版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
江蘇南通市田家炳中學(xué)7年級(jí)數(shù)學(xué)下冊第四章三角形專項(xiàng)測試考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計(jì)20分)1、如圖,點(diǎn)O在AD上,∠A=∠C,∠AOC=∠BOD,AB=CD,AD=8,OB=3,則OC的長為()A.3 B.4 C.5 D.62、下列長度的三條線段能組成三角形的是()A.3,4,7 B.3,4,8 C.3,4,5 D.3,3,73、已知三角形的兩邊長分別是3cm和7cm,則下列長度的線段中能作為第三邊的是()A.3cm B.4cm C.7cm D.10cm4、下列各組圖形中,是全等形的是()A.兩個(gè)含30°角的直角三角形B.一個(gè)鈍角相等的兩個(gè)等腰三角形C.邊長為5和6的兩個(gè)等腰三角形D.腰對(duì)應(yīng)相等的兩個(gè)等腰直角三角形5、如圖,AC=DC,∠BCE=∠DCA,要使△ABC≌△DEC,不能添加下列選項(xiàng)中的()A.∠A=∠D B.BC=ECC.AB=DE D.∠B=∠E6、如圖,,,,則下列結(jié)論:①;②;③;④.成立的是()A.①②③ B.①②④ C.②③④ D.①②③④7、下列長度的三條線段,能組成三角形的是()A.3,4,8 B.5,6,11 C.1,3,5 D.5,6,108、已知三角形的兩邊長分別為2cm和3cm,則第三邊長可能是()A.6cm B.5cm C.3cm D.1cm9、如圖,已知△ABC中,AB=AC,∠A=72°,D為BC上一點(diǎn),在AB上取BF=CD,AC上取CE=BD,則∠FDE的度數(shù)為()A.54° B.56° C.64° D.66°10、在△ABC中,若AB=3,BC=4,且周長為奇數(shù),則第三邊AC的長可以是()A.1 B.3 C.4 D.5第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計(jì)20分)1、如圖,∠C=∠D=90°,AC=AD,請寫出一個(gè)正確的結(jié)論________.2、如圖,已知AC與BD相交于點(diǎn)P,ABCD,點(diǎn)P為BD中點(diǎn),若CD=7,AE=3,則BE=_________.3、已知,如圖,AB=AC,AD=AE,BE與CD相交于點(diǎn)P,則下列結(jié)論:①PC=PB;②∠CAP=∠BAP;③∠PAB=∠B;④共有4對(duì)全等三角形;正確的是_____(請?zhí)顚懶蛱?hào)).4、如圖,AE是△ABC的中線,BF是△ABE的中線,若△ABC的面積是20cm2,則S△ABF=_____cm2.5、如圖所示,銳角△ABC中,D,E分別是AB,AC邊上的點(diǎn),連結(jié)BE、CD交于點(diǎn)F.將△ADC和△AEB分別繞著邊AB、AC翻折得到△ADC'和△AEB',且EB'∥DC'∥BC,若∠BAC=42°,則∠BFC的大小是___.6、如圖,A、F、C、D在同一條直線上,△ABC≌△DEF,AF=1,F(xiàn)D=3.則線段FC的長為_____.7、如圖,與的頂點(diǎn)A、B、D在同一直線上,,,,延長分別交、于點(diǎn)F、G.若,,則______.8、如圖,點(diǎn)A、B在直線l上,點(diǎn)C是直線l外一點(diǎn),可知CA+CB>AB,其依據(jù)是_____.9、如圖,一把直尺的一邊緣經(jīng)過直角三角形的直角頂點(diǎn),交斜邊于點(diǎn);直尺的另一邊緣分別交、于點(diǎn)、,若,,則___________度.10、如圖,AB,CD相交于點(diǎn)O,,請你補(bǔ)充一個(gè)條件,使得,你補(bǔ)充的條件是______.