難點解析北師大版9年級數(shù)學(xué)上冊期末測試卷(真題匯編)附答案詳解_第1頁
難點解析北師大版9年級數(shù)學(xué)上冊期末測試卷(真題匯編)附答案詳解_第2頁
難點解析北師大版9年級數(shù)學(xué)上冊期末測試卷(真題匯編)附答案詳解_第3頁
難點解析北師大版9年級數(shù)學(xué)上冊期末測試卷(真題匯編)附答案詳解_第4頁
難點解析北師大版9年級數(shù)學(xué)上冊期末測試卷(真題匯編)附答案詳解_第5頁
已閱讀5頁,還剩27頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

北師大版9年級數(shù)學(xué)上冊期末測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題24分)一、單選題(6小題,每小題2分,共計12分)1、從下列命題中,隨機(jī)抽取一個是真命題的概率是(

)(1)無理數(shù)都是無限小數(shù);(2)因式分解;(3)棱長是的正方體的表面展開圖的周長一定是;(4)兩條對角線長分別為6和8的菱形的周長是40.A. B. C. D.12、如圖,菱形ABCD的兩條對角線長分別為AC=6,BD=8,點P是BC邊上的一動點,則AP的最小值為(

)A.4 B.4.8 C.5 D.5.53、已知是方程的一個解,則的值為(

)A.10 B.-10 C.2 D.-404、如圖,為△的中位線,點在上,且;若,則的長為(

)A.2 B.1 C.4 D.35、下列命題是真命題的是(

)A.對角線相等的四邊形是矩形B.對角線互相垂直的四邊形是矩形C.對角線互相垂直的矩形是正方形D.四邊相等的平行四邊形是正方形6、在一次酒會上,每兩人都只碰一次杯,如果一共碰杯55次,則參加酒會的人數(shù)為(

)A.9人 B.10人 C.11人 D.12人二、多選題(6小題,每小題2分,共計12分)1、若反比例函數(shù)y=的圖象在每一個象限內(nèi)y的值隨x的增大而增大,則關(guān)于x的函數(shù)y=(1+m)x+m2+3的圖象經(jīng)過()A.第一象限 B.第二象限 C.第三象限 D.第四象限2、下列多邊形中,一定不相似的是(

)A.兩個矩形 B.兩個菱形 C.兩個正方形 D.兩個平行四邊形3、下列關(guān)于位似圖形的說法中正確的是(

)A.相似圖形一定是位似圖形,位似圖形一定是相似圖形B.位似圖形一定有位似中心C.如果兩個圖形是相似圖形,且每組對應(yīng)點的連線所在的直線都經(jīng)過同一個點,那么這兩個圖形是位似圖形D.位似圖形上任意兩點與位似中心的距離之比等于位似比4、下列方程中,是一元二次方程的是(

