考點解析人教版8年級數(shù)學(xué)上冊《軸對稱》章節(jié)練習(xí)試卷(詳解版)_第1頁
考點解析人教版8年級數(shù)學(xué)上冊《軸對稱》章節(jié)練習(xí)試卷(詳解版)_第2頁
考點解析人教版8年級數(shù)學(xué)上冊《軸對稱》章節(jié)練習(xí)試卷(詳解版)_第3頁
考點解析人教版8年級數(shù)學(xué)上冊《軸對稱》章節(jié)練習(xí)試卷(詳解版)_第4頁
考點解析人教版8年級數(shù)學(xué)上冊《軸對稱》章節(jié)練習(xí)試卷(詳解版)_第5頁
已閱讀5頁,還剩29頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

人教版8年級數(shù)學(xué)上冊《軸對稱》章節(jié)練習(xí)考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、一條船從海島A出發(fā),以15海里/時的速度向正北航行,2小時后到達海島B處.燈塔C在海島在海島A的北偏西42°方向上,在海島B的北偏西84°方向上.則海島B到燈塔C的距離是(

)A.15海里 B.20海里 C.30海里 D.60海里2、如圖,在中,,觀察圖中尺規(guī)作圖的痕跡,則的度數(shù)為(

)A. B. C. D.3、如圖,已知AB=AC=BD,那么∠1與∠2之間的關(guān)系是()A.∠1=2∠2 B.2∠1+∠2=180°C.∠1+3∠2=180° D.3∠1-∠2=180°4、若點P(m﹣1,5)與點Q(3,2﹣n)關(guān)于y軸對稱,則m+n的值是()A.﹣5 B.1 C.5 D.115、如果點與關(guān)于軸對稱,則,的值分別為(

)A., B.,C., D.,6、如圖,△ABC是邊長為4的等邊三角形,點P在AB上,過點P作PE⊥AC,垂足為E,延長BC至點Q,使CQ=PA,連接PQ交AC于點D,則DE的長為()A.1 B.1.8 C.2 D.2.57、如圖,已知△ABC,AB<BC,用尺規(guī)作圖的方法在BC上取一點P,使得PA+PC=BC,則下列選項正確的是(

)A. B.C. D.8、觀察下列作圖痕跡,所作CD為△ABC的邊AB上的中線是()A. B.C. D.9、等腰三角形一腰上的高與另一腰的夾角為,則頂角的度數(shù)為(

)A. B. C.或 D.或10、如圖,在中,,,,,則的長為(

).A. B. C. D.第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、如圖,在等腰直角三角形ABC中,∠BAC=90°,在BC上截取BD=BA,作∠ABC的平分線與AD相交于點P,連接PC,若△ABC的面積為2cm2,則△BPC的面積為___cm2.2、已知,點P為內(nèi)一點,點A為OM上一點,點B為ON上一點,當?shù)闹荛L取最小值時,的度數(shù)為_______________.3、如圖,在中,,,以點為圓心,長為半徑作弧,交射線于點,連接,則的度數(shù)是______.4、如圖,過邊長為16的等邊△ABC的邊AB上的一點P,作PE⊥AC于點E,點Q為BC延長線上一點,當PA=CQ時,連接PQ交AC邊于點D,則DE的長為_____.5、如圖,在△ABC中,∠B=30°,∠C=50°,通過觀察尺規(guī)作圖的痕跡,∠DAE的度數(shù)是

