考點(diǎn)解析-陜西省興平市中考數(shù)學(xué)真題分類(平行線的證明)匯編專題練習(xí)試題(解析版)_第1頁(yè)
考點(diǎn)解析-陜西省興平市中考數(shù)學(xué)真題分類(平行線的證明)匯編專題練習(xí)試題(解析版)_第2頁(yè)
考點(diǎn)解析-陜西省興平市中考數(shù)學(xué)真題分類(平行線的證明)匯編專題練習(xí)試題(解析版)_第3頁(yè)
考點(diǎn)解析-陜西省興平市中考數(shù)學(xué)真題分類(平行線的證明)匯編專題練習(xí)試題(解析版)_第4頁(yè)
考點(diǎn)解析-陜西省興平市中考數(shù)學(xué)真題分類(平行線的證明)匯編專題練習(xí)試題(解析版)_第5頁(yè)
已閱讀5頁(yè),還剩25頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

陜西省興平市中考數(shù)學(xué)真題分類(平行線的證明)匯編專題練習(xí)考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計(jì)16分)1、用反證法證明命題“三角形中必有一個(gè)內(nèi)角小于或等于60°”時(shí),首先應(yīng)該假設(shè)這個(gè)三角形中()A.有一個(gè)內(nèi)角小于60° B.每一個(gè)內(nèi)角都小于60°C.有一個(gè)內(nèi)角大于60° D.每一個(gè)內(nèi)角都大于60°2、如圖,不能判定AB∥CD的是(

)A.∠B=∠DCE B.∠A=∠ACDC.∠B+∠BCD=180° D.∠A=∠DCE3、如圖,、都是的角平分線,且,則(

)A.45° B.50° C.65° D.70°4、如圖,將?ABCD沿對(duì)角線AC折疊,使點(diǎn)B落在B′處,若∠1=∠2=44°,則∠B為()A.66° B.104° C.114° D.124°5、如圖,,的角平分線交于點(diǎn),若,,則的度數(shù)(

)A. B. C. D.6、如圖,已知△ABC中,BD、CE分別是邊AC、AB上的高,BD與CE交于O點(diǎn),如果設(shè)∠BAC=n°,那么用含n的代數(shù)式表示∠BOC的度數(shù)是()A.45°+n° B.90°﹣n° C.90°+n° D.180°﹣n°7、如圖,下列條件中,能判斷直線a∥b的有()個(gè).①∠1=∠4;②∠3=∠5;③∠2+∠5=180°;④∠2+∠4=180°A.1 B.2 C.3 D.48、將一副三角尺按如圖所示的方式擺放,則的大小為(

)A. B. C. D.第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計(jì)14分)1、把“等角的余角相等”改寫成“如果……那么……”的形式是_________,________,該命題是___命題(填“真”或“假”).2、將“對(duì)頂角相等”改寫為“如果...那么...”的形式,可寫為__________.3、如圖,點(diǎn)O是△ABC的三條角平分線的交點(diǎn),連結(jié)AO并延長(zhǎng)交BC于點(diǎn)D,BM、CM分別平分∠ABC和∠ACB的外角,直線MC和直線BO交于點(diǎn)N,OH⊥BC于點(diǎn)H,有下列結(jié)論:①∠BOC+∠BMC=180°;②∠N=∠DOH;③∠BOD=∠COH;④若∠CBA=∠CAB,則MN∥AB;其中正確的有_____.(填序號(hào))4、如圖,在四邊形ABCD中,∠BCD=50°,∠B=∠D=90°,在BC、CD上分別取一點(diǎn)M、N,使△AMN的周長(zhǎng)最小,則∠MAN=_____°.5、如圖,將三角形紙片ABC按如圖方式折疊:折痕分別為DC和DE,點(diǎn)A與BC邊上的點(diǎn)G重合,點(diǎn)B與DG延長(zhǎng)線上的點(diǎn)F重合.