)A. B. C. D.5、下列說法中,正確的是(

)A.兩角對應(yīng)相等的兩個三角形相似B.兩邊對應(yīng)成比例的兩個三角形相似C.兩邊對應(yīng)成比例且夾角相等的兩個三角形相似D.三邊對應(yīng)成比例的兩個三角形相似6、已知反比例函數(shù)y=﹣,則下列結(jié)論錯誤的是()A.點(1,2)在它的圖象上 B.其圖象分別位于第一、三象限C.y隨x的增大而增大 D.如果點P(m,n)在它的圖象上,則點Q(n,m)也在它的圖象上第Ⅱ卷(非選擇題76分)三、填空題(8小題,每小題2分,共計16分)1、如圖,小明用相似圖形的知識測量旗桿高度,已知小明的眼睛離地面1.5米,他將3米長的標(biāo)桿豎直放置在身前3米處,此時小明的眼睛、標(biāo)桿的頂端、旗桿的頂端在一條直線上,通過計算測得旗桿高度為15米,則旗桿和標(biāo)桿之間距離CE長___________米.2、如圖,在Rt△ABC中,∠C=90°,AC=8cm,BC=2cm,點P在邊AC上,以2cm/s的速度從點A向點C移動,點Q在邊CB上,以1cm/s的速度從點C向點B移動.點P、Q同時出發(fā),且當(dāng)一點移動到終點時,另一點也隨之停止,連接PQ,當(dāng)△PQC的面積為3cm2時,P、Q運動的時間是_____秒.3、在每個小正方形的邊長為1的網(wǎng)格圖形中,每個小正方形的頂點稱為格點,頂點都是格點的三角形稱為格點三角形.如圖,已知Rt△ABC是6×6網(wǎng)格圖形中的格點三角形,則該圖中所有與Rt△ABC相似的格點三角形中.面積最大的三角形的斜邊長是_____.4、如圖,點E、F分別是矩形ABCD邊BC和CD上的點,把△CEF沿直線EF折疊得到△GEF,再把△BEG沿直線BG折疊,點E的對應(yīng)點H恰好落在對角線BD上,若此時F、G、H三點在同一條直線上,且線段HF與HD也恰好關(guān)于某條直線對稱,則的值為______.5、如圖,將矩形的四個角向內(nèi)折起,恰好拼成一個無縫隙重疊的四邊形,若,,則邊的長是____.6、要利用一面很長的圍墻和100米長的隔離欄建三個如圖所示的矩形羊圈,若計劃建成的三個羊圈總面積為400平方米,則羊圈的邊長AB為多少米?設(shè)AB=x米,根據(jù)題意可列出方程的為_________.7、如圖所示,在中,,,.(1)如圖1,四邊形為的內(nèi)接正方形,則正方形的邊長為_________;(2)如圖2,若內(nèi)有并排的n個全等的正方形,它們組成的矩形內(nèi)接于,則正方形的邊長為_________.8、關(guān)于的一元二次方程的一個根是2,則另一個根是__________.四、解答題(6小題,每小題10分,共計60分)1、如圖,一次函數(shù)y1=ax+b與反比例函數(shù)的圖象相交于A(2,8),B(8,2)兩點,連接AO,BO,延長AO交反比例函數(shù)圖象于點C.(1)求一次函數(shù)y1的表達(dá)式與反比例函數(shù)y2的表達(dá)式;(2)當(dāng)y1<y2,時,直接寫出自變量x的取值范圍;(3)點P是x軸上一點,當(dāng)時,請求出點P的坐標(biāo).2、發(fā)現(xiàn):四個連續(xù)的整數(shù)的積加上是一個整數(shù)的平方.驗證:(1)的結(jié)果是哪個數(shù)的平方?(2)設(shè)四個連續(xù)的整數(shù)分別為,試證明他們的積加上是一個整數(shù)的平方;延伸:(3)有三個連續(xù)的整數(shù),前兩個整數(shù)的平方和等于第三個數(shù)的平方,試求出這三個整數(shù)分別是多少.3、如圖,在△ABC和△DCB中,AB=DC,∠A=∠D,AC、DB交于點M.