




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
遼寧省瓦房店市中考數(shù)學(xué)真題分類(勾股定理)匯編單元測(cè)試考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計(jì)14分)1、兩只小鼴鼠在地下打洞,一只朝正北方向挖,每分鐘挖8cm,另一只朝正東方向挖,每分鐘挖6cm,10分鐘之后兩只小鼴鼠相距(
)A.50cm B.120cm C.140cm D.100cm2、在中,,,,的對(duì)邊分別是a,b,c,若,,則的面積是(
)A. B. C. D.3、觀察“趙爽弦圖”(如圖),若圖中四個(gè)全等的直角三角形的兩直角邊分別為a,b,,根據(jù)圖中圖形面積之間的關(guān)系及勾股定理,可直接得到等式(
)A. B.C. D.4、如圖,在中,,兩直角邊,,現(xiàn)將AC沿AD折疊,使點(diǎn)C落在斜邊AB上的點(diǎn)E處,則CD長(zhǎng)為(
)A. B. C. D.5、如圖,在水塔O的東北方向24m處有一抽水站A,在水塔的東南方向18m處有一建筑工地B,在AB間建一條直水管,則水管AB的長(zhǎng)為(
)A.40m B.45m C.30m D.35m6、如圖,把長(zhǎng)方形紙條ABCD沿EF,GH同時(shí)折疊,B,C兩點(diǎn)恰好落在AD邊的P點(diǎn)處,若∠FPH=90°,PF=8,PH=6,則長(zhǎng)方形ABCD的邊BC的長(zhǎng)為()A.20 B.22 C.24 D.307、如圖,長(zhǎng)方體的底面邊長(zhǎng)分別為2cm和3cm,高為6cm.如果用一根細(xì)線從點(diǎn)A開始經(jīng)過4個(gè)側(cè)面纏繞一圈達(dá)到點(diǎn)B,那么所用細(xì)線最短需要(
)A.11cm B.2cm C.(8+2)cm D.(7+3)cm第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計(jì)16分)1、如圖,AB⊥CD于B,△ABD和△BCE都是等腰直角三角形,如果CD=17,BE=5,那么AC的長(zhǎng)為_______2、如圖所示,數(shù)軸上點(diǎn)A所表示的數(shù)為_______.3、如圖,在高2米,坡角為30°的樓梯表面鋪地毯,地毯的長(zhǎng)至少需______米.4、如圖,學(xué)校有一塊長(zhǎng)方形草坪,有極少數(shù)人為了避開拐角走“捷徑”,在草坪內(nèi)走出了一條“路”,他們僅僅少走了________步路(假設(shè)步為米),卻踩傷了花草.5、《九章算術(shù)》中記載著這樣一個(gè)問題:已知甲、乙兩人同時(shí)從同一地點(diǎn)出發(fā),甲的速度為7步/分,乙的速度為3步/分,乙一直向東走,甲先向南走10步,后又斜向北偏東方向走了一段后與乙相遇,那么相遇時(shí),甲、乙各走了多遠(yuǎn)?解:如圖,設(shè)甲乙兩人出發(fā)后x分鐘相遇.根據(jù)勾股定理可列得方程為______.6、圖①所示的正方體木塊棱長(zhǎng)為6cm,沿其相鄰三個(gè)面的對(duì)角線(圖中虛線)剪掉一角,得到如圖②的幾何體,一只螞蟻沿著圖②的幾何體表面從頂點(diǎn)A爬行到頂點(diǎn)B的最短距離為_____cm.7、云頂滑雪公園是北京2022年冬奧會(huì)7個(gè)雪上競(jìng)賽場(chǎng)館中唯一利用現(xiàn)有雪場(chǎng)改造而成的.下圖左右兩幅圖分別是公園內(nèi)云頂滑雪場(chǎng)U型池的實(shí)景圖和示意圖,該場(chǎng)地可以看作是從一個(gè)長(zhǎng)方體中挖去了半個(gè)圓柱而成,它的橫截面圖中半圓的半徑為,其邊緣,點(diǎn)E在上,.