若滿足∠ACB=40°,則∠CEF=_______度.6、如圖,已知A,B,C三點(diǎn)及直線EF,過(guò)B點(diǎn)作AB∥EF,過(guò)B點(diǎn)作BC∥EF,那么A,B,C三點(diǎn)一定在同一條直線上,依據(jù)是___________.7、如圖,在△ABC中,∠A=60°,BD、CD分別平分∠ABC、∠ACB,M、N、Q分別在DB、DC、BC的延長(zhǎng)線上,BE、CE分別平分∠MBC、∠BCN,BF、CF分別平分∠EBC、∠ECQ,則∠F=________.三、解答題(7小題,每小題10分,共計(jì)70分)1、完成下列推理過(guò)程:已知:如圖,∠1+∠2=180°,∠3=∠B求證:∠EDG+∠DGC=180°證明:∵∠1+∠2=180°(已知)∠1+∠DFE=180°()∴∠2=()∴EF∥AB()∴∠3=()又∵∠3=∠B(已知)∴∠B=∠ADE()∴DE∥BC()∴∠EDG+∠DGC=180°()2、已知:如圖1,,BD平分,,過(guò)點(diǎn)A作直線,延長(zhǎng)CD交MN于點(diǎn)E(1)當(dāng)時(shí),的度數(shù)為______.(2)如圖2,當(dāng)時(shí),求的度數(shù);(3)設(shè),用含x的代數(shù)式表示的度數(shù).3、如圖,在△ABC中,CD⊥AB,垂足為D,點(diǎn)E在BC上,EF⊥AB,垂足為F.(1)CD與EF平行嗎?為什么?(2)如果∠1=∠2,且∠3=115°,求∠ACB的度數(shù).4、如圖,已知,垂足為點(diǎn)N,與交于點(diǎn)M.求證:.(用反證法證明)5、如圖,已知∠A=50°,∠D=40°.(1)求∠1度數(shù);(2)求∠A+∠B+∠C+∠D+∠E的度數(shù).6、已知:如圖,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=50°.(1)求證:AC=BD;(2)求∠APB的度數(shù).7、(1)探究:如圖1,求證:;(2)應(yīng)用:如圖2,,,求的度數(shù).

-參考答案-一、單選題1、D【解析】【分析】根據(jù)反證法的證明步驟解答即可.【詳解】解:用反證法證明“三角形中必有一個(gè)內(nèi)角小于或等于60°”時(shí),應(yīng)先假設(shè)三角形中每一個(gè)內(nèi)角都不小于或等于60°,即每一個(gè)內(nèi)角都大于60°.故選:D.【考點(diǎn)】本題考查反證法,熟知反證法的證明步驟,正確得出原結(jié)論的反面是解答的關(guān)鍵.2、D【解析】【分析】利用平行線的判定方法一一判斷即可.【詳解】解:由∠B=∠DCE,根據(jù)同位角相等兩直線平行,即可判斷AB∥CD.由∠A=∠ACD,根據(jù)內(nèi)錯(cuò)角相等兩直線平行,即可判斷AB∥CD.由∠B+∠BCD=180°,根據(jù)同旁內(nèi)角互補(bǔ)兩直線平行,即可判斷AB∥CD.故A,B,C不符合題意,故選:D.【考點(diǎn)】本題考查平行線的判定,解題的關(guān)鍵是熟練掌握基本知識(shí),屬于中考??碱}型.3、B【解析】【分析】由三角形內(nèi)角和定理解得,再根據(jù)角平分線的性質(zhì)解得,最后根據(jù)三角形內(nèi)角和定理解答即可.【詳解】解:、都是的角平分線,故選:B.【考點(diǎn)】本題考查角平分線的性質(zhì)、三角形內(nèi)角和定理等知識(shí),是基礎(chǔ)考點(diǎn),掌握相關(guān)知識(shí)是解題關(guān)鍵.4、C【解析】【分析】根據(jù)平行四邊形性質(zhì)和折疊性質(zhì)得∠BAC=∠ACD=∠B′AC=∠1,再根據(jù)三角形內(nèi)角和定理可得.