(1)求證:△ABC≌△DCB;(2)作CN∥BD,BN∥AC,CN交BN于點N,四邊形BNCM是什么四邊形?請證明你的結(jié)論.4、今年忠縣柑橘喜獲豐收,某果園銷售的柑橘“忠橙”和“愛媛”很受消費者的歡迎,“忠橙”售價80元/箱,“愛媛”售價60元/箱.在11月第一周“忠橙”的銷量比“愛媛”的銷量多100箱,且這兩種柑橘的總銷售額為50000元.(1)在11月第一周,該果園“忠橙”和“愛媛”的銷量各為多少箱?(2)為了擴(kuò)大銷售,11月第二周“忠橙”售價降價,銷量比第一周培加了,“愛媛”售價不變,銷量比第一周增加了,結(jié)果這兩種相橘第二周的總銷售額比第一周的總銷售額增加了,求的值5、已知,且,求x,y的值.6、如圖,四邊形ABCD是菱形,邊長為10cm,對角線AC,BD交于點O,∠BAD=60°.(1)求對角線AC,BD的長;(2)求菱形的面積.-參考答案-一、單選題1、C【解析】【分析】分別判斷各命題的真假,再利用概率公式求解.【詳解】(1)無理數(shù)都是無限小數(shù),是真命題,(2)因式分解,是真命題,(3)棱長是的正方體的表面展開圖的周長一定是,是真命題,(4)菱形的對角線長為6和8根據(jù)菱形的性質(zhì),對角線互相垂直且平分,利用勾股定理可求得菱形的邊長為5,則菱形的周長為,是假命題則隨機(jī)抽取一個是真命題的概率是,故選:C.【考點】本題考查了命題的真假,概率,菱形的性質(zhì),無理數(shù),因式分解,正方體展開圖,知識點較多,難度一般,解題的關(guān)鍵是運用所學(xué)知識判斷各個命題的真假.2、B【解析】【分析】由垂線段最短,可得AP⊥BC時,AP有最小值,由菱形的性質(zhì)和勾股定理可求BC的長,由菱形的面積公式可求解.【詳解】如圖,設(shè)AC與BD的交點為O,∵點P是BC邊上的一動點,∴AP⊥BC時,AP有最小值,∵四邊形ABCD是菱形,∴AC⊥BD,AO=CO=AC=3,BO=DO=BD=4,∴BC=,∵S菱形ABCD=×AC×BD=BC×AP,∴AP==4.8,故選:B.【考點】本題考查了菱形的性質(zhì),勾股定理,確定當(dāng)AP⊥BC時,AP有最小值是本題關(guān)鍵.3、B【解析】【分析】將a代入方程得到,再將其整體代入所求代數(shù)式即可得解.【詳解】∵a是方程的一個解,∴有,即,,∴,故選:B.【考點】本題考查了一元二次方程的解的定義,此類題的特點是利用方程的解的定義找到相等關(guān)系,再將其整體代入所求代數(shù)式,即可快速作答,盲目解一元二次方程求a值再代入計算,此方法耗時費力不可?。?、A【解析】【分析】根據(jù)三角形中位線定理求出DE,根據(jù)直角三角形的性質(zhì)求出DF,計算即可.【詳解】∵DE為△ABC的中位線,∴DE=BC=5,∵∠AFB=90°,D是AB的中點,∴DF=AB=3,∴EF=DE-DF=2,故選A.【考點】本題考查的是三角形中位線定理、直角三角形的性質(zhì),掌握三角形的中位線平行于第三邊,且等于第三邊的一半是解題的關(guān)鍵.5、C【解析】【分析】根據(jù)矩形的判定方法對A、B矩形判斷;根據(jù)正方形的判定方法對C、D矩形判斷.【詳解】解:A、對角線相等的平行四邊形是矩形,所以A選項錯誤;B、對角線相等的平行四邊形是矩形,所以B選項錯誤;C、對角線互相垂直的矩形是正方形,所以C選項正確;D、四邊相等的菱形是正方形,所以D選項錯誤.