一名滑雪愛好者從點(diǎn)A滑到點(diǎn)E,他滑行的最短路線長(zhǎng)為_________m.8、如圖,一架長(zhǎng)5米的梯子A1B1斜靠在墻A1C上,B1到墻底端C的距離為3米,此時(shí)梯子的高度達(dá)不到工作要求,因此把梯子的B1端向墻的方向移動(dòng)了1.6米到B處,此時(shí)梯子的高度達(dá)到工作要求,那么梯子的A1端向上移動(dòng)了_____米.三、解答題(7小題,每小題10分,共計(jì)70分)1、閱讀下面材料:小明遇到這樣一個(gè)問題:∠MBN=30°,點(diǎn)A為射線BM上一點(diǎn),且AB=4,點(diǎn)C為射線BN上動(dòng)點(diǎn),連接AC,以AC為邊在AC右側(cè)作等邊三角形ACD,連接BD.當(dāng)AC⊥BN時(shí),求BD的長(zhǎng).小明發(fā)現(xiàn):以AB為邊在左側(cè)作等邊三角形ABE,連接CE,能得到一對(duì)全等的三角形,再利用∠EBC=90°,從而將問題解決(如圖1).請(qǐng)回答:(1)在圖1中,小明得到的全等三角形是△≌△;BD的長(zhǎng)為.(2)動(dòng)點(diǎn)C在射線BN上運(yùn)動(dòng),當(dāng)運(yùn)動(dòng)到AC時(shí),求BD的長(zhǎng);(3)動(dòng)點(diǎn)C在射線BN上運(yùn)動(dòng),求△ABD周長(zhǎng)最小值.2、臺(tái)風(fēng)是一種自然災(zāi)害,它以臺(tái)風(fēng)中心為圓心在周圍上千米的范圍內(nèi)形成極端氣候,有極強(qiáng)的破壞力,有一臺(tái)風(fēng)中心沿東西方向AB由點(diǎn)A行駛向點(diǎn)B,已知點(diǎn)C為一海港,且點(diǎn)C與直線AB上兩點(diǎn)A、B的距離分別為300km和400km,又AB=500km,以臺(tái)風(fēng)中心為圓心周圍250km以內(nèi)為受影響區(qū)域.(1)海港C會(huì)受臺(tái)風(fēng)影響嗎?為什么?(2)若臺(tái)風(fēng)的速度為20km/h,臺(tái)風(fēng)影響該海港持續(xù)的時(shí)間有多長(zhǎng)?3、如圖所示,在中,,,,為邊上的中點(diǎn).(1)求、的長(zhǎng)度;(2)將折疊,使與重合,得折痕;求、的長(zhǎng)度.4、如圖,已知等腰△ABC的底邊BC=10cm,D是腰AC上一點(diǎn),且CD=6cm,BD=8cm.(1)判斷△BCD的形狀,并說明理由;(2)求△ABC的周長(zhǎng).5、(1)圖1是由有20個(gè)邊長(zhǎng)為1的正方形組成的,把它按圖1的分割方法分割成5部分后可拼接成一個(gè)大正方形(內(nèi)部的粗實(shí)線表示分割線),請(qǐng)你在圖2的網(wǎng)格中畫出拼接成的大正方形.(2)如果(1)中分割成的直角三角形兩直角邊分別為a,b斜邊為c.請(qǐng)你利用圖2中拼成的大正方形證明勾股定理.(3)應(yīng)用:測(cè)量旗桿的高度:校園內(nèi)有一旗桿,小希想知道旗桿的高度,經(jīng)觀察發(fā)現(xiàn)從頂端垂下一根拉繩,于是他測(cè)出了下列數(shù)據(jù):①測(cè)得拉繩垂到地面后,多出的長(zhǎng)度為0.5米;②他在距離旗桿4米的地方拉直繩子,拉繩的下端恰好距離地面0.5米.請(qǐng)你根據(jù)所測(cè)得的數(shù)據(jù)設(shè)計(jì)可行性方案,解決這一問題.(畫出示意圖并計(jì)算出這根旗桿的高度).6、已知m>0,若3m+2,4m+8,5m+8是一組勾股數(shù),求m的值.7、臺(tái)風(fēng)是一種自然災(zāi)害,它以臺(tái)風(fēng)中心為圓心在周圍上百千米的范圍內(nèi)形成極端氣候,有極強(qiáng)的破壞力,如圖,有一臺(tái)風(fēng)中心沿東西方向由行駛向,已知點(diǎn)為海港,并且點(diǎn)與直線上的兩點(diǎn),的距離分別為,,又,以臺(tái)風(fēng)中心為圓心周圍250km以內(nèi)為受影響區(qū)域.