




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
京改版數(shù)學9年級上冊期末試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題26分)一、單選題(6小題,每小題2分,共計12分)1、如圖所示,某校數(shù)學興趣小組利用標桿測量建筑物的高度,已知標桿高,測得,,則建筑物的高是()A. B. C. D.2、拋物線的對稱軸為直線.若關于的一元二次方程(為實數(shù))在的范圍內有實數(shù)根,則的取值范圍是()A. B. C. D.3、在Rt△ABC中,∠C=90°,a、b、c分別是∠A、∠B、∠C的對邊,則()A. B. C. D.4、已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,則一次函數(shù)y=bx+c的圖象和反比例函數(shù)y=的圖象在同一坐標系中大致為(
)A. B.C. D.5、在中,AC=4,BC=3,則cosA的值等于(
)A. B. C.或 D.或6、已知點在半徑為8的外,則(
)A. B. C. D.二、多選題(7小題,每小題2分,共計14分)1、如圖,在△ABC中,點D、E分別在邊AB、AC上,且BD=2AD,CE=2AE,則下列結論中成立的是()A.△ABC∽△ADE B.DE∥BCC.DE:BC=1:2 D.S△ABC=9S△ADE2、如圖,反比例函數(shù)與一次函數(shù)的圖象交于A,B兩點,一次函數(shù)的圖象經過點A.下列結論正確的是(
)A.B.點B的坐標為C.連接OB,則D.點C為y軸上一動點,當△ABC的周長最小時,點C的坐標是3、如圖,在Rt△ABC中,∠ACB=90°,BC=1,AB=2,則下列結論不正確的是()A.sinA= B.tanA= C.cosB= D.tanB=4、不能說明△ABC∽△A’B’C’的條件是(
)A.或 B.且C.且 D.且5、如圖,在邊長為4的正方形ABCD中,E、F是AD邊上的兩個動點,且AE=FD,連接BE、CF、BD,CF與BD交于點G,連接AG交BE于點H,連接DH,下列結論中正確的是(
)
A.△ABG∽△FDG B.HD平分∠EHG C.AG⊥BED.S△HDG:S△HBG=tan∠DAGE.線段DH的最小值是2﹣26、如圖,AB是圓O的直徑,點G是圓上任意一點,點C是的中點,,垂足為點E,連接GA,GB,GC,GD,BC,GB與CD交于點F,則下列表述正確的是(
)A. B.C. D.7、已知四條線段a,b,c,d是成比例線段,即,下列說法正確的是(
)A.ad=bc B. C. D.第Ⅱ卷(非選擇題74分)三、填空題(7小題,每小題2分,共計14分)1、舉出一個生活中應用反比例函數(shù)的例子:______.2、如圖,I是△ABC的內心,∠B=60°,則∠AIC=_____.3、二次函數(shù)的部分圖象如圖所示,由圖象可知,方程的解為___________________;不等式的解集為___________________.4、三角形ABC中,,,,則邊的長為_______.5、圖1是一輛吊車的實物圖,圖2是其工作示意圖,AC是可以伸縮的起重臂,其轉動點A離地面BD的高度AH為3.4m.當起重臂AC長度為9m,張角∠HAC為118°時,操作平臺C離地面的高度為_______米.(結果保留小數(shù)點后一位:參考數(shù)據(jù):sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)6、一個橫斷面是拋物線的渡槽如圖所示,根據(jù)圖中所給的數(shù)據(jù)求出水面的寬度是____cm.7、如圖,點P,A,B,C在同一平面內,點A,B,C在同一直線上,且PC⊥AC,在點A處測得點P在北偏東60°方向上,在點B處測得點P在北偏東30°方向上,若AP=12千米,則A,B兩點的距離為___千米.四、解答題(6小題,每小題10分,共計60分)1、定義:若一個三角形最長邊是最短邊的2倍,我們把這樣的三角形叫做“和諧三角形”.