三、解答題(6小題,每小題10分,共計(jì)60分)1、如圖,在四邊形ABCD中,AD∥BC,∠1=∠2,BD=BC.(1)求證:△ABD≌△ECB(2)若∠1=25°,∠DBC=30°,求∠DEC的度數(shù).2、在解決線段數(shù)量關(guān)系問題中,如果條件中有角平分線,經(jīng)常采用下面構(gòu)造全等三角形的解決思路,如:在圖1中,若C是∠MON的平分線OP上一點(diǎn),點(diǎn)A在OM上,此時(shí),在ON上截取OB=OA,連接BC,根據(jù)三角形全等判定(SAS),容易構(gòu)造出全等三角形OBC和OAC,參考上面的方法,解答下列問題,如圖2,在非等邊ABC中,∠B=60°,AD、CE分別是∠BAC、∠BCA的平分線,且AD、CE交于點(diǎn)F.(1)求∠AFC的度數(shù);(2)求證:AC=AE+CD.3、(1)如圖1,已知中,90°,,直線經(jīng)過點(diǎn)直線,直線,垂足分別為點(diǎn).求證:.證明:(2)如圖2,將(1)中的條件改為:在中,三點(diǎn)都在直線上,并且有.請寫出三條線段的數(shù)量關(guān)系,并說明理由.4、如圖,點(diǎn)C、F在BE上,BF=EC,AB∥DE,且∠A=∠D,求證:AC=DF5、已知,∠A=∠D,BC平分∠ABD,求證:AC=DC.6、證明“全等三角形的對(duì)應(yīng)角的平分線相等”.要求:將已有圖形根據(jù)題意補(bǔ)充完整,并據(jù)此寫出己知、求證和證明過程.-參考答案-一、單選題1、C【分析】證明△AOB≌△COD推出OB=OD,OA=OC,即可解決問題.【詳解】解:∵∠AOC=∠BOD,∴∠AOC+∠COB=∠BOD+∠COB,即∠AOB=∠COD,∵∠A=∠C,CD=AB,∴△AOB≌△COD(AAS),∴OA=OC,OB=OD,∵AD=8,OB=3,∴OC=AO=AD-OD=AD-OB=5.故選C.【點(diǎn)睛】本題考查全等三角形的判定和性質(zhì),解題的關(guān)鍵是正確尋找全等三角形解決問題.2、C【分析】根據(jù)組成三角形的三邊關(guān)系依次判斷即可.【詳解】A、3,4,7中3+4=7,故不能組成三角形,與題意不符,選項(xiàng)錯(cuò)誤.B、3,4,8中3+4<8,故不能組成三角形,與題意不符,選項(xiàng)錯(cuò)誤.C、3,4,5中任意兩邊之和都大于第三邊,任意兩邊之差都小于第三邊,故能組成三角形,符合題意,選項(xiàng)正確.D、3,3,7中3+3<7,故不能組成三角形,與題意不符,選項(xiàng)錯(cuò)誤.故選:C.【點(diǎn)睛】本題考查了三角形的三邊關(guān)系,在一個(gè)三角形中,任意兩邊之和大于第三邊,任意兩邊之差小于第三邊.3、C【分析】設(shè)三角形第三邊的長為xcm,再根據(jù)三角形的三邊關(guān)系求出x的取值范圍,找出符合條件的x的值即可.【詳解】解:設(shè)三角形的第三邊是xcm.則7-3<x<7+3.即4<x<10,四個(gè)選項(xiàng)中,只有選項(xiàng)C符合題意,故選:C.【點(diǎn)睛】本題主要考查了三角形三邊關(guān)系的應(yīng)用.此類求三角形第三邊的范圍的題,實(shí)際上就是根據(jù)三角形三邊關(guān)系定理列出不等式,然后解不等式即可.4、D【分析】根據(jù)兩個(gè)三角形全等的條件依據(jù)三角形全等判定方法SSS,SAS,AAS,SAS,HL逐個(gè)判斷得結(jié)論.