_____.6、如圖,在矩形ABCD中,AD=6,AB=4,∠BAD的平分線交BC于點E,則DE=____.7、已知∠AOB=60°,OC是∠AOB的平分線,點D為OC上一點,過D作直線DE⊥OA,垂足為點E,且直線DE交OB于點F,如圖所示.若DE=2,則DF=_____.8、等腰三角形的兩邊長分別是3cm和6cm,則它的周長是_________cm.9、如圖,在中,,D、E是內(nèi)兩點.AD平分,,若,則______cm.10、如圖,BD垂直平分線段AC,AE⊥BC,垂足為E,交BD于P點,AE=7cm,AP=4cm,則P點到直線AB的距離是_____.三、解答題(5小題,每小題6分,共計30分)1、在邊長為1個單位長度的小正方形網(wǎng)格中,建立平面直角坐標系,已知點O為坐標原點,點C的坐標為(3,1)(1)寫出點A和點B的坐標,并在圖中畫出與△ABC關(guān)于x軸對稱的圖形△;(2)寫出點B1的坐標,連接CB1,則線段CB1的長為.(直接寫出得數(shù))2、如圖,在等邊三角形ABC中,點M為AB邊上任意一點,延長BC至點N,使CN=AM,連接MN交AC于點P,MH⊥AC于點H.(1)求證:MP=NP;(2)若AB=a,求線段PH的長(結(jié)果用含a的代數(shù)式表示).3、如圖,在正方形網(wǎng)格上的一個△ABC,且每個小正方形的邊長為1(其中點A,B,C均在網(wǎng)格上).(1)作△ABC關(guān)于直線MN的軸對稱圖形△A'B'C';(2)在MN上畫出點P,使得PA+PC最?。唬?)求出△ABC的面積.4、如圖,在中,,的垂直平分線交于,交于.(1)若,則的度數(shù)是;(2)連接,若,的周長是.①求的長;②在直線上是否存在點,使由,,構(gòu)成的的周長值最小?若存在,標出點的位置并求的周長最小值;若不存在,說明理由.5、已知,平分,點分別在上.(1)如圖1,若于點,于點.①利用等腰三角形“三線合一”,將補成一個等邊三角形,可得的數(shù)量關(guān)系為________.②請問:是否等于呢?如果是,請予以證明.(2)如圖2,若,則(1)中的結(jié)論是否仍然成立?若成立,請予以證明;若不成立,請說明理由.-參考答案-一、單選題1、C【解析】【分析】根據(jù)題意畫出圖形,根據(jù)三角形外角性質(zhì)求出∠C=∠CAB=42°,根據(jù)等角對等邊得出BC=AB,求出AB即可.【詳解】解:∵根據(jù)題意得:∠CBD=84°,∠CAB=42°,∴∠C=∠CBD-∠CAB=42°=∠CAB,∴BC=AB,∵AB=15海里/時×2時=30海里,∴BC=30海里,即海島B到燈塔C的距離是30海里.故選C.【考點】本題考查了等腰三角形的性質(zhì)和判定和三角形的外角性質(zhì),關(guān)鍵是求出∠C=∠CAB,題目比較典型,難度不大.2、B【解析】【分析】先由等腰三角形的性質(zhì)和三角形的內(nèi)角和定理求出∠BCA,進而求得∠ACD,由作圖痕跡可知CE為∠ACD的平分線,利用角平分線定義求解即可.【詳解】∵在中,,∴,∴∠ACD=180°-∠ACB=180°-50°=130°,由作圖痕跡可知CE為∠ACD的平分線,∴,故選:B.【考點】本題考查了等腰三角形的性質(zhì)、三角形的內(nèi)角和定理、角平分線的定義和作法,熟練掌握等腰三角形的性質(zhì)以及角平分線的尺規(guī)作圖法是解答的關(guān)鍵.3、D【解析】【分析】根據(jù)等腰三角形的性質(zhì)和三角形的內(nèi)角和定理可得∠B=180°-2∠1=∠C,根據(jù)三角形的外角性質(zhì)可得∠C=∠1-∠2,進一步即得答案.【詳解】解:∵AB=AC=BD,∴∠BAD=∠1,∠B=∠C,∴∠B=180°-2∠1=∠C,∵∠C=∠1-∠2,∴180°-2∠1=∠1-∠2,∴3∠1-∠2=180°.故選:D.【考點】本題考查了等腰三角形的性質(zhì)、三角形的內(nèi)角和定理和三角形的外角性質(zhì)等知識,屬于基本題型,熟練掌握上述知識是解題的關(guān)鍵.4、A【解析】【分析】根據(jù)關(guān)于y軸對稱的點,縱坐標相同,橫坐標互為相反數(shù),求出m、n,問題得解.