難點(diǎn)解析-人教版8年級數(shù)學(xué)上冊《三角形》專項(xiàng)攻克試題(含答案及解析)_第1頁
難點(diǎn)解析-人教版8年級數(shù)學(xué)上冊《三角形》專項(xiàng)攻克試題(含答案及解析)_第2頁
難點(diǎn)解析-人教版8年級數(shù)學(xué)上冊《三角形》專項(xiàng)攻克試題(含答案及解析)_第3頁
難點(diǎn)解析-人教版8年級數(shù)學(xué)上冊《三角形》專項(xiàng)攻克試題(含答案及解析)_第4頁
難點(diǎn)解析-人教版8年級數(shù)學(xué)上冊《三角形》專項(xiàng)攻克試題(含答案及解析)_第5頁
已閱讀5頁,還剩26頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

人教版8年級數(shù)學(xué)上冊《三角形》專項(xiàng)攻克考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計(jì)30分)1、如圖,三角形的個(gè)數(shù)是()A.4個(gè) B.3個(gè) C.2個(gè) D.1個(gè)2、下面四個(gè)圖形中,線段是的高的是(

)A. B.C. D.3、如圖,∠AOB是一鋼架,∠AOB=15°,為使鋼架更加牢固,需在其內(nèi)部添加一些鋼管EF、FG、GH…添的鋼管長度都與OE相等,則最多能添加這樣的鋼管(

)根.A.2 B.4 C.5 D.無數(shù)4、如圖,在△ABC中,∠C=90°,點(diǎn)D在AC上,DE∥AB,若∠CDE=165°,則∠B的度數(shù)為()A.15° B.55° C.65° D.75°5、如圖,直線l1∥l2,線段AB交l1,l2于D,B兩點(diǎn),過點(diǎn)A作AC⊥AB,交直線l1于點(diǎn)C,若∠1=15,則∠2=()A.95 B.105 C.115 D.1256、如圖4-2,作出正五邊形的所有對角線,得到一個(gè)五角星,那么,在五角星含有的多邊形中(

)A.只有三角形 B.只有三角形和四邊形C.只有三角形、四邊形和五邊形 D.只有三角形、四邊形、五邊形和六邊形7、如圖,AB∥CD,∠BED=61°,∠ABE的平分線與∠CDE的平分線交于點(diǎn)F,則∠DFB=()A.149° B.149.5° C.150° D.150.5°8、如圖所示,已知G為直角△ABC的重心,,且,,則△AGD的面積是(

)A.9cm2 B.12cm2 C.18cm2 D.20cm29、已知三角形的兩邊分別為1和4,第三邊長為整數(shù),則該三角形的周長為(

)A.7 B.8 C.9 D.1010、長度分別為2,3,3,4的四根細(xì)木棒首尾相連,圍成一個(gè)三角形(木棒允許連接,但不允許折斷),得到的三角形的最長邊長為()A.4 B.5 C.6 D.7第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計(jì)40分)1、如圖所示,過正五邊形的頂點(diǎn)作一條射線與其內(nèi)角的角平分線相交于點(diǎn),且,則_____度.2、如圖,在正五邊形ABCDE中,AC與BE相交于點(diǎn)F,則∠AFE的度數(shù)為_____.3、如圖,在中,作∠ABC的角平分線與∠ACB的外角的角平分線交于點(diǎn);的角平分線與角平分線交于;如此下去,則________.4、如圖,在中,已知,,是上的高,是上的高,是和的交點(diǎn),的度數(shù)是________.5、一副三角尺如圖擺放,是延長線上一點(diǎn),是上一點(diǎn),,,,若∥,則等于_________度.6、如圖a∥b,∠1+∠2=75°,則∠3+∠4=______________.7、如圖,當(dāng)∠ABC,∠C,∠D滿足條件______________時(shí),AB∥ED.8、如圖,在