故選C.【考點】本題考查了命題與定理:命題的“真”“假”是就命題的內(nèi)容而言.任何一個命題非真即假.要說明一個命題的正確性,一般需要推理、論證,而判斷一個命題是假命題,只需舉出一個反例即可.6、C【解析】【分析】設(shè)參加酒會的人數(shù)為x人,每人碰杯次數(shù)為次,如果一共碰杯55次,列出一元二次方程,解之即可得出答案.【詳解】設(shè)參加酒會的人數(shù)為x人,依題可得:x(x-1)=55,化簡得:x2-x-110=0,解得:x1=11,x2=-10(舍去),故答案為C.【考點】考查了一元二次方程的應(yīng)用,解題的關(guān)鍵是根據(jù)題中的等量關(guān)系列出方程.二、多選題1、ABD【解析】【分析】先根據(jù)反比例函數(shù)y=的圖象在每一個象限內(nèi),y隨x的增大而增大可得出關(guān)于m的不等式,求出m的取值范圍,然后推知函數(shù)y=(1+m)x+m2+3的圖象所經(jīng)過的象限.【詳解】反比例函數(shù)y=的圖象在每一個象限內(nèi)y的值隨x值的增大而增大,m+2<0,m<-2,1+m<-1,m2+3>7,函數(shù)y=(1+m)x+m2+3的圖象經(jīng)過第一、二、四象限,故選:ABD.【考點】本題考查了反比例函數(shù)的性質(zhì),一次函數(shù)的性質(zhì),反比例函數(shù)的圖象,熟悉函數(shù)圖象與系數(shù)的關(guān)系是解題的關(guān)鍵.2、ABD【解析】【分析】利用相似多邊形的對應(yīng)邊的比相等,對應(yīng)角相等分析.【詳解】解:要判斷兩個多邊形是否相似,需要看對應(yīng)角是否相等,對應(yīng)邊的比是否相等.矩形、菱形、平行四邊形都屬于形狀不唯一確定的圖形,即對應(yīng)角、對應(yīng)邊的比不一定相等,故不一定相似,選項A、B、D符合題意;而兩個正方形,對應(yīng)角都是90°,對應(yīng)邊的比也都相等,故一定相似,選項C不符合題意.故選:ABD.【考點】本題考查了相似多邊形的識別.判定兩個圖形相似的依據(jù)是:對應(yīng)邊的比相等,對應(yīng)角相等.兩個條件必須同時具備.3、B【解析】【分析】根據(jù)位似圖形的性質(zhì)解答.【詳解】解:A、位似圖形一定是相似圖形,相似圖形不一定是位似圖形,故該選項錯誤;B、位似圖形一定有位似中心,故該項正確;C、如果兩個圖形是相似圖形,且每組對應(yīng)點的連線所在的直線都經(jīng)過同一個點,且對應(yīng)邊平行,那么這兩個圖形是位似圖形,故該項錯誤;D、位似圖形上對應(yīng)點與位似中心的距離之比等于位似比,故該項錯誤;故選:B.【考點】此題考查位似圖形的性質(zhì):位似圖形對應(yīng)點與位似中心的連線的比等于位似比,兩個位似圖形一定是相似圖形,熟記性質(zhì)是解題的關(guān)鍵.4、ABC【解析】【分析】根據(jù)一元二次方程的定義逐個判斷即可.【詳解】解:A、是一元二次方程,故本選項符合題意;B、是一元二次方程,故本選項符合題意;C、是一元二次方程,故本選項符合題意;D、方程,整理得:,是一元一次方程,不是一元二次方程,故本選項不符合題意;故選:【考點】本題考查了一元二次方程的定義,能熟記一元二次方程的定義的內(nèi)容是解此題的關(guān)鍵,注意:只含有一個未知數(shù),并且所含未知數(shù)的項的次數(shù)最高是2的整式.5、ACD【解析】【分析】根據(jù)相似三角形的判定定理判斷即可.【詳解】A

