




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
河南省靈寶市中考數(shù)學(xué)真題分類(勾股定理)匯編專項(xiàng)測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計(jì)14分)1、在直角三角形中,若勾為3,股為4,則弦為()A.5 B.6 C.7 D.82、在△ABC中,,那么△ABC是(
)A.等腰三角形 B.鈍角三角形 C.直角三角形 D.等腰直角三角形3、如圖,在由邊長為1的7個正六邊形組成的網(wǎng)格中,點(diǎn)A,B在格點(diǎn)上.若再選擇一個格點(diǎn)C,使△ABC是直角三角形,且每個直角三角形邊長均大于1,則符合條件的格點(diǎn)C的個數(shù)是(
)A.2 B.4 C.5 D.64、△ABC的三邊長a,b,c滿足+(b﹣12)2+|c﹣13|=0,則△ABC的面積是(
)A.65 B.60 C.30 D.265、下面圖形能夠驗(yàn)證勾股定理的有()個A.4個 B.3個 C.2個 D.1個6、如圖,在水塔O的東北方向24m處有一抽水站A,在水塔的東南方向18m處有一建筑工地B,在AB間建一條直水管,則水管AB的長為(
)A.40m B.45m C.30m D.35m7、《九章算術(shù)》“勾股”章有一題:“今有戶高多于廣六尺八寸,兩隅相去適一丈.問戶高、廣各幾何.”大意是說:已知長方形門的高比寬多6尺8寸,門的對角線長1丈,那么門的高和寬各是多少(1丈=10尺,1尺=10寸)?若設(shè)門的寬為x寸,則下列方程中,符合題意的是()A.x2+12=(x+0.68)2 B.x2+(x+0.68)2=12C.x2+1002=(x+68)2 D.x2+(x+68)2=1002第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計(jì)16分)1、如圖,已知中,,,動點(diǎn)M滿足,將線段繞點(diǎn)C順時針旋轉(zhuǎn)得到線段,連接,則的最小值為_________.2、公元三世紀(jì),我國漢代數(shù)學(xué)家趙爽在注解《周髀算經(jīng)》時給出的“趙爽弦圖”,它由四個全等的直角三角形與中間的小正方形拼成的一個大正方形,如果小正方形面積是49,直角三角形中較小銳角θ的正切為,那么大正方形的面積是_____.3、《九章算術(shù)》中有一道“引葭赴岸”問題:“今有池一丈,葭生其中央,出水一尺,引葭赴岸,適與岸齊.問水深,葭長各幾何?”題意是:有一個池塘,其底面是邊長為10尺的正方形,一棵蘆葦AB生長在它的中央,高出水面部分BC為1尺.如果把該蘆葦沿與水池邊垂直的方向拉向岸邊,那么蘆葦?shù)捻敳緽恰好碰到岸邊的B'(如圖).則蘆葦長_____尺.4、如圖所示,在△ABC中,∠B=90°,AB=3,AC=5,將△ABC折疊,使點(diǎn)C與點(diǎn)A重合,折痕為DE,則△ABE的周長為.5、如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB于D.已知AB=15,Rt△ABC的周長為15+9,則CD的長為_____.6、如圖,將一個長方形紙片沿折疊,使C點(diǎn)與A點(diǎn)重合,若,則線段的長是_________.7、學(xué)習(xí)完《勾股定理》后,尹老師要求數(shù)學(xué)興趣小組的同學(xué)測量學(xué)校旗桿的高度.同學(xué)們發(fā)現(xiàn)系在旗桿頂端的繩子垂到了地面并多出了一段,但這條繩子的長度未知.