(1)求的度數(shù);(2)海港受臺(tái)風(fēng)影響嗎?為什么?-參考答案-一、單選題1、D【解析】【分析】畫出圖形,利用勾股定理即可求解.【詳解】解:如圖,cm,cm,∴在中,cm,故選:D【考點(diǎn)】本題考查了勾股定理的應(yīng)用,理解題意,畫出圖形是解題的關(guān)鍵.2、A【解析】【分析】根據(jù)題意可知,的面積為,結(jié)合已知條件,根據(jù)完全平方公式變形求值即可.【詳解】解:中,,,,所對(duì)的邊分別為a,b,c,,∵,,∴,,故A正確.故選:A.【考點(diǎn)】本題主要考查了勾股定理,完全平方公式變形求值,解題的關(guān)鍵是將完全平方公式變形求出ab的值.3、C【解析】【分析】根據(jù)小正方形的面積等于大正方形的面積減去4個(gè)直角三角形的面積可得問題的答案.【詳解】標(biāo)記如下:∵,∴(a﹣b)2=a2+b2﹣4=a2﹣2ab+b2.故選:C.【考點(diǎn)】此題考查的是利用勾股定理的證明,可以完全平方公式進(jìn)行證明,掌握面積差得算式是解決此題關(guān)鍵.4、A【解析】【分析】先根據(jù)勾股定理求得AB的長(zhǎng),再根據(jù)折疊的性質(zhì)求得AE,BE的長(zhǎng),從而利用勾股定理可求得CD的長(zhǎng).【詳解】解:∵AC=6cm,BC=8cm,∠C=90°,∴AB=(cm),由折疊的性質(zhì)得:AE=AC=6cm,∠AED=∠C=90°,∴BE=10cm?6cm=4cm,∠BED=90°,設(shè)CD=x,則BD=BC?CD=8?x,在Rt△DEB中,BE2+DE2=BD2,即42+x2=(8?x)2,解得:x=3,∴CD=3cm,故選:A.【考點(diǎn)】本題考查了折疊的性質(zhì),勾股定理等知識(shí);熟記折疊性質(zhì)并表示出Rt△DEB的三邊,然后利用勾股定理列出方程是解題的關(guān)鍵.5、C【解析】【分析】由題意可知東北方向和東南方向間剛好是一直角,利用勾股定理解圖中直角三角形即可.【詳解】解:∵OA是東北方向,OB是東南方向,∴∠AOB=90°,又∵OA=24m,OB=18m,∴30m.故選:C.【考點(diǎn)】本題考查的知識(shí)點(diǎn)是解直角三角形的應(yīng)用,正確運(yùn)用勾股定理,善于觀察題目的信息是解題以及學(xué)好數(shù)學(xué)的關(guān)鍵.6、C【解析】【詳解】由折疊得:在Rt中,∠FPH=90°,PF=8,PH=6,則故BC=BF+FH+HC=6+8+10=24.故選C.7、B【解析】【詳解】要求所用細(xì)線的最短距離,需將長(zhǎng)方體的側(cè)面展開,進(jìn)而根據(jù)“兩點(diǎn)之間線段最短”得出結(jié)果.解:將長(zhǎng)方體展開,連接AB′,則AB′最短.∵AA′=3+2+3+2=10cm,A′B′=6cm,∴AB′=cm.故選B..二、填空題1、13【解析】【分析】先根據(jù)△BCE等腰直角三角形得出BC的長(zhǎng),進(jìn)而可得出BD的長(zhǎng),根據(jù)△ABD是等腰直角三角形可知AB=BD.在Rt△ABC中利用勾股定理即可求出AC的長(zhǎng).【詳解】∵△BCE等腰直角三角形,BE=5,∴BC=5.∵CD=17,∴DB=CD﹣BE=17﹣5=12.∵△ABD是等腰直角三角形,∴AB=BD=12.在Rt△ABC中,∵AB=12,BC=5,∴AC13.故答案為13.【考點(diǎn)】本題考查了等腰直角三角形的性質(zhì)及勾股定理,熟知等腰三角形兩腰相等的性質(zhì)是解答此題的關(guān)鍵.2、【解析】【分析】根據(jù)數(shù)軸上點(diǎn)的特點(diǎn)和相關(guān)線段的長(zhǎng),結(jié)合勾股定理求出斜邊長(zhǎng),即可求出-1和A之間的線段的長(zhǎng),即可知A所表示的數(shù).