




下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
裝訂線裝訂線PAGE2第1頁,共2頁廣西職業(yè)技術(shù)學(xué)院《神經(jīng)網(wǎng)絡(luò)計算機視覺》2024-2025學(xué)年第一學(xué)期期末試卷院(系)_______班級_______學(xué)號_______姓名_______題號一二三四總分得分一、單選題(本大題共15個小題,每小題2分,共30分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在機器學(xué)習(xí)中,監(jiān)督學(xué)習(xí)是一種常見的學(xué)習(xí)方式。假設(shè)我們要使用監(jiān)督學(xué)習(xí)算法來預(yù)測房價,給定了大量的房屋特征(如面積、房間數(shù)量、地理位置等)以及對應(yīng)的房價數(shù)據(jù)。以下關(guān)于監(jiān)督學(xué)習(xí)在這個任務(wù)中的描述,哪一項是不準確的?()A.可以使用線性回歸算法,建立房屋特征與房價之間的線性關(guān)系模型B.決策樹算法可以根據(jù)房屋特征的不同取值來劃分決策節(jié)點,最終預(yù)測房價C.支持向量機通過尋找一個最優(yōu)的超平面來對房屋數(shù)據(jù)進行分類,從而預(yù)測房價D.無監(jiān)督學(xué)習(xí)算法如K-Means聚類算法可以直接用于房價的預(yù)測,無需對數(shù)據(jù)進行標注2、假設(shè)正在研究一個自然語言處理任務(wù),需要對句子進行語義理解。以下哪種深度學(xué)習(xí)模型在捕捉句子的長期依賴關(guān)系方面表現(xiàn)較好?()A.雙向長短時記憶網(wǎng)絡(luò)(BiLSTM)B.卷積神經(jīng)網(wǎng)絡(luò)(CNN)C.圖卷積神經(jīng)網(wǎng)絡(luò)(GCN)D.以上模型都有其特點3、在進行圖像識別任務(wù)時,需要對大量的圖像數(shù)據(jù)進行特征提取。假設(shè)我們有一組包含各種動物的圖像,要區(qū)分貓和狗。如果采用傳統(tǒng)的手工設(shè)計特征方法,可能會面臨諸多挑戰(zhàn),例如特征的選擇和設(shè)計需要豐富的專業(yè)知識和經(jīng)驗。而使用深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)(CNN),能夠自動從數(shù)據(jù)中學(xué)習(xí)特征。那么,以下關(guān)于CNN在圖像特征提取方面的描述,哪一項是正確的?()A.CNN只能提取圖像的低級特征,如邊緣和顏色B.CNN能夠同時提取圖像的低級和高級語義特征,具有強大的表達能力C.CNN提取的特征與圖像的內(nèi)容無關(guān),主要取決于網(wǎng)絡(luò)結(jié)構(gòu)D.CNN提取的特征是固定的,無法根據(jù)不同的圖像數(shù)據(jù)集進行調(diào)整4、在深度學(xué)習(xí)中,批量歸一化(BatchNormalization)的主要作用是()A.加速訓(xùn)練B.防止過擬合C.提高模型泛化能力D.以上都是5、某研究團隊正在開發(fā)一個語音識別系統(tǒng),需要對語音信號進行特征提取。以下哪種特征在語音識別中被廣泛使用?()A.梅爾頻率倒譜系數(shù)(MFCC)B.線性預(yù)測編碼(LPC)C.感知線性預(yù)測(PLP)D.以上特征都常用6、在自然語言處理中,詞嵌入(WordEmbedding)的作用是()A.將單詞轉(zhuǎn)換為向量B.進行詞性標注C.提取文本特征D.以上都是7、某公司希望通過機器學(xué)習(xí)來預(yù)測產(chǎn)品的需求,以便更有效地進行生產(chǎn)計劃和庫存管理。數(shù)據(jù)集涵蓋了歷史銷售數(shù)據(jù)、市場趨勢、季節(jié)因素和經(jīng)濟指標等多方面信息。在這種復(fù)雜的多因素預(yù)測任務(wù)中,以下哪種模型可能表現(xiàn)出色?