“兩角對應(yīng)相等的兩個三角形相似”是正確的;B

“兩邊對應(yīng)成比例的兩個三角形相似”是錯誤的,還需添上條件“且夾角相等”才成立;C

“兩邊對應(yīng)成比例且夾角相等的兩個三角形相似”是正確的;D

“三邊對應(yīng)成比例的兩個三角形相似”是正確的故選:ACD【考點】本題考查了相似三角形的判定定理,做題的關(guān)鍵是熟練掌握相似三角形的判定定理.6、ABC【解析】【分析】根據(jù)反比例函數(shù)圖象上點的坐標(biāo)特征、反比例函數(shù)的性質(zhì)解答.【詳解】A、將x=1代入y=-得到y(tǒng)=-2≠2,∴點(1,2)不在反比例函數(shù)y=-2x的圖象上,故本選項錯誤;B、因為比例系數(shù)為-2,則函數(shù)圖象過二、四象限,故本選項錯誤;C、在每一象限內(nèi)y隨x的增大而增大,故本選項錯誤.D、如果點P(m,n)在它的圖象上,則點Q(n,m)也在它的圖象上,故本選項正確;故選:ABC.【考點】本題考查了反比例函數(shù)的性質(zhì),熟悉反比例函數(shù)的圖象是解題的關(guān)鍵.三、填空題1、24【解析】【分析】如圖,延長交的延長線于,設(shè)米,米.利用相似三角形是性質(zhì)分別求出,即可.【詳解】解:如圖,延長交的延長線于,設(shè)米,米.由題意,米,米,米.,,,,解得,經(jīng)檢驗是分式方程的解,,,,,,經(jīng)檢驗是分式方程的解,(米,故答案為:24.【考點】本題考查相似三角形的判定和性質(zhì),解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造相似三角形解決問題.2、1【解析】【分析】設(shè)P、Q運動的時間是秒,根據(jù)已知條件得到cm,cm,則cm,根據(jù)三角形面積公式列出方程,解方程即可求解.【詳解】解:設(shè)P、Q運動的時間是秒,則cm,cm,cm∵△PQC的面積為3cm2,∴,即,解得或(不合題意,舍去),∴當(dāng)△PQC的面積為3cm2時,P、Q運動的時間是1秒.故答案為:1【考點】本題考查了一元二次方程應(yīng)用——動點問題,三角形的面積,正確的理解題意是解題的關(guān)鍵.3、5【解析】【分析】根據(jù)相似三角形的性質(zhì)確定兩直角邊的比值為1:2,以及6×6網(wǎng)格圖形中,最長線段為6,進(jìn)行嘗試,可確定、、為邊的這樣一組三角形滿足條件.【詳解】解:∵在Rt△ABC中,AC=1,BC=2,∴AB=,AC:BC=1:2,∴與Rt△ABC相似的格點三角形的兩直角邊的比值為1:2,若該三角形最短邊長為4,則另一直角邊長為8,但在6×6網(wǎng)格圖形中,最長線段為6,但此時畫出的直角三角形為等腰直角三角形,從而畫不出端點都在格點且長為8的線段,故最短直角邊長應(yīng)小于4,在圖中嘗試,可畫出DE=,EF=2,DF=5的三角形,∵===,∴△ABC∽△DEF,∴∠DEF=∠C=90°,∴此時△DEF的面積為:×2÷2=10,△DEF為面積最大的三角形,其斜邊長為:5.