【詳解】圖中直角三角形的兩直角邊為1,2,所以斜邊長(zhǎng)為,那么-1和A之間的距離為,那么數(shù)軸上點(diǎn)A所表示的數(shù)為:.故答案為:.【考點(diǎn)】本題考查實(shí)數(shù)與數(shù)軸之間的對(duì)應(yīng)關(guān)系以及勾股定理,利用勾股定理求出直角三角形的斜邊的長(zhǎng)是解答本題的關(guān)鍵.3、2+2【解析】【分析】地毯的豎直的線段加起來等于BC,水平的線段相加正好等于AC,即地毯的總長(zhǎng)度至少為(AC+BC).【詳解】在Rt△ABC中,∠A=30°,BC=2m,∠C=90°,∴AB=2BC=4m,∴AC=m,∴AC+BC=2+2(m).故答案為2+2.【考點(diǎn)】本題主要考查勾股定理的應(yīng)用,解此題的關(guān)鍵在于準(zhǔn)確理解題中地毯的長(zhǎng)度為水平與豎直的線段的和.4、【解析】【分析】少走的距離是AC+BC-AB,在直角△ABC中根據(jù)勾股定理求得AB的長(zhǎng)即可.【詳解】解:如圖,∵在中,,∴米,則少走的距離為:米,∵步為米,∴少走了步.故答案為:.【考點(diǎn)】本題考查正確運(yùn)用勾股定理.善于觀察題目的信息,掌握勾股定理是解題的關(guān)鍵.5、【解析】【分析】設(shè)甲、乙二人出發(fā)后相遇的時(shí)間為x,然后利用勾股定理列出方程即可.【詳解】解:設(shè)經(jīng)x秒二人在C處相遇,這時(shí)乙共行AC=3x,甲共行AB+BC=7x,∵AB=10,∴BC=7x-10,又∵∠A=90°,∴BC2=AC2+AB2,∴(7x-10)2=(3x)2+102,故答案是:(7x-10)2=(3x)2+102.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,解題的關(guān)鍵是從實(shí)際問題中抽象出直角三角形.6、(3+3).【解析】【分析】要求螞蟻爬行的最短距離,需將圖②的幾何體表面展開,進(jìn)而根據(jù)“兩點(diǎn)之間線段最短”得出結(jié)果.【詳解】如圖所示:△BCD是等腰直角三角形,△ACD是等邊三角形,在Rt△BCD中,CD==6cm,∴BE=CD=3cm,在Rt△ACE中,AE==3cm,∴從頂點(diǎn)A爬行到頂點(diǎn)B的最短距離為(3+3)cm.故答案為(3+3).【考點(diǎn)】本題考查了平面展開-最短路徑問題,關(guān)鍵是把圖②的幾何體表面展開成平面圖形,根據(jù)等腰直角三角形的性質(zhì)和等邊三角形的性質(zhì)解題.7、【解析】【分析】根據(jù)題意可得,AD=12m,DE=CD﹣CE=24﹣4=20m,線段AE即為滑行的最短路線長(zhǎng).在Rt△ADE中,根據(jù)勾股定理即可求出滑行的最短路線長(zhǎng).【詳解】解:如圖,根據(jù)題意可知:AD==12,DE=CD﹣CE=24﹣4=20,線段AE即為滑行的最短路線長(zhǎng).在Tt△ADE中,根據(jù)勾股定理,得AE=(m).故答案為:【考點(diǎn)】本題考查了平面展開﹣?zhàn)疃搪窂絾栴},解決本題的關(guān)鍵是掌握?qǐng)A柱的側(cè)面展開圖是矩形,利用勾股定理求最短距離.8、0.8【解析】【分析】梯子的長(zhǎng)是不變的,只要利用勾股定理解出梯子滑動(dòng)前和滑動(dòng)后的所構(gòu)成的兩直角三角形,分別得出AO,A1O的長(zhǎng)即可.【詳解】解:在Rt△ABO中,根據(jù)勾股定理知,A1O==4(m),在Rt△ABO中,由題意可得:BO=1.4(m),根據(jù)勾股定理知,AO==4.8(m),所以AA1=AO-A1O=0.8(米).故答案為0.8.