△ABC中,∠A=60°,BD、CD分別平分∠ABC、∠ACB,M、N、Q分別在DB、DC、BC的延長線上,BE、CE分別平分∠MBC、∠BCN,BF、CF分別平分∠EBC、∠ECQ,則∠F=________.9、如圖,在四邊形ABCD中,∠A+∠B=210°,作∠ADC、∠BCD的平分線交于點(diǎn)O1,再作∠O1DC、∠O1CD的平分線交于點(diǎn)O2,則∠O2的度數(shù)為_______________.10、如圖,將三角形紙片ABC沿EF折疊,使得A點(diǎn)落在BC上點(diǎn)D處,連接DE,DF,.設(shè),,則α與β之間的數(shù)量關(guān)系是________.三、解答題(5小題,每小題6分,共計(jì)30分)1、如圖,已知在中,,AE是BC邊上的高,AD是的角平分線,求的度數(shù).2、直線MN與直線PQ相交于O,∠POM=60°,點(diǎn)A在射線OP上運(yùn)動(dòng),點(diǎn)B在射線OM上運(yùn)動(dòng).(1)如圖1,∠BAO=70°,已知AE、BE分別是∠BAO和∠ABO角的平分線,試求出∠AEB的度數(shù).(2)如圖2,已知AB不平行CD,AD、BC分別是∠BAP和∠ABM的角平分線,又DE、CE分別是∠ADC和∠BCD的角平分線,點(diǎn)A、B在運(yùn)動(dòng)的過程中,∠CED的大小是否會(huì)發(fā)生變化?若發(fā)生變化,請說明理由;若不發(fā)生變化,試求出其值.(3)在(2)的條件下,在△CDE中,如果有一個(gè)角是另一個(gè)角的2倍,請直接寫出∠DCE的度數(shù).3、如圖,在四邊形中,,,平分交于點(diǎn),交的延長線于點(diǎn).(1)求的大??;(2)若,求的大?。?、已知,點(diǎn)P在直線之間,連接.(1)探究發(fā)現(xiàn):(填空)如圖1,過P作,______(已知)(____)_______;(2)解決問題:①如圖2,延長至點(diǎn)分別平分交于點(diǎn)Q,試判斷與存在怎樣的數(shù)量關(guān)系,并說明理由;②如圖3,若,分別作分別平分,求的度數(shù)(直接寫出結(jié)果).5、如圖,在三角形中,,垂足為A,過點(diǎn)A畫的垂線段,垂足為點(diǎn)C,過點(diǎn)C畫直線CDOA,交線段于點(diǎn)D.(1)補(bǔ)全圖形(按要求畫圖);(2)求的度數(shù):(3)如果,,,求點(diǎn)A到直線的距離.-參考答案-一、單選題1、B【解析】【分析】根據(jù)三角形的定義可直接進(jìn)行解答.【詳解】解:由圖可得:三角形有:△ABC、△ABD、△ADC,所以三角形的個(gè)數(shù)為3個(gè);故選B.【考點(diǎn)】本題主要考查三角形的概念,正確理解三角形的概念是解題的關(guān)鍵.2、D【解析】【分析】根據(jù)三角形高的定義進(jìn)行判斷.【詳解】解:線段AD是△ABC的高,則過點(diǎn)A作對邊BC的垂線,則垂線段AD為△ABC的高.選項(xiàng)A、B、C錯(cuò)誤,故選:D.【考點(diǎn)】本題考查了三角形的高:三角形的高是指從三角形的一個(gè)頂點(diǎn)向?qū)呑鞔咕€,連接頂點(diǎn)與垂足之間的線段.3、C【解析】【詳解】分析:因?yàn)槊扛摴艿拈L度相等,可推出圖中的5個(gè)三角形都為等腰三角形,再根據(jù)外角性質(zhì),推出最大的∠0BQ的度數(shù)(必須≤90°),就可得出鋼管的根數(shù).詳解:如圖所示,∠AOB=15°,∵OE=FE,∴∠GEF=∠EGF=15°×2=30°,∵EF=GF,所以∠EGF=30°∴∠GFH=15°+30°=45°∵GH=GF∴∠GHF=45°,∠HGQ=45°+15°=60°∵GH=HQ,∠GQH=60°,∠QHB=60°+15°=75°,∵QH=QB∴∠QBH=75°,∠HQB=180-75°-75°=30°,故∠OQB=60°+30°=90°,不能再添加了.