()A.線性回歸B.多層感知機(MLP)C.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)D.隨機森林8、在一個異常檢測問題中,例如檢測網(wǎng)絡(luò)中的異常流量,數(shù)據(jù)通常呈現(xiàn)出正常樣本遠遠多于異常樣本的情況。如果使用傳統(tǒng)的監(jiān)督學(xué)習(xí)算法,可能會因為數(shù)據(jù)不平衡而導(dǎo)致模型對異常樣本的檢測能力不足。以下哪種方法更適合解決這類異常檢測問題?()A.構(gòu)建一個二分類模型,將數(shù)據(jù)分為正常和異常兩類B.使用無監(jiān)督學(xué)習(xí)算法,如基于密度的聚類算法,識別異常點C.對數(shù)據(jù)進行平衡處理,如復(fù)制異常樣本,使正常和異常樣本數(shù)量相等D.以上方法都不適合,異常檢測問題無法通過機器學(xué)習(xí)解決9、假設(shè)正在開發(fā)一個智能推薦系統(tǒng),用于向用戶推薦個性化的商品。系統(tǒng)需要根據(jù)用戶的歷史購買記錄、瀏覽行為、搜索關(guān)鍵詞等信息來預(yù)測用戶的興趣和需求。在這個過程中,特征工程起到了關(guān)鍵作用。如果要將用戶的購買記錄轉(zhuǎn)化為有效的特征,以下哪種方法不太合適?()A.統(tǒng)計用戶購買每種商品的頻率B.對用戶購買的商品進行分類,并計算各類別的比例C.直接將用戶購買的商品名稱作為特征輸入模型D.計算用戶購買商品的時間間隔和購買周期10、在進行自動特征工程時,以下關(guān)于自動特征工程方法的描述,哪一項是不準確的?()A.基于深度學(xué)習(xí)的自動特征學(xué)習(xí)可以從原始數(shù)據(jù)中自動提取有意義的特征B.遺傳算法可以用于搜索最優(yōu)的特征組合C.自動特征工程可以完全替代人工特征工程,不需要人工干預(yù)D.自動特征工程需要大量的計算資源和時間,但可以提高特征工程的效率11、在進行模型評估時,除了準確率、召回率等指標,還可以使用混淆矩陣來更全面地了解模型的性能。假設(shè)我們有一個二分類模型的混淆矩陣。以下關(guān)于混淆矩陣的描述,哪一項是不準確的?()A.混淆矩陣的行表示真實類別,列表示預(yù)測類別B.真陽性(TruePositive,TP)表示實際為正例且被預(yù)測為正例的樣本數(shù)量C.假陰性(FalseNegative,F(xiàn)N)表示實際為正例但被預(yù)測為負例的樣本數(shù)量D.混淆矩陣只能用于二分類問題,不能用于多分類問題12、在一個異常檢測的任務(wù)中,數(shù)據(jù)分布呈現(xiàn)多峰且存在離群點。以下哪種異常檢測算法可能表現(xiàn)較好?()A.基于密度的局部異常因子(LOF)算法,能夠發(fā)現(xiàn)局部密度差異較大的異常點,但對參數(shù)敏感B.一類支持向量機(One-ClassSVM),適用于高維數(shù)據(jù),但對數(shù)據(jù)分布的假設(shè)較強C.基于聚類的異常檢測,將遠離聚類中心的點視為異常,但聚類效果對結(jié)果影響較大D.以上算法結(jié)合使用,根據(jù)數(shù)據(jù)特點選擇合適的方法或進行組合13、假設(shè)正在開發(fā)一個用于情感分析的深度學(xué)習(xí)模型,需要對模型進行優(yōu)化。以下哪種優(yōu)化算法在深度學(xué)習(xí)中被廣泛使用?()A.隨機梯度下降(SGD)B.自適應(yīng)矩估計(Adam)C.牛頓法D.共軛梯度法14、在機器學(xué)習(xí)中,特征工程是非常重要的一步。假設(shè)我們要預(yù)測一個城市的空氣質(zhì)量,有許多相關(guān)的原始數(shù)據(jù),如氣象數(shù)據(jù)、交通流量、工廠排放等。以下關(guān)于特征工程的描述,哪一項是不準確的?()A.對原始數(shù)據(jù)進行標準化或歸一化處理,可以使不同特征在數(shù)值上具有可比性B.從原始數(shù)據(jù)中提取新的特征,例如計算交通流量的日變化率,有助于提高模型的性能C.