【考點(diǎn)】本題考查勾股定理的應(yīng)用,解題關(guān)鍵是從題中抽象出勾股定理這一數(shù)學(xué)模型,畫出準(zhǔn)確的示意圖.領(lǐng)會(huì)數(shù)形結(jié)合的思想的應(yīng)用.三、解答題1、(1)ABD,ACE,;(2)BD的長(zhǎng)為;(3)+4.【解析】【分析】(1)根據(jù)SAS可證△ABD≌△ACE,得出BD=CE,利用勾股定理求出CE即可得出BD的長(zhǎng)度;(2)作AH⊥BC于點(diǎn)H,以AB為邊在左側(cè)作等邊△ABE,連接CE,求出BH,HC即BC的長(zhǎng)度,再利用勾股定理即可求出CE的長(zhǎng)度,由(1)知BD=CE,據(jù)此得解;(3)作AH⊥BC于點(diǎn)H,以AB為邊在左側(cè)作等邊△ABE,延長(zhǎng)EB至F,使BF=EB,連接AF交BN于C',連接EC',此時(shí)BD+AC'有最小值即為AF,此時(shí)△ABD周長(zhǎng)=AF+AB最小,求出AF即可.(1)解:∵△ACD和△ABE是等邊三角形,∴∠EAB=∠DAC=60°,AD=AC,∴∠EAB+∠BAC=∠DAC+∠BAC,即∠EAC=∠BAD,在△ABD和△AEC中,,∴△ABD≌△ACE(SAS),∴BD=CE,∵AB=4,∠MBN=30°,∴AC=2,∴BC=,∴BD=CE=,故答案為:ABD,ACE,;(2)解:如下圖,作AH⊥BC于點(diǎn)H,以AB為邊在左側(cè)作等邊△ABE,連接CE,∵AB=4,∠MAN=30°,∴AH=2,BH=,∵AC=,∴HC=,∴BC=BH+HC=+=,∴CE=,由(1)可知BD=CE,∴此時(shí)BD的長(zhǎng)為;(3)解:如圖,以AB為邊在左側(cè)作等邊△ABE,延長(zhǎng)EB至F,使BF=EB,連接AF交BN于C',連接EC',∵EC'=FC'=BD,∴此時(shí)BD+AC'有最小值即為AF,∴此時(shí)△ABD周長(zhǎng)=AD+BD+AB=AF+AB最小,作AG⊥BE于G,∴AG∥BN,∴∠BAG=30°,∴BG=AB=2,AG=,∴GF=BG+BF=2+4=6,由勾股定理得AF=,∴此時(shí)△ABD周長(zhǎng)為:+4.【考點(diǎn)】本題主要考查全等三角形的判定和性質(zhì),勾股定理等,作出合適的輔助線,構(gòu)造出全等三角形是解題的關(guān)鍵.2、(1)會(huì),理由見解析;(2)7h【解析】【分析】(1)利用勾股定理的逆定理得出△ABC是直角三角形,進(jìn)而利用三角形面積得出CD的長(zhǎng),從而判斷出海港C是否受臺(tái)風(fēng)影響;(2)利用勾股定理得出ED以及EF的長(zhǎng),進(jìn)而得出臺(tái)風(fēng)影響該海港持續(xù)的時(shí)間.【詳解】解:(1)如圖所示,過點(diǎn)C作CD⊥AB于D點(diǎn),∵AC=300km,BC=400km,AB=500km,∴,∴△ABC為直角三角形,∴,∴,∴,∵以臺(tái)風(fēng)中心為圓心周圍250km以內(nèi)為受影響區(qū)域,∴海港C會(huì)受到臺(tái)風(fēng)影響;(2)由(1)得CD=240km,如圖所示,當(dāng)EC=FC=250km時(shí),即臺(tái)風(fēng)經(jīng)過EF段時(shí),正好影響到海港C,此時(shí)△ECF為等腰三角形,∵,∴EF=140km,∵臺(tái)風(fēng)的速度為20km/h,∴140÷20=7h,∴臺(tái)風(fēng)影響該海港持續(xù)的時(shí)間有7h.【考點(diǎn)】本題考查的是勾股定理在實(shí)際生活中的運(yùn)用,解答此類題目的關(guān)鍵是構(gòu)造出直角三角形,再利用勾股定理解答.3、(1)BD=2,;(2),【解析】【分析】(1)由勾股定理求出BC=4,再根據(jù)中點(diǎn)的性質(zhì)可得到BD,然后再一次運(yùn)用勾股定理求出AD即可;(2)設(shè),則,,利用勾股定理列出方程解,從而得解.