




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
北師大版9年級數(shù)學上冊期中試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(7小題,每小題2分,共計14分)1、若對于任意實數(shù)a,b,c,d,定義
=ad-bc,按照定義,若=0,則x的值為(
)A. B. C.3 D.2、若關于x的一元二次方程x2﹣ax=0的一個解是﹣1,則a的值為()A.1 B.﹣2 C.﹣1 D.23、若m,n是方程x2-x-2022=0的兩個根,則代數(shù)式(m2-2m-2022)(-n2+2n+2022)的值為(
)A.2023 B.2022 C.2021 D.20204、關于x的方程x2+4kx+2k2=4的一個解是﹣2,則k值為(
)A.2或4 B.0或4 C.﹣2或0 D.﹣2或25、距考試還有20天的時間,為鼓舞干勁,老師要求班上每一名同學要給同組的其他同學寫一份拼搏進取的留言,小明所在的小組共寫了30份留言,該小組共有()A.7人 B.6人 C.5人 D.4人6、某種植基地2016年蔬菜產(chǎn)量為80噸,預計2018年蔬菜產(chǎn)量達到100噸,求蔬菜產(chǎn)量的年平均增長率,設蔬菜產(chǎn)量的年平均增長率為x,則可列方程為()A.80(1+x)2=100 B.100(1﹣x)2=80 C.80(1+2x)=100 D.80(1+x2)=1007、若關于x的一元二次方程有實數(shù)根,則字母k的取值范圍是(
)A. B.且 C. D.且二、多選題(3小題,每小題2分,共計6分)1、如圖,正方形的邊長為8,點,分別在邊,上,將正方形沿折疊,使點落在邊上的處,點落在處,交于.下列結論正確的是(
)A.當為中點時,B.當時,C.當(點不與、重合)在上移動時,周長隨著位置變化而變化D.連接,則2、下列方程中,有實數(shù)根的方程是()A.(x﹣1)2=2 B.(x+1)(2x﹣3)=0C.3x2﹣2x﹣1=0 D.x2+2x+4=03、如圖,在正方形中,,點在邊上,且.將沿對折至,點落在正方形內(nèi)部點處,延長交邊于點,連接,.下列結論正確的是(
)A. B.C. D.第Ⅱ卷(非選擇題80分)三、填空題(10小題,每小題2分,共計20分)1、有4根細木棒,長度分別為2cm、3cm、4cm、5cm,從中任選3根,恰好能搭成一個三角形的概率是__________.2、邊長分別為a和2a的兩個正方形按如圖的樣式擺放,則圖中陰影部分的面積為_____.3、如圖,正方形ABCD的邊長為6,點E在邊CD上.以點A為中心,把△ADE順時針旋轉90°至△ABF的位置.若DE=2,則FE=___.4、對任意實數(shù)a,b,定義一種運算:,若,則x的值為_________.5、已知關于x的一元二次方程mx2+5x+m2﹣2m=0有一個根為0,則m=_____.6、已知菱形的周長為40,兩個相鄰角度數(shù)之比為1∶2,則較長對角線的長為______.7、如圖,將矩形的四個角向內(nèi)折起,恰好拼成一個無縫隙重疊的四邊形,若,,則邊的長是____.8、中國“一帶一路”倡議給沿線國家?guī)砗艽蟮慕?jīng)濟效益.若沿線某地區(qū)居民2017年人均收入300美元,預計2019年人均收入將達到432美元,則2017年到2019年該地區(qū)居民年人均收入增長率為______________.9、如圖,Rt△ABC中,∠ACB=90°,AB=6,D是AB的中點,則CD=_____.10、一個小球在如圖所示的方格地磚上任意滾動,并隨機停留在某塊地磚上.每塊地磚的大小、質地完全相同,那么該小球停留在黑色區(qū)域的概率是___________.四、解答題(6小題,每小題10分,共計60分)1、解方程:(1)2x2-5x-3=0;(2)x2-2x=2x-1;(3)x2+3x+2=02、如圖,在矩形ABCD中,點M在DC上,AM=AB,且BN⊥AM,垂足為N.