【詳解】解:由題意得:m﹣1=﹣3,2﹣n=5,解得:m=﹣2,n=﹣3,則m+n=﹣2﹣3=﹣5,故選:A【考點】本題考查了關(guān)于y軸的對稱的點的坐標,解決本題的關(guān)鍵是掌握好對稱點的坐標規(guī)律:關(guān)于x軸對稱的點,橫坐標相同,縱坐標互為相反數(shù);關(guān)于y軸對稱的點,縱坐標相同,橫坐標互為相反數(shù).5、A【解析】【分析】根據(jù)關(guān)于y軸對稱點的坐標特點:橫坐標互為相反數(shù),縱坐標不變.即點P(x,y)關(guān)于y軸的對稱點P′的坐標是(-x,y),進而得出答案.【詳解】解:∵點P(-m,3)與點Q(-5,n)關(guān)于y軸對稱,∴m=-5,n=3,故選:A.【考點】此題主要考查了關(guān)于y軸對稱點的性質(zhì),正確記憶關(guān)于坐標軸對稱點的性質(zhì)是解題關(guān)鍵.6、C【解析】【分析】過作的平行線交于,通過證明≌,得,再由是等邊三角形,即可得出.【詳解】解:過作的平行線交于,,是等邊三角形,,,是等邊三角形,,∵CQ=PA,∴在中和中,,≌,,于,是等邊三角形,,,,,,故選:C.【考點】本題主要考查了等邊三角形的判定與性質(zhì),全等三角形的判定與性質(zhì),作輔助線構(gòu)造全等三角形是解題的關(guān)鍵.7、B【解析】【詳解】解:∵PB+PC=BC,PA+PC=BC,∴PA=PB,根據(jù)線段垂直平分線定理的逆定理可得,點P在線段AB的垂直平分線上,故可判斷B選項正確.故選B.8、B【解析】【分析】根據(jù)題意,CD為△ABC的邊AB上的中線,就是作AB邊的垂直平分線,交AB于點D,點D即為線段AB的中點,連接CD即可判斷.【詳解】解:作AB邊的垂直平分線,交AB于點D,連接CD,∴點D即為線段AB的中點,∴CD為△ABC的邊AB上的中線.故選:B.【考點】本題主要考查三角形一邊的中線的作法;作該邊的中垂線,找出該邊的中點是解題關(guān)鍵.9、D【解析】【分析】分等腰三角形為銳角三角形和鈍角三角形兩種情況,然后分別根據(jù)直角三角形兩銳角互余即可得.【詳解】依題意,分以下兩種情況:(1)如圖1,等腰為銳角三角形,頂角為,(2)如圖2,等腰為鈍角三角形,頂角為,綜上,頂角的度數(shù)為或故選:D.【考點】本題考查了等腰三角形的定義、直角三角形兩銳角互余等知識點,依據(jù)題意,正確分兩種情況討論是解題關(guān)鍵.10、B【解析】【分析】根據(jù)等腰三角形性質(zhì)求出∠B,求出∠BAC,求出∠DAC=∠C,求出AD=DC=4cm,根據(jù)含30度角的直角三角形性質(zhì)求出BD,即可求出答案.【詳解】∵AB=AC,∠C=30°,∴∠B=30°,∵AB⊥AD,AD=4cm,∴BD=8cm,∵∠ADB=60°∠C=30°,∴∠DAC=∠C=30°,∴CD=AD=4cm,∴BC=BD+CD=8+4=12cm.故選B.【考點】本題考查了等腰三角形的性質(zhì),含30度角的直角三角形性質(zhì),三角形的內(nèi)角和定理的應(yīng)用,解此題的關(guān)鍵是求出BD和DC的長.二、填空題1、1【解析】【分析】根據(jù)等腰三角形三線合一的性質(zhì)即可得出,即得出和是等底同高的三角形,和是等底同高的三角形,即可推出,即可求出答案.【詳解】∵BD=BA,BP是∠ABC的角平分線,∴,∴和是等底同高的三角形,和是等底同高的三角形,∴,.∵,,∴.故答案為:1.【考點】本題考查等腰三角形的性質(zhì).掌握等腰三角形“三線合一”是解答本題的關(guān)鍵.2、80°【解析】【分析】如圖,分別作P關(guān)于OM、ON的對稱點,然后連接兩個對稱點即可得到A、B兩點,由此即可得到△PAB的周長取最小值時的情況,并且求出∠APB度數(shù).