【詳解】解:A、兩個(gè)含30°角的直角三角形,缺少對(duì)應(yīng)邊相等,故選項(xiàng)A不全等;B、一個(gè)鈍角相等的兩個(gè)等腰三角形.缺少對(duì)應(yīng)邊相等,故選項(xiàng)B不全等;C、腰為5底為6的三角形和腰為6底為5的三角形不全等,故選項(xiàng)C不全等;D、腰對(duì)應(yīng)相等,頂角是直角的兩個(gè)三角形滿足“邊角邊”,故選項(xiàng)D是全等形.故選:D.【點(diǎn)睛】本題主要考查了三角形全等的判定方法;需注意:判定兩個(gè)三角形全等時(shí),必須有邊的參與,還要找準(zhǔn)對(duì)應(yīng)關(guān)系.5、C【分析】根據(jù)全等三角形的判定定理進(jìn)行分析即可;【詳解】根據(jù)已知條件可得,即,∵AC=DC,∴已知三角形一角和角的一邊,根據(jù)全等條件可得:A.∠A=∠D,可根據(jù)ASA證明,A正確;B.BC=EC,可根據(jù)SAS證明,B正確;C.AB=DE,不能證明,C故錯(cuò)誤;D.∠B=∠E,根據(jù)AAS證明,D正確;故選:C.【點(diǎn)睛】本題主要考查了全等三角形的判定定理,掌握全等三角形的判定方法是解題的關(guān)鍵.6、B【分析】根據(jù)全等三角形的性質(zhì)直接判定①②,則有,然后根據(jù)角的和差關(guān)系可判定③④.【詳解】解:∵,∴,故①②正確;∵,∴,故③錯(cuò)誤,④正確,綜上所述:正確的有①②④;故選B.【點(diǎn)睛】本題主要考查全等三角形的性質(zhì),熟練掌握全等三角形的性質(zhì)是解題的關(guān)鍵.7、D【分析】根據(jù)圍成三角形的條件逐個(gè)分析求解即可.【詳解】解:A、∵,∴3,4,8不能圍成三角形,不符合題意;B、∵,∴5,6,11不能圍成三角形,不符合題意;C、∵,∴1,3,5不能圍成三角形,不符合題意;D、∵,∴5,6,10能圍成三角形,符合題意,故選:D.【點(diǎn)睛】此題考查了圍成三角形的條件,解題的關(guān)鍵是熟練掌握圍成三角形的條件.圍成三角形的條件:兩邊之和大于第三邊,兩邊只差小于第三邊.8、C【分析】根據(jù)在三角形中任意兩邊之和大于第三邊,任意兩邊之差小于第三邊.即可求解.【詳解】解:設(shè)第三邊長為xcm,根據(jù)三角形的三邊關(guān)系可得:3-2<x<3+2,解得:1<x<5,只有C選項(xiàng)在范圍內(nèi).故選:C.【點(diǎn)睛】本題考查了三角形的三邊關(guān)系,關(guān)鍵是掌握第三邊的范圍是:大于已知的兩邊的差,而小于兩邊的和.9、A【分析】由“SAS”可證△BDF≌△CED,可得∠BFD=∠CDE,由外角的性質(zhì)可求解.【詳解】解答:解:∵AB=AC,∠A=72°,∴∠B=∠C=54°,在△BDF和△CED中,,∴△BDF≌△CED(SAS),∴∠BFD=∠CDE,∵∠FDC=∠B+∠BFD=∠CDE+∠FDE,∴∠FDE=∠B=54°,故選:A.【點(diǎn)睛】本題考查全等三角形的判定與性質(zhì),掌握全等三角形的判定定理與性質(zhì)是解題的關(guān)鍵.10、C【分析】先求解的取值范圍,再利用周長為奇數(shù),可得為偶數(shù),從而可得答案.【詳解】解:AB=3,BC=4,即△ABC周長為奇數(shù),而為偶數(shù),或或不符合題意,符合題意;故選C【點(diǎn)睛】本題考查的是三角形三邊的關(guān)系,掌握“三角形的任意兩邊之和大于第三邊,任意兩邊之差小于第三邊”是解本題的關(guān)鍵.二、填空題1、BC=BD【分析】根據(jù)HL證明△ACB和△ADB全等解答即可.【詳解】解:在Rt△ACB和Rt△ADB中,,∴△ACB≌△ADB(HL),∴BC=BD,故答案為:BC=BD(答案不唯一).