難點詳解北京市朝陽區(qū)日壇中學7年級數學下冊第四章三角形綜合測評練習題(含答案詳解)_第1頁
難點詳解北京市朝陽區(qū)日壇中學7年級數學下冊第四章三角形綜合測評練習題(含答案詳解)_第2頁
難點詳解北京市朝陽區(qū)日壇中學7年級數學下冊第四章三角形綜合測評練習題(含答案詳解)_第3頁
難點詳解北京市朝陽區(qū)日壇中學7年級數學下冊第四章三角形綜合測評練習題(含答案詳解)_第4頁
難點詳解北京市朝陽區(qū)日壇中學7年級數學下冊第四章三角形綜合測評練習題(含答案詳解)_第5頁
已閱讀5頁,還剩23頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

北京市朝陽區(qū)日壇中學7年級數學下冊第四章三角形綜合測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計20分)1、如圖,已知為的外角,,,那么的度數是()A.30° B.40° C.50° D.60°2、如圖,點,在線段上,與全等,其中點與點,點與點是對應頂點,與交于點,則等于()A. B. C. D.3、如圖,亮亮書上的三角形被墨跡污染了一部分,很快他就根據所學知識畫出一個與書上完全一樣的三角形.他的依據是()A. B. C. D.4、如圖,E為線段BC上一點,∠ABE=∠AED=∠ECD=90°,AE=ED,BC=20,AB=8,則BE的長度為()A.12 B.10 C.8 D.65、定理:三角形的一個外角等于與它不相鄰的兩個內角的和.已知:如圖,∠ACD是△ABC的外角.求證:∠ACD=∠A+∠B.證法1:如圖,∵∠A=70°,∠B=63°,且∠ACD=133°(量角器測量所得)又∵133°=70°+63°(計算所得)∴∠ACD=∠A+∠B(等量代換).證法2:如圖,∵∠A+∠B+∠ACB=180°(三角形內角和定理),又∵∠ACD+∠ACB=180°(平角定義),∴∠ACD+∠ACB=∠A+∠B+∠ACB(等量代換).∴∠ACD=∠A+∠B(等式性質).下列說法正確的是()A.證法1用特殊到一般法證明了該定理B.證法1只要測量夠100個三角形進行驗證,就能證明該定理C.證法2還需證明其他形狀的三角形,該定理的證明才完整D.證法2用嚴謹的推理證明了該定理6、如圖,AC=DC,∠BCE=∠DCA,要使△ABC≌△DEC,不能添加下列選項中的()A.∠A=∠D B.BC=ECC.AB=DE D.∠B=∠E7、一個三角形的兩邊長分別是3和5,則它的第三邊可能為()A.2 B.4 C.8 D.118、下列長度的三條線段能組成三角形的是()A.2,3,6 B.2,4,7 C.3,3,5 D.3,3,79、如圖,點C在∠AOB的OB邊上,用尺規(guī)作出了∠NCE=∠AOD,作圖痕跡中,弧FG是()A.以點C為圓心,OD為半徑的弧B.以點C為圓心,DM為半徑的弧C.以點E為圓心,OD為半徑的弧D.以點E為圓心,DM為半徑的弧10、下列所給的各組線段,能組成三角形的是:()A.2,11,13 B.5,12,7 C.5,5,11 D.5,12,13第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計20分)1、已知a,b,c是△ABC的三邊,化簡:|a+b-c|+|b-a-c|=________.2、如圖,已知∠A=60°,∠B=20°,∠C=30°,則∠BDC的度數為_____.3、如圖,AE是△ABC的中線,BF是△ABE的中線,若△ABC的面積是20cm2,則S△ABF=_____cm2.4、如圖,△ABC是一個等腰直角三角形,∠BAC=90°,BC分別與AF、AG相交于點D、E.不添加輔助線,使△ACE與△ABD全等,你所添加的條件是____.