(1)求證:△ABN≌△MAD;(2)若AD=2,AN=4,求四邊形BCMN的面積.3、已知:如圖所示,在△ABC中,∠B=90°,AB=5cm,BC=7cm,點P從點A開始沿AB邊向點B以1cm/s的速度移動,點Q從點B開始沿BC邊向點C以2cm/s的速度移動,當其中一點到達終點后,另外一點也隨之停止運動.(1)如果P、Q分別從A、B同時出發(fā),那么幾秒后,△PBQ的面積等于4cm2?(2)在(1)中,△PQB的面積能否等于7cm2?請說明理由.4、如圖,已知矩形ABCD(AB<AD).E是BC上的點,AE=AD.(1)在線段CD上作一點F,連接EF,使得∠EFC=∠BEA(請用直尺和圓規(guī)作圖,保留作圖痕跡);(2)在(1)作出的圖形中,若AB=4,AD=5,求DF的值.5、陜西某景區(qū)吸引了大量中外游客前來參觀,如果游客過多,對進景區(qū)的游客健康檢查、擁堵等問題會產(chǎn)生不利影響,但也要保證一定的門票收入,因此景區(qū)采取了漲浮門票價格的方法來控制旅游人數(shù),在該方法實施過程中發(fā)現(xiàn):每周旅游人數(shù)與票價之間存在著如圖所示的一次函數(shù)關系.在這種情況下,如果要保證每周3000萬元的門票收入,那么每周應限定旅游人數(shù)是多少萬人?門票價格應是多少元?6、如圖,在四邊形ABCD中,AD∥BC,對角線BD的垂直平分線與邊AD,BC分別相交于點M,N.(1)求證:四邊形BNDM是菱形;(2)若BD=24,MN=10,求菱形BNDM的周長.-參考答案-一、單選題1、D【解析】【分析】根據(jù)新定義可得方程(x+1)(2x-3)=x(x-1),然后再整理可得x2=3,再利用直接開平方法解方程即可.【詳解】解:由題意得:(x+1)(2x-3)=x(x-1),整理得:x2=3,兩邊直接開平方得:x=±,故選:D.【考點】此題主要考查了新定義,一元二次方程的解法--直接開平方法,關鍵是正確理解題意,列出方程.2、C【解析】【分析】把x=﹣1代入方程x2﹣ax=0得1+a=0,然后解關于a的方程即可.【詳解】解:把x=﹣1代入方程x2﹣ax=0得1+a=0,解得a=﹣1.故選C.【考點】本題考查了一元二次方程的解:能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解.3、B【解析】【詳解】解:∵m、n是方程x2-x-2022=0的兩個根,∴m2-m-2022=0,n2-n-2022=0,mn=-2022,∴m2-m=2022,n2-n=2022,∴(m2-2m-2022)(-n2+2n+2022)=(m2-m-m-2022)(-(n2-n)+n+2022)=(2022-m-2022)((-2022+n+2022)=-mn=2022,故選:B.【考點】本題考查了一元二次方程的解的定義和一元二次方程根與系數(shù)的關系,能根據(jù)已知條件得出m2-m-2022=0,n2-n-2022=0,mn=-2022是解此題的關鍵.4、B【解析】【分析】把x=-2代入方程即可求得k的值;【詳解】解:將x=-2代入原方程得到:,解關于k的一元二次方程得:k=0或4,故選:B.【考點】此題主要考查了解一元二次方程相關知識點,代入解求值是關鍵.5、B【解析】【分析】設小組有x人,根據(jù)題意,得x(x-1)=30,解方程即可.【詳解】設小組有x人,根據(jù)題意,得x(x-1)=30,整理,得,解方程,得(舍去),故選B.【考點】本題考查了一元二次方程的應用,熟練掌握方程的應用是解題的關鍵.6、A【解析】【分析】利用增長后的量=增長前的量×(1+增長率),設平均每次增長的百分率為x,根據(jù)“從80噸增加到100噸”,即可得出方程.【詳解】由題意知,蔬菜產(chǎn)量的年平均增長率為x,根據(jù)2016年蔬菜產(chǎn)量為80噸,則2017年蔬菜產(chǎn)量為80(1+x)噸,2018年蔬菜產(chǎn)量為80(1+x)(1+x)噸,預計2018年蔬菜產(chǎn)量達到100噸,即:80(1+x)2=100,故選A.