在△ABC中,點F在邊AC上,D是邊BC上的一點,AB=BD,點A,D關于直線l對稱,且直線l經過點F.(1)如圖1,求作點F;(用直尺和圓規(guī)作圖保留作圖痕跡,不寫作法)(2)如圖2,△ABC是“和諧三角形”,三邊長BC,AC,AB分別a,b,c,且滿足下列兩個條件:a≠2b,和a2+4c2=4ac+a﹣b﹣1.①求a,b之間的等量關系;②若AE是△ABD的中線.求證:△ACE是“和諧三角形”.2、已知二次函數(shù)().(1)求二次函數(shù)圖象的對稱軸;(2)若該二次函數(shù)的圖象開口向上,當時,函數(shù)圖象的最高點為,最低點為,點的縱坐標為,求點和點的坐標;(3)在(2)的條件下,對直線下方二次函數(shù)圖象上的一點,若,求點的坐標.3、已知點P(2,2)在反比例函數(shù)y=(k≠0)的圖象上.(1)當x=-3時,求y的值;(2)當1<x<3時,求y的取值范圍.4、若二次函數(shù)圖像經過,兩點,求、的值.5、五一期間,小明跟父母去烏鎮(zhèn)旅游,欣賞烏鎮(zhèn)水鄉(xiāng)的美景.如圖,當小明走到烏鎮(zhèn)古橋的C處時,發(fā)現(xiàn)遠處有一瞍船勻速行駛過來,當船行駛到A處時,小明測得船頭的俯角為30°,同時小明開始計時,船在航行過小明所在的橋之后,繼續(xù)向前航行到達B處,此時測得船尾的俯角為45°;從小明開始計時到船行駛至B處,共用時15min;已知小明所在位置距離水面6m,船長3m,船到水面的距離忽略不計,請你幫助小明計算一下船的航行速度(結果保留根號)6、新冠肺炎疫情期間,我國各地采取了多種方式進行預防.其中,某地運用無人機規(guī)勸居民回家.如圖,無人機于空中A處測得某建筑頂部B處的仰角為,測得該建筑底部C處的俯角為.若無人機的飛行高度為,求該建筑的高度(結果取整數(shù)),參考數(shù)據(jù):,,.-參考答案-一、單選題1、A【解析】【分析】先求得AC,再說明△ABE∽△ACD,最后根據(jù)相似三角形的性質列方程解答即可.【詳解】解:∵,∴AC=1.2m+12.8m=14m∵標桿和建筑物CD均垂直于地面∴BE//CD∴△ABE∽△ACD∴,即,解得CD=17.5m.故答案為A.【考點】本題考查了相似三角形的應用,正確判定相似三角形并利用相似三角形的性質列方程計算是解答本題的關鍵.2、A【解析】【分析】根據(jù)給出的對稱軸求出函數(shù)解析式為,將一元二次方程的實數(shù)根可以看做與函數(shù)的有交點,再由的范圍確定的取值范圍即可求解;【詳解】∵的對稱軸為直線,∴,∴,∴一元二次方程的實數(shù)根可以看做與函數(shù)的有交點,∵方程在的范圍內有實數(shù)根,當時,,當時,,函數(shù)在時有最小值2,∴,故選A.【考點】本題考查二次函數(shù)的圖象及性質;能夠將方程的實數(shù)根問題轉化為二次函數(shù)與直線的交點問題,借助數(shù)形結合解題是關鍵.3、C【解析】【分析】根據(jù)Rt△ABC中,cos
B,tan
B,sin
A的定義,進行判斷.【詳解】∵Rt△ABC中,sinA=,cosA=,sin
B=,tanB=,∴選項C正確,選項A、B、D錯誤,故選C.【考點】本題考查了銳角三角函數(shù)的定義.關鍵是熟練掌握銳角三角函數(shù)的定義及其變形.4、D【解析】【分析】先通過二次函數(shù)的圖像確定a、b、c的正負,再利用x=1代入解析式,得到a+b+c的正負即可判定兩個函數(shù)的圖像所在的象限,即可得出正確選項.【詳解】解:由圖像可知:圖像開口向下,對稱軸位于y軸左側,與y軸正半軸交于一點,可得:又由于當x=1時,因此一次函數(shù)的圖像經過一、二、四三個象限,反比例函數(shù)的圖像位于二、四象限;故選:D.【考點】本題考查了二次函數(shù)的圖像與性質、一次函數(shù)的圖像與性質以及反比例函數(shù)的圖像與性質,解決本題的關鍵是能讀懂題干中的二次函數(shù)圖像,能根據(jù)圖像確定解析式中各系數(shù)的正負,再通過各項系數(shù)的正負判定另外兩個函數(shù)的圖像所在的象限,本題蘊含了數(shù)形結合的思想方法等.5、C【解析】【分析】分兩種情況:①AB為斜邊;②AC為斜邊,根據(jù)勾股定理求出AB長,然后根據(jù)余弦定義即可求解.