如圖,經(jīng)測量,繩子多出的部分長度為1米,將繩子沿地面拉直,繩子底端距離旗桿底端4米,則旗桿的高度為______米.8、如圖,在中,,分別以,,邊為直徑作半圓,圖中陰影部分在數(shù)學(xué)史上稱為“希波克拉底月牙”,當(dāng),時,陰影部分的面積為________.三、解答題(7小題,每小題10分,共計(jì)70分)1、如圖,點(diǎn)是正方形內(nèi)一點(diǎn),將繞點(diǎn)順時針旋轉(zhuǎn)到的位置,若,求的度數(shù).2、如圖,在△ABC中,∠C=90°,M是BC的中點(diǎn),MD⊥AB于D,求證:.3、在△ABC中,AB=15,BC=14,AC=13,求△ABC的面積.某學(xué)習(xí)小組經(jīng)過合作交流,給出了下面的解題思路,請你按照他們的解題思路完成解答過程.4、下圖是某“飛越叢林”俱樂部新近打造的一款兒童游戲項(xiàng)目,工作人員告訴小敏,該項(xiàng)目AB段和BC段均由不銹鋼管材打造,總長度為26米,長方形CDEF為一木質(zhì)平臺的主視圖.小敏經(jīng)過現(xiàn)場測量得知:CD=1米,AD=15米,于是小敏大膽猜想立柱AB段的長為10米,請判斷小敏的猜想是否正確?如果正確,請寫出理由,如果錯誤,請求出立柱AB段的正確長度.5、數(shù)學(xué)中,常對同一個量(圖形的面積、點(diǎn)的個數(shù)等)用兩種不同的方法計(jì)算,從而建立相等關(guān)系,我們把這種思想叫“算兩次”.“算兩次”也稱作富比尼原理,是一種重要的數(shù)學(xué)思想,由它可以推導(dǎo)出很多重要的公式.(1)如圖1,是一個長為,寬為的長方形,沿圖中虛線用剪刀均分成四個小長方形,然后按圖2的方式拼成一個正方形.①用“算兩次”的方法計(jì)算圖2中陰影部分的面積:第一次列式為,第二次列式為,因?yàn)閮纱嗡兴闶奖硎镜氖峭粋€圖形的面積,所以可以得出等式;②在①中,如果,,請直接用①題中的等式,求陰影部分的面積;(2)如圖3,兩個邊長分別為,,的直角三角形和一個兩條直角邊都是的直角三角形拼成一個梯形,用“算兩次”的方法,探究,,之間的數(shù)量關(guān)系.6、如圖所示的一塊地,,,,,,求這塊地的面積.7、如圖,CE⊥AB于點(diǎn)E,BD⊥AC于點(diǎn)D,AB=AC.(1)求證:△ABD≌△ACE.(2)連接BC,若AD=6,CD=4,求△ABC的面積.-參考答案-一、單選題1、A【解析】【分析】直接根據(jù)勾股定理求解即可.【詳解】解:∵在直角三角形中,勾為3,股為4,∴弦為,故選A.【考點(diǎn)】本題考查了勾股定理,熟練掌握勾股定理是解題的關(guān)鍵.2、D【解析】【分析】根據(jù)等腰三角形的判定和勾股定理逆定理得出三角形的形狀即可.【詳解】∵a:b:c=1:1:,∴三角形ABC是等腰三角形.設(shè)三邊長為a,a,∵,∴三角形ABC是直角三角形.綜上所述:△ABC是等腰直角三角形.故選D.【考點(diǎn)】本題考查了等腰三角形的判定和勾股定理逆定理.此題關(guān)鍵是利用勾股定理的逆定理解答.3、D【解析】【分析】分三種情況討論,當(dāng)∠A=90°,或∠B=90°,或∠C=90°時,分別畫出符合條件的圖形,即可解答.【詳解】解:分三種情況討論,當(dāng)∠A=90°,或∠B=90°,或∠C=90°如圖符合條件的格點(diǎn)C的個數(shù)是6個故選:D.