【考點】本題考查了一元二次方程的應用(增長率問題).解題的關鍵在于理清題目的含義,找到2017年和2018年的產(chǎn)量的代數(shù)式,根據(jù)條件找準等量關系式,列出方程.7、D【解析】【分析】利用一元二次方程的定義和根的判別式的意義得到k≠0且△=(-2)2-4k×(-3)≥0,然后求出兩不等式的公共部分即可.【詳解】解:根據(jù)題意得k≠0且△=(-2)2-4k×(-3)≥0,解得且k≠0.故選:D.【考點】本題考查了根的判別式:一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關系:當△>0時,方程有兩個不相等的實數(shù)根;當△=0時,方程有兩個相等的實數(shù)根;當△<0時,方程無實數(shù)根.也考查了一元二次方程的定義.二、多選題1、ABD【解析】【分析】當為CD中點時,設則,由勾股定理列方程求解,進一步求得的值,進而可判斷A的正誤;當三邊之比為3:4:5時,設,,,由可求a的值,進一步求得的值,進而可判斷B的正誤;過點A作,垂足為H,連接,AG,先證,可得,,再證,可得,由此證得周長=16,進而可判斷C的正誤;過點E作EM⊥BC,垂足為M,連接交EM,EF于點N,Q,證明,進而可判斷D的正誤.【詳解】:∵為CD中點,正方形ABCD的邊長為8,∴,由折疊的性質,設則,在中,由勾股定理得,即42+(8﹣x)2=x2,解得x=5,∴AE=5,DE=3,∴,故A正確;當三邊之比為3:4:5時,設,,,則,∵,∴,解得:,∴,,故B正確;過點A作,垂足為H,連接,AG,則,由折疊的性質可知,∴,∵,∴,∵,∴,∴,在和中,∴,∴,∵,∴,在與中,,∴,∴,∴周長,∴當在CD上移動時,周長不變,故C錯誤;如圖,過點E作EM⊥BC,垂足為M,連接交EM,EF于點N,Q,∴,,∴,由翻折可知:EF垂直平分,∴,∴,∴,在和中,,,∴,故D正確.故選:ABD.【考點】本題考查了正方形的性質,折疊的性質,勾股定理,全等三角形的判定與性質等知識.解題的關鍵在于對知識的熟練掌握與靈活運用.2、ABC【解析】【分析】根據(jù)直接開方法可確定A選項正確;根據(jù)因式分解法可確定B選項正確;根據(jù)方程的判別式,當時,方程有兩個不等的實數(shù)根,當時,方程有兩個相等的實數(shù)根,當時,方程無實數(shù)根,可判斷C選項正確,D選項錯誤.【詳解】A.,解得:,,方程有實數(shù)根,A選項正確;B.,解得:,,方程有實數(shù)根,B選項正確;C.,,,,方程有實數(shù)根,C選項正確;D.,,,,方程無實數(shù)根,D選項錯誤.故選:ABC.【考點】本題考查了一元二次方程根的判斷,熟練掌握根的判別式是解題的關鍵.3、ABC【解析】【分析】根據(jù)正方形的性質得出AB=AD=DC=6,∠B=D=90°,求出DE=2,AF=AB,根據(jù)HL推出Rt△ABG≌Rt△AFG,推出BG=FG,∠AGB=∠AGF,設BG=x,則CG=BC﹣BG=6﹣x,GE=GF+EF=BG+DE=x+2,在Rt△ECG中,由勾股定理得出(6﹣x)2+42=(x+2)2,求出x=3,得出BG=GF=CG,求出∠AGB=∠FCG,再根據(jù)等角的余角相等即可證得∠BAG=∠FCE,根據(jù)GF=3,EF=2可得GF=GE,進而S△FGC=S△GCE=,由此即可求得答案.【詳解】解:∵四邊形ABCD是正方形,∴AB=AD=DC=6,∠B=D=90°.∵CD=3DE,∴DE=2,CE=4.∵△ADE沿AE折疊得到△AFE,∴DE=EF=2,AD=AF,∠D=∠AFE=∠AFG=90°,∴AF=AB.∵在Rt△ABG和Rt△AFG中,,∴Rt△ABG≌Rt△AFG(HL),故A選項正確;∴BG=FG,∠AGB=∠AGF,設BG=x,則CG=BC﹣BG=6﹣x,GE=GF+EF=BG+DE=x+2.在Rt△ECG中,由勾股定理得:CG2+CE2=EG2.