【詳解】∵四邊形ABCD是平行四邊形,∴AB∥CD,∴∠ACD=∠BAC,由折疊的性質(zhì)得:∠BAC=∠B′AC,∴∠BAC=∠ACD=∠B′AC=∠1=22°,∴∠B=180°-∠2-∠BAC=180°-44°-22°=114°,故選C.【考點(diǎn)】本題考查了平行四邊形的性質(zhì)、折疊的性質(zhì)、三角形的外角性質(zhì)以及三角形內(nèi)角和定理;熟練掌握平行四邊形的性質(zhì),求出∠BAC的度數(shù)是解決問(wèn)題的關(guān)鍵.5、A【解析】【分析】法一:延長(zhǎng)PC交BD于E,設(shè)AC、PB交于F,根據(jù)三角形的內(nèi)角和定理得到∠A+∠ABF+∠AFB=∠P+∠PCF+∠PFC=180°推出∠P+∠PCF=∠A+∠ABF,根據(jù)三角形的外角性質(zhì)得到∠P+∠PBE=∠PED,推出∠P+∠PBE=∠PCD?∠D,根據(jù)PB、PC是角平分線得到∠PCF=∠PCD,∠ABF=∠PBE,推出2∠P=∠A?∠D,代入即可求出∠P.法二:延長(zhǎng)DC,與AB交于點(diǎn)E.設(shè)AC與BP相交于O,則∠AOB=∠POC,可得∠P+∠ACD=∠A+∠ABD,代入計(jì)算即可.【詳解】解:法一:延長(zhǎng)PC交BD于E,設(shè)AC、PB交于F,∵∠A+∠ABF+∠AFB=∠P+∠PCF+∠PFC=180°,∵∠AFB=∠PFC,∴∠P+∠PCF=∠A+∠ABF,∵∠P+∠PBE=∠PED,∠PED=∠PCD?∠D,∴∠P+∠PBE=∠PCD?∠D,∴2∠P+∠PCF+∠PBE=∠A?∠D+∠ABF+∠PCD,∵PB、PC是角平分線∴∠PCF=∠PCD,∠ABF=∠PBE,∴2∠P=∠A?∠D∵∠A=48°,∠D=10°,∴∠P=19°.法二:延長(zhǎng)DC,與AB交于點(diǎn)E.∵∠ACD是△ACE的外角,∠A=48°,∴∠ACD=∠A+∠AEC=48°+∠AEC.∵∠AEC是△BDE的外角,∴∠AEC=∠ABD+∠D=∠ABD+10°,∴∠ACD=48°+∠AEC=48°+∠ABD+10°,整理得∠ACD?∠ABD=58°.設(shè)AC與BP相交于O,則∠AOB=∠POC,∴∠P+∠ACD=∠A+∠ABD,即∠P=48°?(∠ACD?∠ABD)=19°.故選A.【考點(diǎn)】本題主要考查對(duì)三角形的內(nèi)角和定理,三角形的外角性質(zhì),對(duì)頂角的性質(zhì),角平分線的性質(zhì)等知識(shí)點(diǎn)的理解和掌握,能熟練地運(yùn)用這些性質(zhì)進(jìn)行計(jì)算是解此題的關(guān)鍵.6、D【解析】【分析】由垂直的定義得到∠ADB=∠BDC=90,再根據(jù)三角形內(nèi)角和定理得∠ABD=180﹣∠ADB﹣∠A=90﹣n,然后根據(jù)三角形的外角性質(zhì)有∠BOC=∠EBD+∠BEO,計(jì)算即可得到∠BOC的度數(shù).【詳解】解:∵BD、CE分別是邊AC,AB上的高,∴∠ADB=∠BDC=90,又∵∠BAC=n,∴∠ABD=180°﹣∠ADB﹣∠A=180﹣90﹣n=90﹣n,∴∠BOC=∠EBD+∠BEO=90°﹣n+90°=180﹣n.故選:D.【考點(diǎn)】本題考查了三角形的外角性質(zhì),垂直的定義以及三角形內(nèi)角和定理,掌握以上性質(zhì)定理是解答本題的關(guān)鍵.7、C【解析】【分析】根據(jù)平行線的判定方法,對(duì)各選項(xiàng)分析判斷后利用排除法求解.【詳解】解:①∵∠1=∠4,∴a∥b(內(nèi)錯(cuò)角相等,兩直線平行);②∵∠3=∠5,∴a∥b(同位角相等,兩直線平行),③∵∠2+∠5=180°,∴a∥b(同旁內(nèi)角互補(bǔ),兩直線平行);④∠2和∠4不是同旁內(nèi)角,所以∠2+∠4=180°不能判定直線a∥b.∴能判斷直線a∥b的有①②③,共3個(gè).故選C.