【考點(diǎn)】本題考查正多邊形和圓的性質(zhì)、直角三角形的判定與性質(zhì)、直徑所對的圓周角是90°等知識,是基礎(chǔ)考點(diǎn),掌握相關(guān)知識是解題關(guān)鍵.4、C【解析】【分析】首先根據(jù)非負(fù)數(shù)的性質(zhì)可得a-5=0,b-12=0,c-13=0,進(jìn)而可得a、b、c的值,再利用勾股定理逆定理證明△ABC是直角三角形,最后由直角三角形面積公式求解即可.【詳解】解:∵+(b-12)2+|c-13|=0,∴a-5=0,b-12=0,c-13=0,∴a=5,b=12,c=13,∵52+122=132,∴△ABC是直角三角形,∴S△ABC==30.故選:C.【考點(diǎn)】此題主要考查了非負(fù)數(shù)的性質(zhì),以及勾股定理逆定理,熟練掌握如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形就是直角三角形,利用非負(fù)數(shù)性質(zhì)求出a、b、c的值是解題的關(guān)鍵.5、A【解析】【分析】分別計(jì)算圖形的面積進(jìn)行證明即可.【詳解】解:A、由可得,故該項(xiàng)的圖形能夠驗(yàn)證勾股定理;B、由可得,故該項(xiàng)的圖形能夠驗(yàn)證勾股定理;C、由可得,故該項(xiàng)的圖形能夠驗(yàn)證勾股定理;D、由可得,故該項(xiàng)的圖形能夠驗(yàn)證勾股定理;故選:A.【考點(diǎn)】此題考查了圖形與勾股定理的推導(dǎo),熟記勾股定理的計(jì)算公式及各種圖形面積的計(jì)算方法是解題的關(guān)鍵.6、C【解析】【分析】由題意可知東北方向和東南方向間剛好是一直角,利用勾股定理解圖中直角三角形即可.【詳解】解:∵OA是東北方向,OB是東南方向,∴∠AOB=90°,又∵OA=24m,OB=18m,∴30m.故選:C.【考點(diǎn)】本題考查的知識點(diǎn)是解直角三角形的應(yīng)用,正確運(yùn)用勾股定理,善于觀察題目的信息是解題以及學(xué)好數(shù)學(xué)的關(guān)鍵.7、D【解析】【分析】1丈=100寸,6尺8寸=68寸,設(shè)門的寬為x寸,則門的高度為(x+68)寸,利用勾股定理及門的對角線長1丈(100寸),即可得出關(guān)于x的一元二次方程,此題得解.【詳解】解:1丈=100寸,6尺8寸=68寸.設(shè)門的寬為x寸,則門的高度為(x+68)寸,依題意得:x2+(x+68)2=1002.故選:D.【考點(diǎn)】本題主要考查了勾股定理的應(yīng)用、由實(shí)際問題抽象出一元二次方程,準(zhǔn)確計(jì)算是解題的關(guān)鍵.二、填空題1、##【解析】【分析】證明△AMC≌△BNC,可得,再根據(jù)三角形三邊關(guān)系得出當(dāng)點(diǎn)N落在線段AB上時,最小,求出最小值即可.【詳解】解:∵線段繞點(diǎn)C順時針旋轉(zhuǎn)得到線段,∴,,∵,,∴,∴△AMC≌△BNC,∴,∵∴的最小值為;故答案為:.【考點(diǎn)】本題考查了全等三角形的判定與性質(zhì),勾股定理,解題關(guān)鍵是證明三角形全等,得出,根據(jù)三角形三邊關(guān)系取得最小值.2、169.【解析】【分析】由題意知小正方形的邊長為7.設(shè)直角三角形中較小邊長為a,較長的邊為b,運(yùn)用正切函數(shù)定義求解.【詳解】解:由題意知,小正方形的邊長為7,設(shè)直角三角形中較小邊長為a,較長的邊為b,則tanθ=短邊:長邊=a:b=5:12.所以b=a,①又以為b=a+7,②聯(lián)立①②,得a=5,b=12.所以大正方形的面積是:a2+b2=25+144=169.故答案是:169.