故答案為:5.【考點】本題考查了作圖-應(yīng)用與設(shè)計、相似三角形的判定和性質(zhì)、勾股定理等知識,解題的關(guān)鍵是學(xué)會利用數(shù)形結(jié)合的思想解決問題,屬于中考填空題中的壓軸題.4、【解析】【分析】根據(jù)線段HF與HD也恰好關(guān)于某條直線對稱,可得HF=HD,由折疊和同角的余角相等得,然后證明,再利用設(shè)元法即可解決問題.【詳解】解:∵線段HF與HD也恰好關(guān)于某條直線對稱,∴HF=HD,∴∠HFD=∠FDH,∴∠BHF=2∠HFD由折疊可知:GF=CF,HG=CE=EG,,∠BHG=∠BEG,∠CEF=∠GEF,∵∠BEG+∠CEF+∠GEF=180°,∴2∠HFD+2∠CEF=180°∴∠HFD+∠CEF=90°,又∵∠CFE+∠CEF=90°∴,又∵HF=HD,∴△DHF是等邊三角形,∴∠CBD=∠CEF=30°,∴,設(shè)GF=CF=x,HF=DF=y,則HG=CE=EG=,HF=HG+GF=GE+CF,即y=x+,∵,∴.【考點】本題主要考查折疊的性質(zhì)、軸對稱的性質(zhì)、相似三角形的判定與性質(zhì).解決本題的關(guān)鍵是掌握翻折的性質(zhì).5、【解析】【分析】由折疊的性質(zhì)和矩形的性質(zhì)可得∠HEF=90°,EA=EB=3,證明△HNG≌△FME,求出HF,設(shè)AH=x,在△AEH,△BEF和△EFH中,利用勾股定理列出方程,求出x,即可得到EH.【詳解】解:∵四邊形ABCD是矩形,∴∠A=∠B=∠D=90°,由折疊可知:△EAH≌△EMH,△HNG≌△HDG,△FBE≌△FME,∴EA=EM,AH=MH,HD=HN,EB=EM,F(xiàn)B=FM,∠AEH=∠MEH,∠BEF=∠MEF,∠BME=∠B=90°,∠HNG=∠D=90°,∴EA=EB=AB=3,∵∠AEH+∠MEH+∠BEF+∠MEF=180°,∴2∠MEH+2∠MEF=180°,∴∠HEF=90°,同理可知:∠EHG=∠EFG=∠HGF=90°,∴四邊形EHGF是矩形,∴HG∥FE,HG=FE,∴∠GHN=∠EFM,在△HNG和△FME中,,∴△HNG≌△FME(AAS),∴HN=FM,∴HD=FM,∴HF=HM+FM=AH+HD=AD=10,設(shè)AH=x,則HD=FM=FB=10-x,∵,,,∴,即,解得:x=1或x=9(舍),∴AH=1,∴,故答案為:.【考點】本題考查了翻折變換,矩形的性質(zhì),勾股定理,全等三角形的判定和性質(zhì),利用勾股定理列出方程是本題的關(guān)鍵.6、x(100-4x)=400【解析】【分析】由題意,得BC的長為(100-4x)米,根據(jù)矩形面積列方程即可.【詳解】解:設(shè)AB為x米,則BC的長為(100-4x)米由題意,得x(100-4x)=400故答案為:x(100-4x)=400.【考點】本題主要考查了一元二次方程的實際問題,解決問題的關(guān)鍵是通過圖形找到對應(yīng)關(guān)系量,根據(jù)等量關(guān)系式列方程.7、