【考點(diǎn)】本題考查了平行線的判定,只有同位角相等、內(nèi)錯(cuò)角相等、同旁內(nèi)角互補(bǔ),才能推出兩被截直線平行,解題時(shí)要認(rèn)準(zhǔn)各角的位置關(guān)系.8、B【解析】【分析】先根據(jù)直角三角板的性質(zhì)得出∠ACD的度數(shù),再由三角形內(nèi)角和定理即可得出結(jié)論.【詳解】解:如圖所示,由一副三角板的性質(zhì)可知:∠ECD=60°,∠BCA=45°,∠D=90°,∴∠ACD=∠ECD-∠BCA=60°-45°=15°,∴∠α=180°-∠D-∠ACD=180°-90°-15°=75°,故選:B.【考點(diǎn)】本題考查的是三角形內(nèi)角和定理,熟知三角形內(nèi)角和是180°是解答此題的關(guān)鍵.二、填空題1、如果兩個(gè)角是等角的余角,那么這兩個(gè)角相等;真【解析】【分析】命題由題設(shè)和結(jié)論兩部分組成.題設(shè)是已知事項(xiàng),結(jié)論是由已知事項(xiàng)推出的事項(xiàng).命題常??梢詫憺椤叭绻敲础钡男问?,如果后面接題設(shè),那么后面接結(jié)論.題設(shè)成立,結(jié)論也成立的叫真命題,而題設(shè)成立,不保證結(jié)論成立的為假命題.【詳解】把“等角的余角相等”改寫成“如果…那么…”的形式是:如果兩個(gè)角是等角的余角,那么這兩個(gè)角相等.這個(gè)命題正確,是真命題,故答案為如果兩個(gè)角是等角的余角,那么這兩個(gè)角相等;真.【考點(diǎn)】本題考查了命題與定理,命題的“真”“假”是就命題的內(nèi)容而言.任何一個(gè)命題非真即假.要說(shuō)明一個(gè)命題的正確性,一般需要推理、論證,而判斷一個(gè)命題是假命題,只需舉出一個(gè)反例即可.2、如果兩個(gè)角互為對(duì)頂角,那么這兩個(gè)角相等【解析】【分析】根據(jù)命題的形式解答即可.【詳解】將“對(duì)頂角相等”改寫為“如果...那么...”的形式,可寫為如果兩個(gè)角互為對(duì)頂角,那么這兩個(gè)角相等,故答案為:如果兩個(gè)角互為對(duì)頂角,那么這兩個(gè)角相等.【考點(diǎn)】此題考查命題的形式,可寫成用關(guān)聯(lián)詞“如果...那么...”連接的形式,準(zhǔn)確確定命題中的題設(shè)和結(jié)論是解題的關(guān)鍵.3、①③④【解析】【分析】由平分可知:①∠1=∠2,∠3=∠4,∠5=∠6,∠7=∠8,即∠OBM=90°,∠OCM=90°,可知∠BOC+∠BMC=180°;②利用外角定理,角平分線性質(zhì)進(jìn)行計(jì)算分析即可;③根據(jù)∠BOD=∠BAD+∠1=∠BAC+∠ABC=(180°﹣∠ACB)=90°﹣∠ACB,∠COH=90°﹣∠6=90°﹣∠ACB,可知∠BOD=∠COH;④若∠CBA=∠CAB,則∠1=∠2=∠BAC,由于∠N=∠BAC,可知∠1=∠N,即MN∥AB.【詳解】解:如圖所示,延長(zhǎng)AC與E,∵點(diǎn)O是△ABC的三條角平分線的交點(diǎn),BM、CM分別平分∠ABC和∠ACB的外角,∴∠1=∠2,∠3=∠4,∠5=∠6,∠7=∠8,∴∠2+∠3=∠OBM=90°,∠6+∠7=∠OCM=90°,∵∠OBM+∠OCM+∠BOC+∠BMC=360°,∴∠BOC+∠BMC=180°,故①正確;∵BN平分∠ABC,CM平分∠BCE,∠N+∠2=∠7,∴∠N=∠7﹣∠2=∠BCE﹣∠ABC,∵∠BCE=∠ABC+∠BAC,∴∠N=∠BAC,∵∠ODH=∠BAD+∠ABC=∠BAC+∠ABC,OH⊥BC,∴∠DOH=90°﹣∠ODH=90°﹣∠BAC﹣∠ABC,∵∠ABC+∠BAC≠90°,∴90°﹣∠BAC﹣∠ABC≠∠BAC,∴∠N≠∠DOH,故②錯(cuò)誤;∵∠BOD=∠BAD+∠1=∠BAC+∠ABC=(180°﹣∠ACB)=90°﹣∠ACB,∠COH=90°﹣∠6=90°﹣∠ACB,∴∠BOD=∠COH,故③正確;∵∠CBA=∠CAB,∴∠1=∠2=∠BAC,∵∠N=∠BAC,∴∠1=∠N,∴MN∥AB,故④正確,故答案為:①③④.