故選C.點(diǎn)睛:根據(jù)等腰三角形的性質(zhì)求出各相等的角,然后根據(jù)三角形內(nèi)角和外角的關(guān)系解答.4、D【解析】【分析】根據(jù)鄰補(bǔ)角定義可得∠ADE=15°,由平行線的性質(zhì)可得∠A=∠ADE=15°,再根據(jù)三角形內(nèi)角和定理即可求得∠B=75°.【詳解】解:∵∠CDE=165°,∴∠ADE=15°,∵DE∥AB,∴∠A=∠ADE=15°,∴∠B=180°﹣∠C﹣∠A=180°﹣90°﹣15°=75°,故選D.【考點(diǎn)】本題考查了平行線的性質(zhì)、三角形內(nèi)角和定理等,熟練掌握平行線的性質(zhì)以及三角形內(nèi)角和定理是解題的關(guān)鍵.5、B【解析】【分析】利用垂直定義和三角形內(nèi)角和定理計(jì)算出∠ADC的度數(shù),再利用平行線的性質(zhì)可得∠3的度數(shù),再根據(jù)鄰補(bǔ)角的性質(zhì)可得答案.【詳解】解:∵AC⊥AB,∴∠A=90,∵∠1=15,∴∠ADC=180-90-15=75,∵l1∥l2,∴∠3=∠ADC=75,∴∠2=180-75=105,故選:B.【考點(diǎn)】此題主要運(yùn)用垂直定義、三角形內(nèi)角和定理以及平行線的性質(zhì),解決角之間的關(guān)系,本題關(guān)鍵是掌握兩直線平行,同位角相等.6、C【解析】【分析】由正五邊形的性質(zhì)和五角星的特點(diǎn)得出五角星含有的多邊形中,有三角形、四邊形和五邊形.【詳解】解:根據(jù)題意得:在五角星含有的多邊形中,有三角形、四邊形和五邊形,故選C.【考點(diǎn)】本題考查了正五邊形的性質(zhì)、五角星的特點(diǎn),熟練掌握正五邊形的性質(zhì)是解決問題的關(guān)鍵.7、B【解析】【分析】過點(diǎn)E作EG∥AB,根據(jù)平行線的性質(zhì)可得“∠ABE+∠BEG=180°,∠GED+∠EDC=180°”,根據(jù)角的計(jì)算以及角平分線的定義可得“∠FBE+∠EDF=∠ABE+∠CDE)”,再依據(jù)四邊形內(nèi)角和為360°結(jié)合角的計(jì)算即可得出結(jié)論.【詳解】如圖,過點(diǎn)E作EG∥AB,∵AB∥CD,∴AB∥CD∥GE,∴∠ABE+∠BEG=180°,∠GED+∠EDC=180°,∴∠ABE+∠CDE+∠BED=360°;又∵∠BED=61°,∴∠ABE+∠CDE=299°.∵∠ABE和∠CDE的平分線相交于F,∴∠FBE+∠EDF=(∠ABE+∠CDE)=149.5°,∵四邊形的BFDE的內(nèi)角和為360°,∴∠BFD=360°-149.5°-61°=149.5°.故選B.【考點(diǎn)】本題考查了平行線的性質(zhì)、三角形內(nèi)角和定理以及四邊形內(nèi)角和為360°,解決該題型題目時(shí),根據(jù)平行線的性質(zhì)得出相等(或互補(bǔ))的角是關(guān)鍵.8、A【解析】【分析】由于G為直角△ABC的重心,所以BG=2GD,AD=DC,根據(jù)三角形的面積公式可以推出,而△ABC的面積根據(jù)已知條件可以求出,那么△AGD的面積即可求得.【詳解】解:∵G為直角△ABC的重心,∴BG=2GD,AD=DC,∴,而,∴,故選:A.【考點(diǎn)】本題主要考查了三角形的重心的性質(zhì),解題的關(guān)鍵是根據(jù)G為直角△ABC的重心,得出BG=2GD,AD=DC.9、C【解析】【分析】根據(jù)三角形的三邊關(guān)系“第三邊大于兩邊之差,而小于兩邊之和”,求得第三邊的取值范圍;再根據(jù)第三邊是整數(shù),從而求得周長.【詳解】設(shè)第三邊為x,根據(jù)三角形的三邊關(guān)系,得:4-1<x<4+1,即3<x<5,∵x為整數(shù),∴x的值為4.