【詳解】由題意,存在兩種情況:①當AB為斜邊時,∠C=90o,∵AC=4,BC=3,∴AB=,∴cosA=;②當AC為斜邊時,∠B=90o,∵AC=4,BC=3,∴AB=,∴cosA=,綜上,cosA的值等于或,故選:C.【考點】本題考查了勾股定理和銳角三角函數(shù)的概念,熟練掌握銳角三角函數(shù)的定義,并注意分類討論是解答本題的關鍵.6、A【解析】【分析】根據(jù)點P與⊙O的位置關系即可確定OP的范圍.【詳解】解:∵點P在圓O的外部,∴點P到圓心O的距離大于8,故選:A.【考點】本題主要考查點與圓的位置關系,關鍵是要牢記判斷點與圓的位置關系的方法.二、多選題1、ABD【解析】【分析】由已知條件易證DE∥BC,則△ABC∽△ADE,再由相似三角形的性質即可得到問題的選項.【詳解】解:∵BD=2AD,CE=2AE,∴,∴DE∥BC,故B正確;∴△ABC∽△ADE,故A正確;∴DE:BC=AD:AB=1:3,故C錯誤;∴S△ABC=9S△ADE故D正確,∴其中成立的jABD,故選ABD.【考點】本題考查了平行四邊形的性質以及相似三角形的判定和性質,證明DE∥BC是解題的關鍵.2、AC【解析】【分析】聯(lián)立求得的坐標,然后根據(jù)待定系數(shù)法即可求解反比例函數(shù)解析式,然后可得點B的坐標,則有根據(jù)割補法進行求解三角形面積,進而根據(jù)軸對稱的性質可求解當△ABC的周長最小時點C的坐標【詳解】解:聯(lián)立,解得,點坐標為.將代入,得..反比例函數(shù)的表達式為;∴聯(lián)立,解得或..在中,令,得.故直線與軸的交點為.如圖,過、兩點分別作軸的垂線,交軸于、兩點,則.過點A作y軸的對稱點D,連接BD,交y軸于點C,此時△ABC的周長為最小,如圖所示:∴,設直線BD的解析式為,則有:,解得:,∴直線BD的解析式為,令x=0時,則有,∴;綜上所述:正確的有AC選項;故選AC【考點】本題考查了反比例函數(shù)與一次函數(shù)的交點,體現(xiàn)了方程思想,數(shù)形結合是解題的關鍵.3、ABC【解析】【分析】先根據(jù)勾股定理求出AC=,再根據(jù)三角函數(shù)的定義分別求解可得.【詳解】解:A、sinA=,故該選項符合題意;B、tanA=,故該選項符合題意;C、cosB=,故該選項符合題意;D、tanB==,故該選項不符合題意;故選:ABC.【考點】本題主要考查了銳角三角函數(shù),正確記憶相關比例關系是解題關鍵.4、ABD【解析】【分析】根據(jù)相似三角形的判定方法求解即可.【詳解】解:A、或,不能判定,符合題意;B、且,不能判定,符合題意;C、且,能判定,不符合題意;D、且,不能判定,符合題意.故選:ABD.【考點】此題考查了相似三角形的判定方法,解題的關鍵是熟練掌握相似三角形的判定方法.相似三角形的判定方法:兩邊對應成比例且夾角相等的兩個三角形相似;三邊對應成比例的兩個三角形相似;兩角對應相等的兩個三角形相似.5、ACDE【解析】【分析】首先證明△ABE≌△DCF,△ADG≌△CDG(SAS),△AGB≌△CGB,利用全等三角形的性質,相似三角形的判定與性質,等高模型、三邊關系一一判斷即可.【詳解】解:∵四邊形ABCD是正方形,∴AB=CD,∠BAD=∠ADC=90°,∠ADB=∠CDB=45°,在△ABE和△DCF中,,∴△ABE≌△DCF(SAS),∴∠ABE=∠DCF,在△ADG和△CDG中,,‘∴△ADG≌△CDG(SAS),∴∠DAG=∠DCF,∴∠ABE=∠DAG,∵∠DAG+∠BAH=90°,∴∠ABE+∠BAH=90°,∴∠AHB=90°,∴AG⊥BE,故選項C正確;同法可證:△AGB≌△CGB,∵DF∥CB,∴△CBG∽△FDG,∴△ABG∽△FDG,故選項A正確;∵S△HDG:S△HBG=DG:BG=DF:BC=DF:CD=tan∠FCD,又∵∠DAG=∠FCD,∴S△HDG:S△HBG=tan∠FCD=tan∠DAG,故選項D正確;取AB的中點O,連接OD、OH,∵正方形的邊長為4,∴AO=OH=×4=2,由勾股定理得,OD==2,∵DH≥OD-OH,∴O、D、H三點共線時,DH最小,∴DH最小=2-2.