【考點(diǎn)】本題主要考查的是三角形與角平分線的綜合運(yùn)用,熟練掌握角平分線的性質(zhì)是解題的關(guān)鍵.4、80【解析】【分析】作點(diǎn)A關(guān)于BC、CD的對(duì)稱點(diǎn)A1、A2,根據(jù)軸對(duì)稱確定最短路線問(wèn)題,連接A1、A2分別交BC、DC于點(diǎn)M、N,利用三角形的內(nèi)角和定理列式求出∠A1+∠A2,再根據(jù)軸對(duì)稱的性質(zhì)和角的和差關(guān)系即可得∠MAN.【詳解】如圖,作點(diǎn)A關(guān)于BC、CD的對(duì)稱點(diǎn)A1、A2,連接A1、A2分別交BC、DC于點(diǎn)M、N,連接AM、AN,則此時(shí)△AMN的周長(zhǎng)最小,∵∠BCD=50°,∠B=∠D=90°,∴∠BAD=360°﹣90°﹣90°﹣50°=130°,∴∠A1+∠A2=180°﹣130°=50°,∵點(diǎn)A關(guān)于BC、CD的對(duì)稱點(diǎn)為A1、A2,∴NA=NA2,MA=MA1,∴∠A2=∠NAD,∠A1=∠MAB,∴∠NAD+∠MAB=∠A1+∠A2=50°,∴∠MAN=∠BAD﹣(∠NAD+∠MAB)=130°﹣50°=80°,故答案為:80.【考點(diǎn)】本題考查了軸對(duì)稱的最短路徑問(wèn)題,利用軸對(duì)稱將三角形周長(zhǎng)問(wèn)題轉(zhuǎn)化為兩點(diǎn)間線段最短問(wèn)題是解決本題的關(guān)鍵.5、40【解析】【詳解】由折疊可得∠EDC=90°,∠BED=∠FED,由角平分線和三角形內(nèi)角和得∠DEC=70°,再利用三角形外角的性質(zhì)可得答案.【解答】解:由折疊可得:∠EDF=,,∵∠BDF+∠GDA=180°,∴∠EDF+∠GDC=90°,∵∠ACB=40°,∴∠GCD=40÷2=20°,∴∠DEC=180°﹣90°﹣20°=70°,由折疊可得:∠BED=∠DEF=70°+∠CEF,由三角形外角的性質(zhì)可得,∠BED=90°+20°=110°,∴70°+∠CEF=110°,即∠CEF=40°.故答案為:40.【考點(diǎn)】本題考查圖形的折疊,熟知折疊前后圖形的形狀和大小相等、得到∠BED=∠DEF并利用三角形內(nèi)角和是解本題的關(guān)鍵,屬于常見題型.6、過(guò)直線外一點(diǎn),有且只有一條直線與已知直線平行【解析】【詳解】∵AB∥EF,BC∥EF,∴A、B.C三點(diǎn)在同一條直線上(過(guò)直線外一點(diǎn),有且只有一條直線與已知直線平行).故答案為過(guò)直線外一點(diǎn),有且只有一條直線與已知直線平行.7、15°##15度【解析】【分析】先由BD、CD分別平分∠ABC、∠ACB得到∠DBC=∠ABC,∠DCB=∠ACB,在△ABC中根據(jù)三角形內(nèi)角和定理得∠DBC+∠DCB=(∠ABC+∠ACB)=(180°-∠A)=60°,則根據(jù)平角定理得到∠MBC+∠NCB=300°;再由BE、CE分別平分∠MBC、∠BCN得∠5+∠6=∠MBC,∠1=∠NCB,兩式相加得到∠5+∠6+∠1=(∠NCB+∠NCB)=150°,在△BCE中,根據(jù)三角形內(nèi)角和定理可計(jì)算出∠E=30°;再由BF、CF分別平分∠EBC、∠ECQ得到∠5=∠6,∠2=∠3+∠4,根據(jù)三角形外角性質(zhì)得到∠3+∠4=∠5+∠F,∠2+∠3+∠4=∠5+∠6+∠E,利用等量代換得到∠2=∠5+∠F,2∠2=2∠5+∠E,再進(jìn)行等量代換可得到∠F=∠E.