洋大學》課件
- 神話故事民間故事《后羿射日》繪本課件
評論
0/150
提交評論