三角形的周長為1+4+4=9.故選C.【考點(diǎn)】此題考查了三角形的三邊關(guān)系.關(guān)鍵是正確確定第三邊的取值范圍.10、B【解析】【分析】利用三角形的三邊關(guān)系列舉出所圍成三角形的不同情況,通過比較得到結(jié)論.【詳解】①長度分別為5、3、4,能構(gòu)成三角形,且最長邊為5;②長度分別為2、6、4,不能構(gòu)成三角形;③長度分別為2、7、3,不能構(gòu)成三角形;④長度分別為6、3、3,不能構(gòu)成三角形;綜上所述,得到三角形的最長邊長為5.故選:B.【考點(diǎn)】此題考查構(gòu)成三角形的條件,三角形的三邊關(guān)系,解題中運(yùn)用不同情形進(jìn)行討論的方法,注意避免遺漏構(gòu)成的情況.二、填空題1、66【解析】【分析】首先根據(jù)正五邊形的性質(zhì)得到度,然后根據(jù)角平分線的定義得到度,再利用三角形內(nèi)角和定理得到的度數(shù).【詳解】解:∵五邊形為正五邊形,∴度,∵是的角平分線,∴度,∵,∴.故答案為66.【考點(diǎn)】本題考查了多邊形內(nèi)角與外角,題目中還用到了角平分線的定義及三角形內(nèi)角和定理.2、72°【解析】【分析】首先根據(jù)正五邊形的性質(zhì)得到AB=BC=AE,∠ABC=∠BAE=108°,然后利用三角形內(nèi)角和定理得∠BAC=∠BCA=∠ABE=∠AEB=(180°?108°)÷2=36°,最后利用三角形的外角的性質(zhì)得到∠AFE=∠BAC+∠ABE=72°.【詳解】∵五邊形ABCDE為正五邊形,∴AB=BC=AE,∠ABC=∠BAE=108°,∴∠BAC=∠BCA=∠ABE=∠AEB=(180°?108°)÷2=36°,∴∠AFE=∠BAC+∠ABE=72°,故答案為72°.【考點(diǎn)】本題考查的是正多邊形和圓,利用數(shù)形結(jié)合求解是解答此題的關(guān)鍵.3、【解析】【分析】根據(jù)角平分線的定義以及三角形外角的性質(zhì),三角形內(nèi)角和定理得出與,與的關(guān)系,找出規(guī)律即可.【詳解】解:設(shè)BC延長于點(diǎn)D,∵,的角平分線與的外角的角平分線交于點(diǎn),∴,同理可得,,∴,∵,∴,故答案為:.【考點(diǎn)】本題主要考查三角形外角的性質(zhì),角平分線的定義,三角形內(nèi)角和定理,熟練掌握三角形外角的性質(zhì)和角平分線的定義,找出角度之間的規(guī)律,是解題的關(guān)鍵.4、120°【解析】【分析】先根據(jù)三角形內(nèi)角和定理求出∠A的度數(shù),再根據(jù)CF是AB上的高得出∠ACF的度數(shù),再由三角形外角的性質(zhì)即可得出結(jié)論.【詳解】解:∵∠ABC=66°,∠ACB=54°,∴∠A=60°,∵CF是AB上的高,∴在△ACF中,∠ACF=180°-∠AFC-∠A=30°,在△CEH中,∠ACF=30°,∠CEH=90°,∴∠EHF=∠ACF+∠CEH=30°+90°=120°.故答案為120°.【考點(diǎn)】本題考查的是三角形內(nèi)角和定理及三角形外角的性質(zhì)、三角形的高線等知識(shí),解題的關(guān)鍵是熟練掌握基本知識(shí),屬于中考??碱}型.5、15【解析】【分析】根據(jù)三角形內(nèi)角和定理得出∠ACB=60°,∠DEF=45°,再根據(jù)兩直線平行內(nèi)錯(cuò)角相等得到∠CEF=∠ACB=60°,根據(jù)角的和差求解即可.【詳解】解:在△ABC中,∵,,∴∠ACB=60°.在△DEF中,∵∠EDF=90°,,∴∠DEF=45°.又∵∥,∴∠CEF=∠ACB=60°,∴∠CED=∠CEF-∠DEF=60°-45°=15°.故答案為:15.