【詳解】解:如圖:∵BD、CD分別平分∠ABC、∠ACB,∠A=60°,∴∠DBC=∠ABC,∠DCB=∠ACB,∴∠DBC+∠DCB=(∠ABC+∠ACB)=(180°-∠A)=×(180°-60°)=60°,∴∠MBC+∠NCB=360°-60°=300°,∵BE、CE分別平分∠MBC、∠BCN,∴∠5+∠6=∠MBC,∠1=∠NCB,∴∠5+∠6+∠1=(∠NCB+∠NCB)=150°,∴∠E=180°-(∠5+∠6+∠1)=180°-150°=30°,∵BF、CF分別平分∠EBC、∠ECQ,∴∠5=∠6,∠2=∠3+∠4,∵∠3+∠4=∠5+∠F,∠2+∠3+∠4=∠5+∠6+∠E,即∠2=∠5+∠F,2∠2=2∠5+∠E,∴2∠F=∠E,∴∠F=∠E=×30°=15°.故答案為:15°.【考點(diǎn)】本題考查了三角形內(nèi)角和定理、角平分線、三角形外角性質(zhì),解題的關(guān)鍵是掌握三角形內(nèi)角和是180°.三、解答題1、鄰補(bǔ)角定義;∠DFE,同角的補(bǔ)角相等;內(nèi)錯(cuò)角相等,兩直線平行;∠ADE,兩直線平行,內(nèi)錯(cuò)角相等;等量代換;同位角相等,兩直線平行;兩直線平行,同旁內(nèi)角互補(bǔ)【解析】【分析】依據(jù)∠1+∠2=180°,∠1+∠DFE=180°,即可得到∠2=∠DFE,由內(nèi)錯(cuò)角相等,兩直線平行證明EF∥AB,則∠3=∠ADE,再根據(jù)∠3=∠B,由同位角相等,兩直線平行證明DE∥BC,故可根據(jù)兩直線平行,同旁內(nèi)角互補(bǔ),即可得出結(jié)論.【詳解】∵∠1+∠2=180°(已知)∠1+∠DFE=180°(鄰補(bǔ)角定義)∴∠2=∠DFE(同角的補(bǔ)角相等)∴EF∥AB(內(nèi)錯(cuò)角相等,兩直線平行)∴∠3=∠ADE(兩直線平行,內(nèi)錯(cuò)角相等)又∵∠3=∠B(已知)∴∠B=∠ADE(等量代換)∴DE∥BC(同位角相等,兩直線平行)∴∠EDG+∠DGC=180°(兩直線平行,同旁內(nèi)角互補(bǔ))【考點(diǎn)】本題考查了平行線的性質(zhì)和判定.正確識(shí)別“三線八角”中的同位角、內(nèi)錯(cuò)角、同旁內(nèi)角是正確答題的關(guān)鍵.2、(1)(2)(3)【解析】【分析】(1)根據(jù)題意證明,進(jìn)而可得,根據(jù),即可求解.繼而可得,即可求得;(2)根據(jù)全等三角形的性質(zhì)可得,根據(jù)三角形內(nèi)角和定理可得,進(jìn)而根據(jù)即可求解.(3)根據(jù)(1)(2)的方法分類討論即可求解.(1)解:BD平分,,,,,,,,,,,故答案為:,(2)解:由(1)可知,,,,,,,(3)解:設(shè),,,,,當(dāng)點(diǎn)在點(diǎn)的左側(cè)時(shí),,當(dāng)點(diǎn)在點(diǎn)的右側(cè)時(shí),,.【考點(diǎn)】本題考查了全等三角形的性質(zhì)與判定,三角形的內(nèi)角和定理的應(yīng)用,掌握全等三角形的性質(zhì)與判定是解題的關(guān)鍵.3、(1)平行;(2)115°.【解析】【分析】(1)先根據(jù)垂直的定義得到∠CDB=∠EFB=90°,然后根據(jù)同位角相等,兩直線平行可判斷EF∥CD;(2)由EF∥CD,根據(jù)平行線的性質(zhì)得∠2=∠BCD,而∠1=∠2,所以∠1=∠BCD,根據(jù)內(nèi)錯(cuò)角相等,兩直線平行得到DG∥BC,所以∠ACB=∠3=115°.【詳解】解:(1)CD與EF平行.理由如下:CD⊥AB,EF⊥AB,∴∠CDB=∠EFB=90°∴EF∥CD(2)如圖:EF∥CD,∴∠2=∠BCD又∠1=∠2,∴∠1=∠BCD∴DG∥BC

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論