【點(diǎn)睛】此題考查全等三角形的判定和性質(zhì),關(guān)鍵是根據(jù)HL證明△ACB和△ADB全等解答.2、4【分析】由題意利用全等三角形的判定得出,進(jìn)而依據(jù)全等三角形的性質(zhì)得出進(jìn)行分析計(jì)算即可.【詳解】解:∵ABCD,∴,∵點(diǎn)P為BD中點(diǎn),∴,∵,,∴,∴,∵CD=7,AE=3,∴.故答案為:4.【點(diǎn)睛】本題考查全等三角形的判定與性質(zhì),熟練掌握全等三角形的判定與性質(zhì)是解題的關(guān)鍵.3、①②④【分析】先證△AEB≌△ADC(SAS),再證△EPC≌△DPB(AAS),可判斷①;可證△APC≌△APB(SSS),判定斷②;利用特殊等腰三角形可得可判斷③,根據(jù)全等三角形個(gè)數(shù)可判斷④即可【詳解】解:在△AEB和△ADC中,,∴△AEB≌△ADC(SAS),∴∠B=∠C,∵EC=AC-AE=AB-AD=DB,在△EPC和△DPB中,∴△EPC≌△DPB(AAS),∴PC=PB,故①正確;在△APC和△APB中,∴△APC≌△APB(SSS),∴∠CAP=∠BAP,故②正確;當(dāng)AP=PB時(shí),∠PAB=∠B,當(dāng)AP≠PB時(shí),∠PAB≠∠B,故③不正確;在△EAP和△DAP中,∴△EAP≌△DAP(SAS),共有4對(duì)全等三角形,故④正確故答案為:①②④【點(diǎn)睛】本題考查三角形全等判定與性質(zhì),掌握全等三角形的判定方法與性質(zhì)是解題關(guān)鍵.4、5【分析】利用三角形的中線把三角形分成面積相等的兩個(gè)三角形進(jìn)行解答.【詳解】解:∵AE是△ABC的中線,BF是△ABE的中線,∴S△ABF=S△ABC=×20=5cm2.故答案為:5.【點(diǎn)睛】本題考查了三角形的面積,能夠利用三角形的中線把三角形分成面積相等的兩個(gè)三角形的性質(zhì)求解是解題的關(guān)鍵.5、96°96度【分析】根據(jù)題意由翻折的性質(zhì)和全等三角形的對(duì)應(yīng)角相等、三角形外角定理以及三角形內(nèi)角和定理進(jìn)行分析解答.【詳解】解:設(shè)∠C′=α,∠B′=β,∵將△ADC和△AEB分別繞著邊AB、AC翻折得到△ADC'和△AEB',∴△ADC≌△ADC′,△AEB≌△AEB′,∴∠ACD=∠C′=α,∠ABE=∠B′=β,∠BAE=∠B′AE=42°,∴∠C′DB=∠BAC′+AC′D=42°+α,∠CEB′=42°+β.∵C′D∥EB′∥BC,∴∠ABC=∠C′DB=42°+α,∠ACB=∠CEB′=42°+β,∴∠BAC+∠ABC+∠ACB=180°,即126°+α+β=180°.則α+β=54°.∵∠BFC=∠BDC+∠DBE,∴∠BFC=42°+α+β=42°+54°=96°.故答案為:96°.【點(diǎn)睛】本題考查全等三角形的性質(zhì),解答本題的關(guān)鍵是利用“全等三角形的對(duì)應(yīng)角相等”和“兩直線平行,內(nèi)錯(cuò)角相等”進(jìn)行推理.6、【分析】根據(jù)全等三角形的性質(zhì)得出AC=FD=3,再求出FC即可.【詳解】解:∵△ABC≌△DEF,F(xiàn)D=3,∴AC=FD=3,∵AF=1,∴FC=AC﹣AF=3﹣1=2,故答案為:2.【點(diǎn)睛】本題主要是考查了全等三角形的性質(zhì),熟練應(yīng)用全等三角形的性質(zhì),找到對(duì)應(yīng)相等的邊,是求解該問題的關(guān)鍵.7、【分析】先證明△ABC≌△EDB,可得∠E=,然后利用三角形外角的性質(zhì)求解.