(填一個即可)5、如圖,∠C=∠D=90°,AC=AD,請寫出一個正確的結論________.6、如圖,AB,CD相交于點O,,請你補充一個條件,使得,你補充的條件是______.7、如圖,在ABC中,已知點D,E,F(xiàn)分別為邊BC,AD,CE的中點,且ABC的面積等于24cm2,則陰影部分圖形面積等于_____cm28、如圖,點F,A,D,C在同一條直線上,,,,則AC等于_____.9、如圖,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于點E,AD⊥CE于點D.若AD=3cm,BE=1cm,則DE=_________.10、如圖,,,,點在線段上以的速度由點向點運動,同時,點在線段上由點向點運動.它們運動的時間為設點的運動速度為,若使得與全等,則的值為______.三、解答題(6小題,每小題10分,共計60分)1、將一副三角板中的兩塊直角三角尺的直角頂點C按如圖1方式疊放在一起,其中,.(1)若,則的度數為_______;(2)直接寫出與的數量關系:_________;(3)直接寫出與的數量關系:__________;(4)如圖2,當且點E在直線的上方時,將三角尺固定不動,改變三角尺的位置,但始終保持兩個三角尺的頂點C重合,這兩塊三角尺是否存在一組邊互相平行?請直接寫出角度所有可能的值___________.2、如圖,點A,B,C,D在同一條直線上,CEDF,EC=BD,AC=FD.求證:AE=FB.3、李華同學用11塊高度都是1cm的相同長方體小木塊,壘了兩堵與地面垂直的木墻,木墻之間剛好可以放進一個正方形ABCD(∠ABC=90°,AB=BC),點B在EF上,點A和C分別與木墻的頂端重合,求兩堵木墻之間的距離EF.4、如圖,點E、B在線段AB上,AE=DB,BC=EF,BC∥EF,求證:AC=DF.5、如圖,已知點A,E,F(xiàn),C在同一條直線上,AE=CF,AB∥CD,∠B=∠D.請問線段AB與CD相等嗎?說明理由.6、如圖,E為AB上一點,BD∥AC,AB=BD,AC=BE.求證:BC=DE.-參考答案-一、單選題1、B【分析】根據三角形的外角性質解答即可.【詳解】解:∵∠ACD=60°,∠B=20°,∴∠A=∠ACD?∠B=60°?20°=40°,故選:B.【點睛】此題考查三角形的外角性質,關鍵是根據三角形外角性質解答.2、D【分析】根據點與點,點與點是對應頂點,得到,根據全等三角形的性質解答.【詳解】解:與全等,點與點,點與點是對應頂點,,.故選:D【點睛】本題主要考查了全等三角形的性質,熟練掌握全等三角形的對應邊相等,對應角相等是解題的關鍵.3、C【分析】根據題意,可知仍可辨認的有1條邊和2個角,且邊為兩角的夾邊,即可根據來畫一個完全一樣的三角形【詳解】根據題意可得,已知一邊和兩個角仍保留,且邊為兩角的夾邊,根據兩個三角形對應的兩角及其夾邊相等,兩個三角形全等,即故選C【點睛】本題考查了三角形全等的性質與判定,掌握三角形的判定方法是解題的關鍵.4、A【分析】利用角相等和邊相等證明,利用全等三角形的性質以及邊的關系,即可求出BE的長度.【詳解】解:由題意可知:∠ABE=∠AED=∠ECD=90°,,,,在和中,,,,故選:A.【點睛】本題主要是考查了全等三角形的判定和性質,熟練通過已知條件證明三角形全等,利用全等性質及邊的關系,來求解未知邊的長度,這是解決本題的主要思路.5、D【分析】利用測量的方法只能是驗證,用定理,定義,性質結合嚴密的邏輯推理推導新的結論才是證明,再逐一分析各選項即可得到答案.【詳解】解:證法一只是利用特殊值驗證三角形的一個外角等于與它不相鄰的兩個內角的和,證法2才是用嚴謹的推理證明了該定理,故A不符合題意,C不符合題意,D符合題意,證法1測量夠100個三角形進行驗證,也只是驗證,不能證明該定理,故B不符合題意;故選D【點睛】本題考查的是三角形的外角的性質的驗證與證明,理解驗證與證明的含義及證明的方法是解本題的關鍵.6、C【分析】根據全等三角形的判定定理進行分析即可;【詳解】根據已知條件可得,即,∵AC=DC,∴已知三角形一角和角的一邊,根據全等條件可得:A.