故選項E正確,無法證明DH平分∠EHG,故選項B錯誤,故選項ACDE正確,故選:ACDE.【考點】本題考查了正方形的性質,相似三角形的判定與性質,全等三角形的判定與性質,三角形的三邊關系,三角函數(shù),勾股定理、等高模型等知識,解題的關鍵是靈活運用所學知識解決問題,難點在于選項E作輔助線并確定出DH最小時的情況.6、ACD【解析】【分析】根據(jù)垂徑定理和圓周角定理可以判斷A,根據(jù)圓周角定理可以判斷B,根據(jù)圓周角定理、垂徑定理以及等角對等邊,即可判斷C,根據(jù)圓周角定理、垂徑定理以及平行線的判定,即可判斷D.【詳解】解:∵AB是圓O的直徑,,∴,∴,故A正確;∵AB是圓O的直徑,,∴,∵,即,也沒有其他條件可以證得和的另外一組內角對應相等,∴不能證得,故B不正確;∵點C是的中點,∴,∴,∵AB是圓O的直徑,,∴,∴,∴,∴,故C正確;∵點C是的中點,∴,∵AB是圓O的直徑,,∴,∴,∴,∴,故D正確.故選ACD.【考點】本題主要考查了垂徑定理、圓周角定理、等腰三角形的判定以及平行線的判定.7、ABD【解析】【分析】根據(jù)比例的性質將原式變形,分別進行判斷即可,進而得出答案.【詳解】解:∵四條線段a,b,c,d是成比例線段,即,∴A.利用內項之積等于外項之積,ad=bc,故選項正確,B.利用內項之積等于外項之積,a(b+d)=b(a+c),ab+ad=ab+bc,即ad=bc,故選項正確,C.∵,∴,故選項錯誤,D.∵∴,故選項正確,故選:ABD.【考點】此題主要考查了比例的性質,將比例式靈活正確變形得出是解題關鍵.三、填空題1、路程s一定,速度v與時間t之間的關系(答案不唯一).【解析】【分析】利用反比例函數(shù)的定義并結合生活中的實例來解答此題即可【詳解】根據(jù)路程=速度時間,速度v則可以用反比例函數(shù)來表示.故答案可以為路程s一定,速度v與時間t之間的關系(答案不唯一).【考點】本題主要考查了反比例函數(shù)的定義形式如(k為常數(shù),)的函數(shù)稱為反比例函數(shù).其中x是自變量,y是函數(shù),自變量x的取值范圍是不等于0的一切實數(shù).2、120°.【解析】【分析】根據(jù)三角形的內切圓的圓心是三角形三個角的平分線的交點即可求解.【詳解】∵∠B=60°,∴∠BAC+∠BCA=120°∵三角形的內切圓的圓心是三角形三個角的平分線的交點,∴∠IAC=∠BAC,∠ICA=∠BCA,∴∠IAC+∠ICA=(∠BAC+∠BCA)=60°∴∠AIC=180°﹣60°=120°故答案為120°.【考點】此題主要考查利用三角形的內切圓的圓心是三角形三個角的平分線的交點性質進行角度求解,熟練掌握,即可解題.3、
,
或【解析】【分析】根據(jù)拋物線的對稱軸和拋物線與x軸一個交點求出另一個交點,再通過二次函數(shù)與方程的兩根,二次函數(shù)與不等式解集的關系求得答案.【詳解】∵拋物線的對稱軸為,拋物線與x軸一個交點為(5,0)∴拋物線與x軸另一個交點為(-1,0)∴方程的解為:,由圖像可知,不等式的解集為:或.故答案為:,;或.【考點】本題考查了二次函數(shù)的圖像性質,掌握二次函數(shù)與方程的兩根,二次函數(shù)與不等式的解集關系,是解決問題的關鍵.4、2【解析】【分析】根據(jù)正切定義得到,則可設AB=x,BC=2x,利用勾股定理計算出AC=x,所以x=,解得x=1,然后計算2x即可得到BC的長.【詳解】解:如圖,∵∠B=90°,∴,設AB=x,則BC=2x,∴,∴x=,解得x=1,∴BC=2x=2.故答案為:2.【考點】本題考查了解直角三角形:在直角三角形中,由已知元素求未知元素的過程就是解直角三角形.5、7.6【解析】【分析】作于,于,如圖2,易得四邊形為矩形,則,,再計算出,在中利用正弦可計算出,然后計算即可.【詳解】解:作于E,于,如圖2,∴四邊形為矩形,∴,,∴,∴在中,,∴,∴,∴操作平臺離地面的高度為.