【詳解】解:如圖,分別作P關(guān)于OM、ON的對稱點P1、P2,然后連接兩個對稱點即可得到A、B兩點,∴△PAB即為所求的三角形,根據(jù)對稱性知道:∠APO=∠AP1O,∠BPO=∠BP2O,還根據(jù)對稱性知道:∠P1OP2=2∠MON,OP1=OP2,而∠MON=50°,∴∠P1OP2=100°,∴∠AP1O=∠BP2O=40°,∴∠APB=2×40°=80°.故答案為80°.3、10°或100°【解析】【分析】分兩種情況畫圖,由作圖可知得,根據(jù)等腰三角形的性質(zhì)和三角形內(nèi)角和定理解答即可.【詳解】解:如圖,點即為所求;在中,,,,由作圖可知:,,;由作圖可知:,,,,.綜上所述:的度數(shù)是或.故答案為:或.【考點】本題考查了作圖復(fù)雜作圖,三角形內(nèi)角和定理,等腰三角形的判定與性質(zhì),解題的關(guān)鍵是掌握基本作圖方法.4、8【解析】【分析】根據(jù)題意,作出合適的輔助線,然后根據(jù)全等三角形的判定和性質(zhì)可以求得DE的長,本題得以解決.【詳解】解:作QF⊥AC,交AC的延長線于點F,則∠QFC=90°,∵△ABC是等邊三角形,PE⊥AC于點E,∴∠A=∠ACB=60°,∠PEA=90°,∴∠PEA=∠QFC,∵∠ACB=∠QCF,∴∠A=∠QCF,在△PEA和△QFC中,,∴△PEA≌△QFC(AAS),∴AE=CF,PE=QF,∵AC=AE+EC=16,∴EF=CF+EC=16,∵∠PED=90°,∠QFD=90°,∴∠PED=∠QFD,在△PED和△QFD中,,∴△PED≌△QFD(AAS),∴ED=FD,∵ED+FD=EF=16,∴DE=8,故答案為:8.【考點】本題考查了全等三角形的判定與性質(zhì)、等邊三角形的性質(zhì),解答本題的關(guān)鍵是明確題意,利用等三角形的判定與性質(zhì)和數(shù)形結(jié)合的思想解答.5、35°【解析】【分析】由線段垂直平分線的性質(zhì)和等腰三角形的性質(zhì)求得∠BAD=30°,結(jié)合三角形內(nèi)角和定理求出∠CAD,根據(jù)角平分線的定義即可求出∠DAE的度數(shù).【詳解】解:∵DF垂直平分線段AB,∴DA=DB,∴∠BAD=∠B=30°,∵∠B=30°,∠C=50°,∴∠BAC=180°-∠B-∠C=180°-30°-50°=100°,∴∠CAD=∠BAC-∠BAD=100°-30°=70°,∵AE平分∠CAD,∴∠DAE=∠CAD=×70°=35°,故答案為:35°.【考點】本題考查作圖-基本作圖,三角形內(nèi)角和定理等知識,解題的關(guān)鍵是讀懂圖象信息,熟練掌握線段垂直平分線和角平分線的作法.6、2【解析】【分析】由矩形的性質(zhì)及角平分線的性質(zhì)解得,,即可證明是等腰直角三角形,從而解得,最后在中利用勾股定理解題即可.【詳解】在矩形ABCD中,平分是等腰直角三角形中故答案為:2.【考點】本題考查矩形的性質(zhì)、等腰直角三角形的判定與性質(zhì)、勾股定理等知識,是重要考點,難度較易,掌握相關(guān)知識是解題關(guān)鍵.7、4.【解析】【分析】過點D作DM⊥OB,垂足為M,則DM=DE=2,在Rt△OEF中,利用三角形內(nèi)角和定理可求出∠DFM=30°,在Rt△DMF中,由30°角所對的直角邊等于斜邊的一半可求出DF的長,此題得解.【詳解】過點D作DM⊥OB,垂足為M,如圖所示.∵OC是∠AOB的平分線,∴DM=DE=2.在Rt△OEF中,∠OEF=90°,∠EOF=60°,∴∠OFE=30°,即∠DFM=30°.在Rt△DMF中,∠DMF=90°,∠DFM=30°,∴DF=2DM=4.故答案為4.【考點】本題考查了角平分線的性質(zhì)、三角形內(nèi)角和定理以及含30度角的直角三角形,利用角平分線的性質(zhì)及30°角所對的直角邊等于斜邊的一半,求出DF的長是解題的關(guān)鍵.8、15【解析】【分析】題目給出等腰三角形有兩條邊長為和,而沒有明確腰、底分別是多少,所以要進行討論,還要應(yīng)用三角形的三邊關(guān)系驗證能否組成三角形.