【考點(diǎn)】本題主要考查了解直角三角形、勾股定理的證明和正方形的面積,掌握解直角三角形、勾股定理的證明和正方形的面積是解題的關(guān)鍵.3、13【解析】【分析】將其轉(zhuǎn)化為數(shù)學(xué)幾何圖形,如圖所示,根據(jù)題意,可知B'C=5尺,設(shè)水深A(yù)C=x尺,則蘆葦長(x+1)尺,根據(jù)勾股定理建立方程,求出的方程的解即可得到蘆葦?shù)拈L和水深.【詳解】解:設(shè)水深x尺,則蘆葦長(x+1)尺,在Rt△CAB′中,AC2+B′C2=AB′2,即x2+52=(x+1)2,解得:x=12,∴x+1=13,故蘆葦長13尺,故答案為:13【考點(diǎn)】本題考查勾股定理,和列方程解決實(shí)際問題,能夠在實(shí)際問題中找到直角三角形并應(yīng)用勾股定理是解決本題的關(guān)鍵.4、7【解析】【分析】根據(jù)勾股定理求得BC,再根據(jù)折疊性質(zhì)得到AE=CE,進(jìn)而由三角形的周長=AB+BC求解即可.【詳解】∵在△ABC中,∠B=90°,AB=3,AC=5,∴BC=.∵△ADE是△CDE翻折而成,∴AE=CE,∴AE+BE=BC=4,∴△ABE的周長=AB+BC=3+4=7.故答案是:7.【考點(diǎn)】本題考查勾股定理、折疊性質(zhì),熟練掌握勾股定理是解答的關(guān)鍵.5、6【解析】【分析】由已知條件得出AC+BC=9,由勾股定理得出AC2+BC2=AB2=152=225,求出AC×BC=90,由三角形面積即可得出答案.【詳解】解:∵Rt△ABC的周長為15+9,∠ACB=90°,AB=15,∴AC+BC=9,AC2+BC2=AB2=152=225,∴(AC+BC)2=(9)2,即AC2+2AC×BC+BC2=405,∴2AC×BC=405?225=180,∴AC×BC=90,∵AB×CD=AC×BC,∴CD==6;故答案為:6.【考點(diǎn)】本題考查了勾股定理,三角形的面積公式,完全平方公式,三角形的周長的計(jì)算,熟記直角三角形的性質(zhì)是解題的關(guān)鍵.6、【解析】【分析】根據(jù)折疊的性質(zhì)和勾股定理即可求得.【詳解】解:∵長方形紙片,∴,,根據(jù)折疊的性質(zhì)可得,,,設(shè),,根據(jù)勾股定理,即,解得,故答案為:.【考點(diǎn)】本題考查折疊與勾股定理.能正確表示直角三角形的三邊是解題關(guān)鍵.7、7.5;【解析】【分析】旗桿、拉直的繩子與地面構(gòu)成直角三角形,根據(jù)題中數(shù)據(jù),用勾股定理即可解答.【詳解】解:如圖,設(shè)旗桿的長度為xm,則繩子的長度為:(x+1)m,在Rt△ABC中,由勾股定理得:x2+42=(x+1)2,解得:x=7.5,∴旗桿的高度為7.5m,故答案為7.5.【考點(diǎn)】本題考查的是勾股定理的應(yīng)用,根據(jù)題意得出直角三角形是解答此題的關(guān)鍵.8、24【解析】【分析】根據(jù)勾股定理得到AC2=AB2-BC2,先求解AC,再根據(jù)陰影部分的面積等于直角三角形的面積加上以AC,BC為直徑的半圓面積,再減去以AB為直徑的半圓面積即可.【詳解】解:由勾股定理得,AC2=AB2-BC2=64,則陰影部分的面積,故答案為24.【考點(diǎn)】本題考查的是勾股定理、半圓面積計(jì)算,掌握勾股定理和半圓面積公式是解題的關(guān)鍵.