∠A=∠D,可根據ASA證明,A正確;B.BC=EC,可根據SAS證明,B正確;C.AB=DE,不能證明,C故錯誤;D.∠B=∠E,根據AAS證明,D正確;故選:C.【點睛】本題主要考查了全等三角形的判定定理,掌握全等三角形的判定方法是解題的關鍵.7、B【分析】根據三角形的三邊關系定理:三角形兩邊之和大于第三邊,三角形的兩邊之差小于第三邊,設第三邊為,可得,再解即可.【詳解】設第三邊為,由題意得:,.故選:B.【點睛】此題主要考查了三角形的三邊關系:掌握第三邊大于已知的兩邊的差,而小于兩邊的和是解題的關鍵.8、C【分析】根據三角形的三邊關系,逐項判斷即可求解.【詳解】解:A、因為,所以不能組成三角形,故本選項不符合題意;B、因為,所以不能組成三角形,故本選項不符合題意;C、因為,所以能組成三角形,故本選項符合題意;D、因為,所以不能組成三角形,故本選項不符合題意;故選:C【點睛】本題主要考查了三角形的三邊關系,熟練掌握三角形的兩邊之和大于第三邊,兩邊之差小于第三邊是解題的關鍵.9、D【分析】根據作一個角等于已知角的步驟即可得.【詳解】解:作圖痕跡中,弧FG是以點E為圓心,DM為半徑的弧,故選:D.【點睛】本題主要考查作圖-尺規(guī)作圖,解題的關鍵是熟練掌握作一個角等于已知角的尺規(guī)作圖步驟.10、D【分析】根據三角形三邊關系定理,判斷選擇即可.【詳解】∵2+11=13,∴A不符合題意;∵5+7=12,∴B不符合題意;∵5+5=10<11,∴C不符合題意;∵5+12=17>13,∴D符合題意;故選D.【點睛】本題考查了構成三角形的條件,熟練掌握三角形三邊關系是解題的關鍵.二、填空題1、【分析】首先利用三角形的三邊關系得出,然后根據求絕對值的法則進行化簡即可.【詳解】解:∵是的三條邊,∴,∴=.故答案為:.【點睛】熟悉三角形的三邊關系和求絕對值的法則,是解題的關鍵,注意,去絕對值后,要先添加括號,再去括號,這樣不容易出錯.|a+b-c|+|b-a-c|2、110°【分析】延長BD交AC于點E,根據三角形的外角性質計算,得到答案.【詳解】延長BD交AC于點E,∵∠DEC是△ABE的外角,∠A=60°,∠B=20°,∴∠DEC=∠A+∠B=80°,則∠BDC=∠DEC+∠C=110°,故答案為:110°.【點睛】本題考查了三角形外角的性質,三角形的一個外角等于與它不相鄰的兩個內角的和,作輔助線DE是解題的關鍵.3、5【分析】利用三角形的中線把三角形分成面積相等的兩個三角形進行解答.【詳解】解:∵AE是△ABC的中線,BF是△ABE的中線,∴S△ABF=S△ABC=×20=5cm2.故答案為:5.【點睛】本題考查了三角形的面積,能夠利用三角形的中線把三角形分成面積相等的兩個三角形的性質求解是解題的關鍵.4、CD=BE(答案不唯一)【分析】△ABC是一個等腰直角三角形,可知,,使△ACE與△ABD全等,只需填加一組對應角相等或的另一組邊相等即可.【詳解】解:①若所添加的條件是CD=BE,∵CD=BE,∴,∵△ABC是一個等腰直角三角形,∴,,在△ACE和△ABD中,,∴(SAS)故答案為:CD=BE,(答案不唯一)【點睛】本題主要考查了全等三角形的判定,掌握全等三角形判定方法并靈活運用是解題關鍵.5、BC=BD【分析】根據HL證明△ACB和△ADB全等解答即可.【詳解】解:在Rt△ACB和Rt△ADB中,,∴△ACB≌△ADB(HL),∴BC=BD,故答案為:BC=BD(答案不唯一).【點睛】此題考查全等三角形的判定和性質,關鍵是根據HL證明△ACB和△ADB全等解答.6、(答案不唯一)【分析】在與中,已經有條件:所以補充可以利用證明兩個三角形全等.