故答案是:.【考點】本題考查了解直角三角形的應用:先將實際問題抽象為數(shù)學問題(畫出平面圖形,構造出直角三角形轉化為解直角三角形問題),然后利用三角函數(shù)的定義進行幾何計算.6、2【解析】【分析】首先建立平面直角坐標系,然后根據(jù)圖中數(shù)據(jù)確定點A和點B的坐標,從而利用待定系數(shù)法確定二次函數(shù)的解析式,然后求得C、D兩點的坐標,從而求得水面的寬度.【詳解】如圖建立直角坐標系.則點A的坐標為(-2,8),點B的坐標為(2,8),設拋物線的解析式為y=ax2,代入點A的坐標得8=4a,解得:a=2,所以拋物線的解析式為y=2x2,令y=6得:6=2x2,解得:x=±,所以CD=-(-)=2(cm).故答案為:2.【考點】本題考查了二次函數(shù)的應用,解題的關鍵是從實際問題中整理出二次函數(shù)模型,并建立正確的平面直角坐標系.7、【解析】【分析】根據(jù)題意和題目中的數(shù)據(jù),可以計算出AC和BC的長,然后即可得到AB的長,從而可以解答本題.【詳解】解:∵PC⊥AC,在點A處測得點P在北偏東60°方向上,∴∠PCA=90°,∠PAC=30°,∵AP=12千米,∴PC=6千米,AC=6千米,∵在點B處測得點P在北偏東30°方向上,∠PCB=90°,PC=6千米,∴∠PBC=60°,∴千米,∴(千米),故答案為:.【考點】本題考查解直角三角形的應用-方向角問題,解答本題的關鍵是明確題意,利用數(shù)形結合的思想解答.四、解答題1、(1)見解析(2)①a=b+1②見解析【解析】【分析】(1)作AD的垂直平分線,交AC于F點即可;(2)①根據(jù)題意得到a=2c,聯(lián)立a2+4c2=4ac+a﹣b﹣1即可求解;②證明△ABE∽△CBA,得到,故可求解.【詳解】(1)如圖,點F為所求;(2)①∵△ABC是“和諧三角形”∴a=2c又a2+4c2=4ac+a﹣b﹣1.聯(lián)立化簡得到a=b+1;②∵E點是BD中點∴BE=由①得到AB=∴又∠ABE=∠CBA∴△ABE∽△CBA∴故△ACE是“和諧三角形”.【考點】此題主要考查相似三角形的判定與性質,解題的關鍵是熟知垂直平分線的做法.2、(1)直線x=1;(2);;(3)或【解析】【分析】(1)利用對稱軸公式計算即可;(2)構建方程求出a的值即可解決問題;(3)先求出直線MN的解析式,然后設點的坐標為,過點作軸的垂線交直線于點,得到PQ的長度,根據(jù)三角形的面積公式,即可求出答案.【詳解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 風險投資驅動創(chuàng)新機制-洞察及研究
- 跨國團隊協(xié)同管理-洞察及研究
- 2025年事業(yè)單位筆試-河南-河南藥事管理(醫(yī)療招聘)歷年參考題庫典型考點含答案解析
- 2025年事業(yè)單位筆試-江蘇-江蘇麻醉學(醫(yī)療招聘)歷年參考題庫典型考點含答案解析
- 土木工程技術應用方案
- 建筑項目工程施工現(xiàn)場協(xié)調方案
- 動物權利哲學-洞察及研究
- 2026屆山西省陽泉市陽泉中學化學高一第一學期期中檢測試題含解析
- 新時代鄉(xiāng)村教師角色的重構與實踐路徑
- 江西省新余市第六中學2026屆化學高一第一學期期末綜合測試模擬試題含解析
- 公務用車政策解讀課件
- 2025至2030年中國奶牛養(yǎng)殖行業(yè)競爭格局分析及投資戰(zhàn)略咨詢報告
- 社區(qū)衛(wèi)生服務中心基孔肯雅熱發(fā)熱-門診應急處置預案
- 創(chuàng)傷性血氣胸的急救與護理
- 2025關于醫(yī)療平臺與醫(yī)療機構合作合同模板
- 2025學校食堂檔口承包合同
- 2025年“質量月”全面質量管理知識競賽考試題(附答案)
- 2025年汽車駕駛員(技師)考試試題及答案(含答案)
- 學校后勤工作管理培訓
- 胰腺炎的營養(yǎng)治療與護理
- 江西省上饒市2024-2025學年七年級下學期期末語文試題
評論
0/150
提交評論