三、解答題1、【解析】【分析】連接EE`,如圖,根據(jù)旋轉(zhuǎn)的性質(zhì)得BE=BE'=2,AE=CE'=1,∠EBE`=90°,則可判斷△BEE`為等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)得EE`=BE=2,∠BE`E=45°,在△CEE'中,由于CE`+EE'=CE,根據(jù)勾股定理的逆定理得到△CEE`為直角三角形,即∠EE`C=90°,然后利用∠BE'C=∠BE'E+∠CE'E求解【詳解】連接EE`,如圖,∵△ABE繞點(diǎn)B順時針旋轉(zhuǎn)90°得到△CBE`∴BE=BE'=2,AE=CE'=1,∠EBE'=90°∴△BEE'為等腰直角三角形∴EE'=BE=2,∠BE'E=45°在△CEE`中,CE=3,CE'=1,EE'=2,∵1+(2)=3∴CE+EE'=CE∴△CEE'為直角三角形∴∠EE'C=90°∴∠BE'C=∠BE'E+∠CE'E=135°【考點(diǎn)】此題考查了等腰直角三角形,勾股定理的逆定理,正方形的性質(zhì)和旋轉(zhuǎn)的性質(zhì),利用勾股定理證明三角形是直角三角形是解題關(guān)鍵2、見解析【解析】【分析】連接AM得到三個直角三角形,運(yùn)用勾股定理分別表示出AD2、AM2、BM2進(jìn)行代換就可以最后得到所要證明的結(jié)果.【詳解】證明:連接MA,∵M(jìn)D⊥AB,∴AD2=AM2-MD2,BM2=BD2+MD2,∵∠C=90°,∴AM2=AC2+CM2∵M(jìn)為BC中點(diǎn),∴BM=MC.∴AD2=AC2+BD2【考點(diǎn)】本題考查了勾股定理,三次運(yùn)用勾股定理進(jìn)行代換計(jì)算即可求出結(jié)果,另外準(zhǔn)確作出輔助線也是正確解出的重要因素.3、84.【解析】【詳解】解:作AD⊥BC于D,如圖所示:設(shè)BD=x,則.
在Rt△ABD中,由勾股定理得:,在Rt△ACD中,由勾股定理得:,∴,
解之得:.
∴.
∴.4、小敏的猜想錯誤,立柱AB段的正確長度長為9米.【解析】【分析】延長FC交AB于點(diǎn)G,設(shè)BG=x米,在Rt△BGC中利用勾股定理可求x,進(jìn)而可得AB的正確長度【詳解】解:如圖,延長FC交AB于點(diǎn)G則CG⊥AB,AG=CD=1米,GC=AD=15米設(shè)BG=x米,則BC=(26-1-x)米在Rt△BGC中,∵∴解得
∴
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 時間管理與職場溝通課件
- 建筑類培訓(xùn)課程
- 電芯真空烘烤培訓(xùn)
- 地震逃生安全指南
- 時間像小馬車的課件
- 二零二五年購房離婚協(xié)議書規(guī)范范本
- 時代楷模王紅旭
- 二零二五年度房地產(chǎn)開發(fā)債權(quán)轉(zhuǎn)讓及項(xiàng)目融資協(xié)議
- 二零二五年度德邦物流跨境電商物流配送合作協(xié)議
- 二零二五年共有產(chǎn)權(quán)住宅買賣與租賃合同
- 產(chǎn)科危急重癥早期識別中國專家共識(2025年版)
- 福建福州工會招聘工會社會工作者筆試真題2024
- 國網(wǎng)35條嚴(yán)重違章圖冊
- 化學(xué)品使用安全知識培訓(xùn)課件
- 2025年云南磨憨開發(fā)投資集團(tuán)有限公司招聘考試筆試試題(含答案)
- 2024年安徽省泗縣人民醫(yī)院公開招聘護(hù)理工作人員試題帶答案詳解
- 2025秋人教版(2024)八年級上冊地理 【教學(xué)課件】1.1.1 《疆域》
- GB/T 24538-2009墜落防護(hù)緩沖器
- JJF 1076-2020-數(shù)字式溫濕度計(jì)校準(zhǔn)規(guī)范-(高清現(xiàn)行)
- 泵車操作手冊
- 馬克思主義基本原理概論講義
評論
0/150
提交評論