【詳解】解:∵,∴∠ABC=∠D,在△ABC和△EDB中,∴△ABC≌△EDB,∴∠E=,∴,,∴∠EGF=30°+50°=80°,∴80°+30°=110°,故答案為:110°.【點(diǎn)睛】本題考查了平行線的性質(zhì),全等三角形的判定與性質(zhì),以及三角形外角的性質(zhì),熟練掌握三角形的外角等于不相鄰的兩個(gè)內(nèi)角和是解答本題的關(guān)鍵.8、在三角形中,兩邊之和大于第三邊【分析】根據(jù)三角形兩邊之和大于第三邊進(jìn)行求解即可.【詳解】解:∵點(diǎn)A、B在直線l上,點(diǎn)C是直線l外一點(diǎn),∴A、B、C可以構(gòu)成三角形,∴由三角形三邊的關(guān)系:在三角形中,兩邊之和大于第三邊可以得到:CA+CB>AB,故答案為:在三角形中,兩邊之和大于第三邊.【點(diǎn)睛】本題主要考查了三角形三邊的關(guān)系,熟知三角形中兩邊之和大于第三邊是解題的關(guān)鍵.9、20【分析】利用平行線的性質(zhì)求出∠1,再利用三角形外角的性質(zhì)求出∠DCB即可.【詳解】解:∵EF∥CD,∴,∵∠1是△DCB的外角,∴∠1-∠B=50°-30°=20o,故答案為:20.【點(diǎn)睛】本題考查了平行線的性質(zhì),三角形外角的性質(zhì)等知識(shí),解題的關(guān)鍵是熟練掌握基本知識(shí).10、(答案不唯一)【分析】在與中,已經(jīng)有條件:所以補(bǔ)充可以利用證明兩個(gè)三角形全等.【詳解】解:在與中,所以補(bǔ)充:故答案為:【點(diǎn)睛】本題考查的是全等三角形的判定,掌握“利用邊邊邊公理證明兩個(gè)三角形全等”是解本題的關(guān)鍵.三、解答題1、(1)見解析;(2)55°【分析】(1)根據(jù)平行線的性質(zhì)可得∠ADB=∠EBC,即可利用ASA證明△ABD≌△ECB;(2)利用三角形外角的性質(zhì)求解即可.【詳解】解:(1)∵AD∥BC,∴∠ADB=∠EBC,在△ABD和△ECB中,,∴△ABD≌△ECB(ASA);(2)∵∠1=25°,∴∠2=∠1=25°,又∵∠DBC=30°,∴∠DEC=∠DBC+∠2=55°.【點(diǎn)睛】本題主要考查了全等三角形的判定,平行線的性質(zhì),三角形外角的性質(zhì),解題的關(guān)鍵在于能夠熟練掌握全等三角形的判定條件.2、(1)120°;(2)見詳解.【分析】(1)根據(jù)題意在AC上截取AG=AE,連接FG,進(jìn)而根據(jù)角平分線的性質(zhì)和三角形內(nèi)角和180°進(jìn)行分析計(jì)算即可;(2)由題意在(1)基礎(chǔ)上根據(jù)平角等于180°推出∠CFG=60°,然后利用“角邊角”證明△CFG和△CFD全等,進(jìn)而根據(jù)全等三角形對(duì)應(yīng)邊相等可得FG=FD,從而得證.【詳解】解:(1)如圖,在AC上截取AG=AE,連接FG.∵AD是∠BAC的平分線,CE是∠BCA的平分線,∴∠1=∠2,∠3=∠4∵∠B=60°∴∠BAC+∠ACB=120°,∴∠2+∠3=(∠BAC+∠ACB)=60°,∴∠AFC=180°-60°=120°;(2)∵∠AFE=∠CFD=∠AFG=60°,∴∠CFG=180°-∠CFD-∠AFG=60°,∴∠CFD=∠CFG,在△CFG和△CFD中,,∴△CFG≌△CFD(ASA),∴CG=CD,∴AC=AG+CG=AE+CD.