【詳解】解:在與中,所以補充:故答案為:【點睛】本題考查的是全等三角形的判定,掌握“利用邊邊邊公理證明兩個三角形全等”是解本題的關鍵.7、6【分析】因為點F是CE的中點,所以△BEF的底是△BEC的底的一半,△BEF高等于△BEC的高;同理,D、E、分別是BC、AD的中點,可得△EBC的面積是△ABC面積的一半;利用三角形的等積變換可解答.【詳解】解:如圖,點F是CE的中點,∴△BEF的底是EF,△BEC的底是EC,即EF=EC,而高相等,∴S△BEF=S△BEC,∵E是AD的中點,∴S△BDE=S△ABD,S△CDE=S△ACD,∴S△EBC=S△ABC,∴S△BEF=S△ABC,且S△ABC=24cm2,∴S△BEF=6cm2,即陰影部分的面積為6cm2.故答案為6.【點睛】本題考查了三角形面積的等積變換:若兩個三角形的高(或底)相等,面積之比等于底邊(高)之比.8、6.5【分析】由全等三角形的性質可得到AC=DF,從而推出AF=CD,再由,,求出,則.【詳解】解:∵△ABC≌△DEF,∴AC=DF,即AF+AD=CD+AD,∴AF=CD,∵,,∴,∴,∴,故答案為:6.5.【點睛】本題主要考查了全等三角形的性質,線段的和差,解題的關鍵在于能夠熟練掌握全等三角形的性質.9、2cm【分析】易證∠CAD=∠BCE,即可證明BEC≌△DAC,可得CD=BE,CE=AD,根據DE=CE-CD,即可解題.【詳解】解:∵∠ACB=90°,∴∠BCE+∠DCA=90°.∵AD⊥CE,∴∠DAC+∠DCA=90°.∴∠BCE=∠DAC,在△BEC和△DAC中,∵∠BCE=∠DAC,∠BEC=∠CDA=90°.BC=AC,∴△BEC≌△DAC(AAS),∴CE=AD=3cm,CD=BE=1cm,DE=CE-CD=3-1=2cm.故答案是:2cm.【點睛】此題是三角形綜合題,主要考查了全等三角形的判定,全等三角形對應邊相等的性質,本題中求證△CDA≌△BEC是解題的關鍵.10、或【分析】分兩種情形:①當≌時,可得:;②當≌時,,根據全等三角形的性質分別求解即可.【詳解】解:①當≌時,可得:,運動時間相同,,的運動速度也相同,;②當≌時,,,,,故答案為:或.【點睛】本題考查全等三角形的性質,路程、速度、時間之間的關系等知識,解題的關鍵是理解題意,靈活運用所學知識進行分類解決問題.三、解答題1、(1);(2);(3);(4)存在一組邊互相平行;或或或或.【分析】(1)根據垂直的性質結合圖形求解即可;(2)根據垂直的性質及各角之間的關系即可得出;(3)由(2)可得,根據圖中角度關系可得,將其代入即可得;(4)根據題意,分五種情況進行分類討論:①當時;②當時;③當時;④當時;⑤當時;分別利用平行線的性質進行求解即可得.【詳解】解:(1)∵,∴,∵,∴,故答案為:;(2)∵,,∴,,即,,∴,故答案為:;(3)由(2)得:,∴,由圖可知:,∴,故答案為:;(4)①如圖所示:當時,,由(2)可知:;②如圖所示:當時,;③如圖所示:當時,,∴;④如圖所示:當時,,∴;⑤如圖所示:當時,延長AC交BE于點F,∴,∵,∴,∴;綜合可得:的度數為:或或或或,故答案為:或或或或.【點睛】題目主要考查垂直的性質、各角之間的計算、平行線的性質等,熟練掌握平行線的性質進行分類討論是解題關鍵.2、證明見解析【分析】由證明再結合已知條件證明從而可得答案.【詳解】證明:,EC=BD,AC=FD,【點睛】本題考查的是全等三角形的判定與性質,掌握“利用證明三角形全等”是解本題的關鍵.3、11cm【分析】根據∠ABE的余角相等求出∠EAB=∠CBF,然后利用“角角邊”證明△ABE和△BCF全等,根據全等三角形對應邊相等可得AE=BF,BE=CF,于是得到結論.【詳解】解:∵AE⊥EF,CF⊥EF,∴∠AEB=∠BFC=90°,∴∠EAB+∠ABE=90°,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論