【詳解】解:當腰為時,,不能構(gòu)成三角形,因此這種情況不成立.當腰為時,,能構(gòu)成三角形;此時等腰三角形的周長為.故答案為:.【考點】本題考查了等腰三角形的性質(zhì)和三角形的三邊關(guān)系;解題的關(guān)鍵是題目從邊的方面考查三角形,涉及分類討論的思想方法.求三角形的周長,不能盲目地將三邊長相加起來,而應(yīng)養(yǎng)成檢驗三邊長能否組成三角形的好習(xí)慣,把不符合題意的舍去.9、10【解析】【分析】過點E作,垂足為F,延長AD到H,交BC于點H,過點D作,垂足為G,由直角三角形中所對的直角邊是斜邊的一半可知,,然后由等腰三角形三線合一可知,,然后再證明四邊形DGFH是矩形,從而得到,最后根據(jù)計算即可.【詳解】解;過點E作,垂足為F,延長AD到H,交BC于點H,過點D作,垂足為G.,,,,,,.又,,,AD平分,,且.,,,四邊形DGFH是矩形...故答案為:10.【考點】本題主要考查的是等腰三角形的性質(zhì),含直角三角形的性質(zhì)以及矩形的性質(zhì)和判定,根據(jù)題意構(gòu)造含的直角三角形是解題的關(guān)鍵.10、3cm.【解析】【分析】由已知條件,根據(jù)垂直平分線的性質(zhì)得出AB=BC,可得到∠ABD=∠DBC,再利用角平分線上的點到角兩邊的距離相等得到答案.【詳解】解:過點P作PM⊥AB與點M,∵BD垂直平分線段AC,∴AB=CB,∴∠ABD=∠DBC,即BD為角平分線,∵AE=7cm,AP=4cm,∴AE﹣AP=3cm,又∵PM⊥AB,PE⊥CB,∴PM=PE=3(cm).故答案為:3cm.【考點】本題綜合考查了線段垂直平分線的性質(zhì)及角平分線的性質(zhì),線段垂直平分線上的點到線段兩端的距離相等,角平分線上的點到角兩邊的距離相等,靈活應(yīng)用線段垂直平分線及角平分線的性質(zhì)是解題的關(guān)鍵.三、解答題1、(1)A(1,3),B(-3,2),見解析;(2)(-3,-2),【解析】【分析】(1)根據(jù)平面直角坐標系直接寫出點A,點B坐標,利用關(guān)于x軸對稱的點的坐標特征寫出點A1、B1、C1的坐標,然后描點即可得到△A1B1C1;(2)寫出B1的坐標,運用勾股定理可求出CB1的長.【詳解】解:(1)A(1,3),B(-3,2),如圖所示;(2)(-3,-2),的長為.故答案為:【考點】本題主要考查作圖—軸對稱變換,解題的關(guān)鍵是掌握軸對稱變換的定義和性質(zhì),并據(jù)此得出變換后的對應(yīng)點.2、(1)見詳解;(2)0.5a.【解析】【分析】(1)過點M作MQCN,證明即可;(2)利用等邊三角形的性質(zhì)推出AH=HQ,則PH=HQ+PQ=0.5(AQ+CQ).(1)如下圖所示,過點M作MQCN,∵為等邊三角形,MQCN,∴,則AM=AQ,且∠A=60°,∴為等邊三角形,則MQ=AM=CN,又∵MQCN,∴∠QMP=∠CNP,在,∴,

則MP=NP;(2)∵為等邊三角形,且MH⊥AC,∴AH=HQ,

又由(1)得,,則PQ=PC,∴PH=HQ+PQ=0.5(AQ+CQ)=0.5AC=0.5a.【考點】本題考查了等邊三角形的性質(zhì)與判定、三角形全等的判定,正確作出輔助線是解題的關(guān)鍵.3、(1)見詳解;(2)見詳解;(3).【解析】【分析】(1)根據(jù)題意,可以畫出所求的△A′B′C′;(2)根據(jù)最短路線的作法,可以畫出點P,使得PA+PC最??;(3)利用分割法求面積即可.【詳解】解:(1)如圖,△A′B′C′即為所求;(2)如圖,連接A′C,交MN于點P,則P即為所求;(3).【考點】本題考查作圖-軸對稱變換,三角形的面積,軸對稱最短問題等知識,解題關(guān)鍵是熟練掌握基本知識,屬于中考??碱}型.4、(1)50°(2)①6cm;②存在點P,點P與點M重合,△PBC周長的最小值為【解析】【分析】(1)根據(jù)等腰三角形的性質(zhì)得出∠B=∠C

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論