【點(diǎn)睛】本題考查全等三角形的判定與性質(zhì),角平分線的定義,三角形的內(nèi)角和定理,以及三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和的性質(zhì),根據(jù)所求角度正好等于60°得到角相等是解題的關(guān)鍵.3、(1)證明見解析;(2),證明見解析【分析】(1)利用已知得出∠CAE=∠ABD,進(jìn)而利用AAS得出則△ABD≌△CAE,即可得出DE=BD+CE;(2)根據(jù)∠BDA=∠AEC=∠BAC,得出∠CAE=∠ABD,在△ADB和△CEA中,根據(jù)AAS證出△ADB≌△CEA,從而得出AE=BD,AD=CE,即可證出DE=BD+CE;【詳解】(1)DE=BD+CE.理由如下:如圖1,∵BD⊥,CE⊥,∴∠BDA=∠AEC=90°又∵∠BAC=90°,∴∠BAD+∠CAE=90°,∠BAD+∠ABD=90°,∴∠CAE=∠ABD在△ABD和△CAE中,,∴△ABD≌△CAE(AAS)∴BD=AE,AD=CE,∵DE=AD+AE,∴DE=CE+BD;(2),理由如下:如圖2,∵∠BDA=∠AEC=∠BAC,∴∠DBA+∠BAD=∠BAD+∠CAE,∴∠CAE=∠ABD,在△ADB和△CEA中,,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴BD+CE=AE+AD=DE;【點(diǎn)睛】本題考查了全等三角形的判定與性質(zhì)綜合中的“一線三等角”模型:判定三角形全等的方法有“SSS”
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 基礎(chǔ)設(shè)施電池能效分析報(bào)告
- 武漢信息傳播職業(yè)技術(shù)學(xué)院《生物醫(yī)學(xué)信號(hào)處理及應(yīng)用》2024-2025學(xué)年第一學(xué)期期末試卷
- 湖南軟件職業(yè)技術(shù)大學(xué)《離散數(shù)學(xué)B》2024-2025學(xué)年第一學(xué)期期末試卷
- 游戲項(xiàng)目管理團(tuán)隊(duì)協(xié)作模型分析報(bào)告
- 文化活動(dòng)客戶忠誠度培養(yǎng)策略分析報(bào)告
- 江蘇醫(yī)藥職業(yè)學(xué)院《口腔頜面局部解剖學(xué)B》2024-2025學(xué)年第一學(xué)期期末試卷
- 遼寧財(cái)貿(mào)學(xué)院《畢業(yè)設(shè)計(jì)論文指導(dǎo)》2024-2025學(xué)年第一學(xué)期期末試卷
- 廣東行政職業(yè)學(xué)院《陶瓷產(chǎn)品設(shè)計(jì)專題》2024-2025學(xué)年第一學(xué)期期末試卷
- 邢臺(tái)醫(yī)學(xué)高等專科學(xué)?!痘A(chǔ)會(huì)計(jì)學(xué)》2024-2025學(xué)年第一學(xué)期期末試卷
- 鞍山師范學(xué)院《數(shù)字邏輯設(shè)計(jì)》2024-2025學(xué)年第一學(xué)期期末試卷
- 2024-2030年中國粽葉市場發(fā)展?fàn)顩r及競爭力研究研究報(bào)告
- DB44-T 2503-2024 村鎮(zhèn)工業(yè)集聚區(qū)升級(jí)改造工作指南
- 中學(xué)輿情應(yīng)急處置方案
- TD/T 1046-2016 土地整治權(quán)屬調(diào)整規(guī)范(正式版)
- 實(shí)習(xí)手術(shù)室護(hù)士出科匯報(bào)
- (2024年)AED(自動(dòng)體外除顫器)使用指南
- 門診分診知識(shí)課件
- 華潤認(rèn)知能力測評(píng)題
- 創(chuàng)客教室建設(shè)方案
- 乒乓球教練勞務(wù)合同范本
- 建筑常識(shí)空間尺度
評(píng)論
0/150
提交評(píng)論