【考點(diǎn)】本題考查三角形內(nèi)角和定理及平行線的性質(zhì),熟練掌握平行線的性質(zhì)是解題的關(guān)鍵.6、105°【解析】【分析】根據(jù)平行線的性質(zhì)和等量代換可以求得∠3+∠4=∠5+∠4,所以根據(jù)三角形內(nèi)角和是180°進(jìn)行解答即可.【詳解】如圖,∵a∥b,∴∠3=∠5,又∠1+∠2=75°,∠1+∠2+∠4+∠5=180°,∴∠5+∠4=105°,∴∠3+∠4=∠5+∠4=105°,故答案是:105°.【考點(diǎn)】本題考查了平行線的性質(zhì)和三角形內(nèi)角和定理.解題的技巧性在于把求(∠3+∠4)的值轉(zhuǎn)化為求同一三角形內(nèi)的(∠5+∠4)的值.7、∠ABC=∠C+∠D【解析】【分析】延長CB交DE于F,根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和求出∠EFB=∠C+∠D,再根據(jù)同位角相等,兩直線平行解答即可.【詳解】如圖,延長CB交DE于F,則∠EFB=∠C+∠D,當(dāng)∠ABC=∠EFB時(shí),AB∥ED,所以,當(dāng)∠ABC=∠C+∠D時(shí),AB∥ED.故答案為∠ABC=∠C+∠D.【考點(diǎn)】本題考查了平行線的判定,作輔助線,把∠C、∠D轉(zhuǎn)化為一個(gè)角的度數(shù)是解題的關(guān)鍵.8、15°【解析】【分析】先由BD、CD分別平分∠ABC、∠ACB得到∠DBC=∠ABC,∠DCB=∠ACB,在△ABC中根據(jù)三角形內(nèi)角和定理得∠DBC+∠DCB=(∠ABC+∠ACB)=(180°-∠A)=60°,則根據(jù)平角定理得到∠MBC+∠NCB=300°;再由BE、CE分別平分∠MBC、∠BCN得∠5+∠6=∠MBC,∠1=∠NCB,兩式相加得到∠5+∠6+∠1=(∠NCB+∠NCB)=150°,在△BCE中,根據(jù)三角形內(nèi)角和定理可計(jì)算出∠E=30°;再由BF、CF分別平分∠EBC、∠ECQ得到∠5=∠6,∠2=∠3+∠4,根據(jù)三角形外角性質(zhì)得到∠3+∠4=∠5+∠F,∠2+∠3+∠4=∠5+∠6+∠E,利用等量代換得到∠2=∠5+∠F,2∠2=2∠5+∠E,再進(jìn)行等量代換可得到∠F=∠E.【詳解】解:∵BD、CD分別平分∠ABC、∠ACB,∠A=60°,∴∠DBC=∠ABC,∠DCB=∠ACB,∴∠DBC+∠DCB=(∠ABC+∠ACB)=(180°-∠A)=×(180°-60°)=60°,∴∠MBC+∠NCB=360°-60°=300°,∵BE、CE分別平分∠MBC、∠BCN,∴∠5+∠6=∠MBC,∠1=∠NCB,∴∠5+∠6+∠1=(∠NCB+∠NCB)=150°,∴∠E=180°-(∠5+∠6+∠1)=180°-150°=30°,∵BF、CF分別平分∠EBC、∠ECQ,∴∠5=∠6,∠2=∠3+∠4,∵∠3+∠4=∠5+∠F,∠2+∠3+∠4=∠5+∠6+∠E,即∠2=∠5+∠F,2∠2=2∠5+∠E,∴2∠F=∠E,∴∠F=∠E=×30°=15°.故答案為:15°.【考點(diǎn)】本題考查了三角形內(nèi)角和定理:三角形內(nèi)角和是180°.也考查了三角形外角性質(zhì).9、【解析】【分析】先根據(jù)、的平分線交于點(diǎn),得出,再根據(jù)、的平分線交于點(diǎn),得出,再進(jìn)行計(jì)算即可【詳解】解:∵在四邊形ABCD中,∠A+∠B=210°,∴∠ADC+∠DCB=150°,、的平分線交于點(diǎn),,、的平分線交于點(diǎn),=,∴∠O2=180°-37.5°=,故答案為:【考點(diǎn)】本題主要考查了多邊形的內(nèi)角與外角以及角平分線的定義的運(yùn)用,解決問題的關(guān)鍵是找出操作的變化規(guī)律,得到∠O2與∠ADC+∠DCB之間的關(guān)系.10、【解析】【分析】由折疊的性質(zhì)可知:,再利用三角形內(nèi)角和定理及角之間的關(guān)系證明,,即可找出α與β之間的數(shù)量關(guān)系.