【詳解】(1)∵在中,,,∴在中,∴又∵為邊上的中點(diǎn)∴∴在中,∴(2)折疊后如圖所示,為折痕,聯(lián)結(jié)設(shè),則,在中,,即解得:∴∴【考點(diǎn)】本題主要考查了勾股定理的應(yīng)用,也考查了折疊的性質(zhì).是常見中考題型.4、(1)△BDC為直角三角形,理由見解析;(2)△ABC的周長(zhǎng)為=cm.【解析】【分析】(1)由BC=10cm,CD=8cm,BD=6cm,知道BC2=BD2+CD2,所以△BDC為直角三角形;(2)由此可求出AC的長(zhǎng),周長(zhǎng)即可求出.(1)解:△BDC為直角三角形,理由如下,∵BC=10cm,CD=8cm,BD=6cm,而102=62+82,∴BC2=BD2+CD2.∴△BDC為直角三角形;(2)解:設(shè)AB=xcm,∵等腰△ABC,∴AB=AC=x,則AD=x-6,∵AB2=AD2+BD2,即x2=(x-6)2+82,∴x=,∴△ABC的周長(zhǎng)=2AB+BC=(cm).【考點(diǎn)】本題考查了勾股定理的逆定理,關(guān)鍵是根據(jù)等腰三角形的性質(zhì)、勾股定理以及逆定理的應(yīng)用解答.5、(1)見解析;(2)見解析;(3)在四邊形ABCD中,AB⊥BC,DC⊥BC,AD比AB長(zhǎng)0.5米,BC=4米,CD=0.5米,求AB的長(zhǎng);8米【解析】【分析】(1)將圖1分割成五塊:四個(gè)直角邊分別為1、2的直角三角形,一個(gè)邊長(zhǎng)為2的正方形,再在圖2中,拼成邊長(zhǎng)為的正方形即可.(2)根據(jù)20個(gè)小正方形的面積的和等于拼成的正方形的面積,根據(jù)勾股定理確定截線的長(zhǎng)度即可;(3)根據(jù)題意,畫出圖形,可將該問題抽象為解直角三角形問題,該直角三角形的斜邊比其中一條直角邊多1m,而另一條直角邊長(zhǎng)為5
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 浙江省諸暨市榮懷小學(xué)2024-2025學(xué)年六年級(jí)上學(xué)期期末考試語文試題
- 漢字對(duì)話課件
- 網(wǎng)紅經(jīng)濟(jì)現(xiàn)狀與未來趨勢(shì)分析
- 2025年農(nóng)村土地轉(zhuǎn)讓協(xié)議模板
- 2024年秋新北師大版數(shù)學(xué)一年級(jí)上冊(cè)教學(xué)課件 第二單元 5以內(nèi)數(shù)加與減 第5課時(shí) 可愛的小貓
- 水表井安全知識(shí)培訓(xùn)課件記錄
- 燃?xì)庠O(shè)備緊急故障應(yīng)急方案
- 混凝土施工過程中的溫差控制技術(shù)方案
- 建筑工程項(xiàng)目施工現(xiàn)場(chǎng)物流與倉(cāng)儲(chǔ)方案
- 消防疏散指示標(biāo)志設(shè)置方案
- 2025-2030中國(guó)采鹽行業(yè)市場(chǎng)全景調(diào)研及投資價(jià)值評(píng)估咨詢報(bào)告
- JG/T 475-2015建筑幕墻用硅酮結(jié)構(gòu)密封膠
- 投資學(xué)(汪昌云第五版)習(xí)題及參考答案
- 森林消防考試題庫(kù)及答案
- 粉塵涉爆安全培訓(xùn)
- GB/T 45607-2025船舶與海上技術(shù)船舶系泊和拖帶設(shè)備系泊導(dǎo)纜孔底座
- 外墻高空蜘蛛人作業(yè)施工方案
- 新常態(tài)下的中國(guó)消費(fèi)-麥肯錫
- 血液腫瘤科知識(shí)培訓(xùn)課件
- 網(wǎng)絡(luò)安全產(chǎn)品代理銷售合同
- 廣播工程系統(tǒng)施工方案
評(píng)論
0/150
提交評(píng)論