【解析】【分析】(1)根據(jù)題意畫出圖形,作CN⊥AB,再根據(jù)GF∥AB,可知△CGF∽△CAB,由相似三角形的性質(zhì)即可求出正方形的邊長;(2)設(shè)正方形的邊長是x,則過點C作CN⊥AB,垂足為N,交GF于點M,易得△CGF∽△CAB,所以,求出x值即可.【詳解】解:(1)在圖1中,作CN⊥AB,交GF于點M,交AB于點N.在Rt△ABC中,∵AC=4,BC=3,∴AB=5,∴AB?CN=BC?AC,∴CN=,∵GF∥AB,∴△CGF∽△CAB,∴CM:CN=GF:AB,設(shè)正方形邊長為x,則,解得:,∴正方形DEFG的邊長為;(2)如圖,過點C作CN⊥AB,垂足為N,交GF于點M,設(shè)小正方形的邊長為x,∵四邊形GDEF為矩形,∴GF∥AB,CM⊥GF,同理算出CN=,∴,即,∴,即小正方形的邊長是.【考點】本題主要考查了正方形,矩形的性質(zhì)和相似三角形的性質(zhì).會利用三角形相似中的相似比來得到相關(guān)的線段之間的等量關(guān)系是解題的關(guān)鍵.8、-3【解析】【分析】由題意可把x=2代入一元二次方程進(jìn)行求解a的值,然后再進(jìn)行求解方程的另一個根.【詳解】解:由題意把x=2代入一元二次方程得:,解得:,∴原方程為,解方程得:,∴方程的另一個根為-3;故答案為-3.【考點】本題主要考查一元二次方程的解及其解法,熟練掌握一元二次方程的解及其解法是解題的關(guān)鍵.四、解答題1、(1),;(2)當(dāng)y1<y2,時,自變量x的取值范圍為x>8或0<x<2;(3)點P的坐標(biāo)為(3,0)或(-3,0).【解析】【分析】(1)利用待定系數(shù)法確定解析式即可;(2)利用數(shù)形結(jié)合的思想,分析兩個函數(shù)圖象的位置,根據(jù)交點的橫坐標(biāo)確定滿足條件的解集即可.(3)先利用分割法求出的面積,利用求出的面積,由面積公式列式求解即可.【詳解】解:(1)將,代入中,得解得:∴反比例函數(shù)y2的表達(dá)式為:將,代入中,得:解得:∴一次函數(shù)y1的表達(dá)式為:(2)由圖象可知,當(dāng)時,反比例函數(shù)圖象應(yīng)在一次函數(shù)圖象上方∴自變量x的取值范圍為:或(3)設(shè)直線AB與x軸的交點為D,如下圖:∵延長AO交反比例函數(shù)圖象于點C∴點C與點A關(guān)于原點對稱∴設(shè)直線AB交x軸的交點為D將代入∴∴又∵∴即:∴∵點P在x軸上∴或【考點】本題考查待定系數(shù)法求一次函數(shù)與反比例函數(shù)的解析式,通過圖象交點情況確定滿足條件的自變量取值范圍等知識點,能夠利用數(shù)形結(jié)合思想是解題的關(guān)鍵.2、(1)3×4×5×6+1的結(jié)果是19的平方;(2)見解析;(3)這三個連續(xù)的整數(shù)分別是3、4、5或-1、0、1【解析】【分析】(1)按照有理數(shù)的乘法計算出結(jié)果,即可判斷是19的平方;(2)設(shè)出四個連續(xù)整數(shù),根據(jù)題意得到式子,對式子進(jìn)行轉(zhuǎn)化,利用完全平方公式得到一個整數(shù)的平方;(3)設(shè)中間的整數(shù)是x,則另外兩個整數(shù)分別為x-1、x+1,根據(jù)“前兩個整數(shù)的平方和等于第三個數(shù)的平方”,列出方程求解即可.【詳解】(1)3×4×5×6+1=361=192,即3×4×5×6+1的結(jié)果是19的平方;(2)設(shè)這四個連續(xù)整數(shù)依次為:n-1,n,n+1,n+2,則(n-1)n(n+1)(n+2)+1,=[(n-1)(n+2)][n(n+1)]+1=(n2+n-2)(n2+n)+1=(n2+n)2-2(n2+n)+1=(n2+n-1)2.故四個連續(xù)整數(shù)的積加上1是一個整數(shù)的平方;(3)設(shè)中間的整數(shù)是x,則第一個是x-1,第三個是x+1,根據(jù)題意得(x-1)2+x2=(x+1)2解之得x1=4,x2=0,則x-1=3,x+1=5,或x-1=-1,x+1=1,x=0,答:這三個整數(shù)分別是3、4、5或-1、0、1.【考點】本題考查了一元二次方程的應(yīng)用,因式分解的應(yīng)用;利用完全平方公式得到一個整數(shù)的平方是正確解答本題的關(guān)鍵.3、(1)證明見解析;(2)四邊形BNCM是菱形,證明見解析.【解析】【分析】(1)根據(jù)題意利用AAS可證明出△ABM和△DCM,然后根據(jù)全等三角形的性質(zhì)得出∠MBC=∠MCB,最后利用AAS即可作出證明;(2)根據(jù)平行線的性質(zhì)和題意,即可得出△MBC≌△NCB,根據(jù)全等三角形的性質(zhì)即可作出證明.【詳解】如圖所示(1)在△ABM和△DCM中,,∴△ABM≌△DCM(AAS),∴BM=CM,∴∠MBC=∠MCB,在△ABC和△DCB中,,∴△ABC≌△DCB(AAS)(2)四邊形BNCM是菱形,其理由如下:∵CN∥BD,∴∠MBC=∠NCB,又∵BN∥AC,∴∠MCB=∠NBC,在△MBC和△N

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論