【詳解】解:由折疊的性質(zhì)可知:,∵,∴,∴,∵,,∴,∴,故答案為:.【考點(diǎn)】本題考查折疊的性質(zhì),三角形內(nèi)角和定理,解題的關(guān)鍵是根據(jù)折疊的性質(zhì)求出,根據(jù)角之間的關(guān)系求出,.三、解答題1、10°【解析】【分析】先根據(jù)三角形內(nèi)角和定理求出∠BAC,再根據(jù)角平分線的定義求出∠BAD,根據(jù)直角三角形兩銳角互余求出∠BAE的度數(shù)即可得到答案.【詳解】解:∵∠B=30°,∠C=50°,∴∠BAC=180°-∠B-∠C=100°,∵AD是∠BAC的角平分線,∴,∵AE是BC邊上的高,∴∠AEB=90°,∴∠BAE=90°-∠B=60°,∴∠DAE=∠BAE-∠BAD=10°.【考點(diǎn)】本題主要考查了三角形內(nèi)角和定理,角平分線的定義,直角三角形兩銳角互余,熟知相關(guān)知識(shí)是解題的關(guān)鍵.2、(1)∠AEB的度數(shù)為120°;(2)∠CED的大小不發(fā)生變化,其值為60°;(3)∠DCE的度數(shù)為40°或80°.【解析】【分析】(1)由∠POM=60°,∠BAO=70°,可求出∠ABO的值,根據(jù)AE、BE分別是∠BAO和∠ABO的角平分線,可得∠EAB和∠EBA的值,在△EAB中,根據(jù)三角形內(nèi)角和即可得出∠AEB的大小;(2)不發(fā)生變化,延長BC、AD交于點(diǎn)F,根據(jù)角平分線的定義以及三角形內(nèi)角和可得∠F=90°-∠AOB,∠CED=90°-∠F,即可得出∠CED的度數(shù);(3)分三種情況求解即可.【詳解】解:(1)∵∠POM=60°,∠BAO=70°,∴∠ABO=50°.∵AE、BE分別是∠BAO和∠ABO的角平分線,∴∠EAB=∠OAB=35°,∠EBA=∠OBA=25°,∴∠AEB=180°-35°-25°=120°;(2)不發(fā)生變化,理由如下:如圖,延長BC、AD交于點(diǎn)F,∵點(diǎn)D、C分別是∠PAB和∠ABM的角平分線上的兩點(diǎn),∴∠FAB=∠PAB=(180°-∠OAB),∠FBA=∠MBA=(180°-∠OBA),∴∠FAB+∠FBA=(180°-∠OAB)+(180°-∠OBA)=(180°+∠AOB)=90°+∠AOB,∵∠AOB=60°,∴∠F=180°-(∠FAB+∠FBA)=90°-∠AOB=60°,同理可求∠CED=90°-∠F=60°;(3)①當(dāng)∠DCE=2∠E時(shí),顯然不符合題意;②當(dāng)∠DCE=2∠CDE時(shí),∠DCE==80°;③當(dāng)∠DCE=∠CDE時(shí),∠DCE==40°,綜上可知,∠DCE的度數(shù)40°或80°.【考點(diǎn)】本題考查角平分線的定義,三角形內(nèi)角和定理,以及分類討論的數(shù)學(xué)思想,解題的關(guān)鍵是熟練掌握三角形的內(nèi)角和的定理.3、(1)25°(2)23°【解析】【分析】(1)先由平行線的性質(zhì)求出∠ABC=180°-∠BCD=180°-130°=50°,再根據(jù)解平分線的定義求解即可;∠BAD=180°-∠ADC=180°-48°=132°,再根據(jù)三角形內(nèi)角和定理求出(2)先由平行線的性質(zhì)求出∠AEB=180°-∠BAD-∠ABE=23°,最后由對頂角性質(zhì)得解.(1)解:∵,∴∠ABC+∠BCD=180°,∴∠ABC=180°-∠BCD=180°-130°=50°,∵平分∴∠ABE=∠ABC==25°;(2)解:∵,∴∠BAD+∠ADC=180°,∴∠BAD=180°-∠ADC=180°-48°=132°,∵∠BAD+∠ABE+∠AEB=180°,又由(1)知:∠ABE=25°,∴∠AEB=18

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論