特征選擇是選擇對目標變量有顯著影響的特征,去除冗余或無關(guān)的特征D.特征工程只需要在模型訓(xùn)練之前進行一次,后續(xù)不需要再進行調(diào)整和優(yōu)化15、某機器學(xué)習(xí)項目需要對文本進行情感分類,同時考慮文本的上下文信息和語義關(guān)系。以下哪種模型可以更好地處理這種情況?()A.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)與注意力機制的結(jié)合B.卷積神經(jīng)網(wǎng)絡(luò)(CNN)與長短時記憶網(wǎng)絡(luò)(LSTM)的融合C.預(yù)訓(xùn)練語言模型(如BERT)微調(diào)D.以上模型都有可能二、簡答題(本大題共3個小題,共15分)1、(本題5分)機器學(xué)習(xí)中如何利用強化學(xué)習(xí)解決問題?2、(本題5分)簡述在時間序列預(yù)測中,常用的機器學(xué)習(xí)模型。3、(本題5分)談?wù)勗诟呔S數(shù)據(jù)中,如何進行特征工程。三、論述題(本大題共5個小題,共25分)1、(本題5分)探討機器學(xué)習(xí)在推薦系統(tǒng)中的應(yīng)用與挑戰(zhàn)。推薦系統(tǒng)可以根據(jù)用戶的興趣和行為為用戶提供個性化的推薦,機器學(xué)習(xí)技術(shù)在其中發(fā)揮了重要作用。分析推薦系統(tǒng)中的機器學(xué)習(xí)算法,以及面臨的冷啟動、數(shù)據(jù)稀疏等挑戰(zhàn)。2、(本題5分)分析機器學(xué)習(xí)中的異常檢測在工業(yè)故障診斷中的應(yīng)用。異常檢測可以幫助發(fā)現(xiàn)工業(yè)故障,介紹其在工業(yè)故障診斷中的應(yīng)用方法。3、(本題5分)結(jié)合實際案例,論述機器學(xué)習(xí)在金融信用評估中的應(yīng)用。探討個人信用評分、企業(yè)信用評級、信用風(fēng)險模型等方面的機器學(xué)習(xí)技術(shù)和應(yīng)用前景。4、(本題5分)結(jié)合實際案例,論述機器學(xué)習(xí)在農(nóng)業(yè)精準灌溉中的應(yīng)用。探討土壤濕度監(jiān)測、作物需水量預(yù)測、灌溉決策等方面的機器學(xué)習(xí)技術(shù)和應(yīng)用前景。5、
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- mapjava面試題及答案
- 東北護士考試題及答案
- 2025年貴州畢節(jié)工業(yè)職業(yè)技術(shù)學(xué)院招聘考試筆試試題(含答案)
- 2025年廣東省電工技師職業(yè)技能理論考試練習(xí)題庫(含答案)
- 2024年山東臨沂中考道德與法治試題及答案
- 資產(chǎn)評估師財務(wù)會計應(yīng)收賬款考試題(含答案)
- 數(shù)字化物流商業(yè)運營 習(xí)題答案-模塊七
- 2024年醫(yī)務(wù)人員查對制度考試題(含答案)
- (新版)消防設(shè)施操作員(初級)考試歷年真題(含標準答案)
- 幼兒園教育指導(dǎo)綱要(試行)試題及答案
- 《工業(yè)戰(zhàn)略性新興產(chǎn)業(yè)分類目錄(2023)》
- 2025上半年中學(xué)教師資格證考試《語文學(xué)科知識與教學(xué)能力》真題卷
- DB32-T4743-2024重點化工企業(yè)全流程自動化控制配備和提升規(guī)范
- 交通銀行個人消費貸款合同(格式文本)
- 公司聘用總經(jīng)理合同書
- 部編版語文三年級上冊第四單元大單元教學(xué)設(shè)計核心素養(yǎng)目標
- 2025睿實消防自動跟蹤定位射流滅火系統(tǒng)說明書
- 藥劑教學(xué)資源庫建設(shè)《醫(yī)藥商品基礎(chǔ)》課程標準
- 綠色施工管理體系與管理制度模版
- SIEMENS西門子蒸箱使用說明書用戶手冊
- 《化學(xué)實驗室安全培訓(xùn)》課件
評論
0/150
提交評論