∵CG=6﹣x,CE=4,EG=x+2,∴(6﹣x)2+42=(x+2)2,解得:x=3,∴BG=GF=CG=3,故B選項正確;∵CG=GF,∴∠CFG=∠FCG,∵∠BGF=∠CFG+∠FCG,又∵∠BGF=∠AGB+∠AGF,∴∠CFG+∠FCG=∠AGB+∠AGF,∵∠AGB=∠AGF,∠CFG=∠FCG,∴∠AGB=∠FCG,∵∠B=∠BCD=90°,∴∠BAG+∠AGB=∠FCE+∠FCG=90°,∴∠BAG=∠FCE,故C選項正確;∵GF=3,EF=2,∴GF=GE,∴S△FGC=S△GCE=×CG·CE=××3×4=,故D選項錯誤,故選:ABC.【考點】本題考查了翻折變換,正方形性質,全等三角形的性質和判定,等腰三角形的性質和判定,勾股定理等知識點的運用,依據(jù)翻折的性質找出其中對應相等的線段和對應相等的角是解題的關鍵.三、填空題1、【解析】【分析】根據(jù)題意,使用列舉法可得從有4根細木棒中任取3根的總共情況數(shù)目以及能搭成一個三角形的情況數(shù)目,根據(jù)概率的計算方法,計算可得答案.【詳解】根據(jù)題意,從有4根細木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4種取法,而能搭成一個三角形的有2、3、4;3、4、5,2、4、5,三種,得P=.故其概率為:.【考點】本題考查概率的計算方法,使用列舉法解題時,注意按一定順序,做到不重不漏.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.2、2a2【解析】【分析】結合圖形,發(fā)現(xiàn):陰影部分的面積=大正方形的面積的+小正方形的面積﹣直角三角形的面積.【詳解】解:陰影部分的面積=大正方形的面積+小正方形的面積﹣直角三角形的面積=(2a)2+a2﹣?2a?3a=4a2+a2﹣3a2=2a2.故答案為:2a2.【考點】本題考查正方形中不規(guī)則圖形面積的求法,解題的關鍵是利用正方形的性質,通過規(guī)則圖形進行求解.3、【解析】【分析】由旋轉的性質可得BF=DE=2,∠D=∠ABF=90°,在直角△EFC中,由勾股定理可求解.【詳解】解:∵把△ADE順時針旋轉90°得△ABF,∴BF=DE=2,∠D=∠ABF=90°,∴∠ABC+∠ABF=180°,∴點F,點B,點C共線,在直角△EFC中,EC=6-2=4,CF=BC+BF=8.根據(jù)勾股定理得:EF=,故答案為:.【考點】本題考查了旋轉的性質,正方形的性質,勾股定理,靈活運用這些性質解決問題是本題的關鍵.4、2或-3##-3或2【解析】【分析】根據(jù)題意得到關于x的一元二次方程,解方程即可.【詳解】解:∵,∴,∴,解得或,故答案為:2或-3.【考點】本題主要考查了新定義下的實數(shù)運算,解一元二次方程,正確理解題意是解題的關鍵.5、2【解析】【詳解】【分析】根據(jù)一元二次方程的定義以及一元二次方程的解的定義列出關于m的方程,通過解關于m的方程求得m的值即可.【詳解】∵關于x的一元二次方程mx2+5x+m2﹣2m=0有一個根為0,∴m2﹣2m=0且m≠0,解得,m=2,故答案是:2.【考點】本題考查了一元二次方程ax2+bx+c=0(a≠0)的解的定義.解答該題時需注意二次項系數(shù)a≠0這一條件.6、【解析】【分析】根據(jù)已知可求得菱形的邊長及其兩內(nèi)角的度數(shù),證得是等邊三角形求得AC的長,再根據(jù)勾股定理求得OB的長,進而可得BD的長,即可得到答案.【詳解】解:如圖,四邊形ABCD是菱形,連接AC、BD交于點O.∵兩個相鄰角度數(shù)之比為1∶2∴∵四邊形ABCD是菱形∴,∴是等邊三角形∴∴∴在中,∴,BD即為最長的對角線.故答案為:.【考點】本題考查等邊三角形的判定和性質、勾股定理應用以及菱形性質的綜合應用.熟練掌握菱形的性質是關鍵.7、【解析】【分析】由折疊的性質和矩形的性質可得∠HEF=90°,EA=EB=3,證明△HNG≌△FME,求出HF,設AH=x,在△AEH,△BEF和△EFH中,利用勾股定理列出方程,求出x,即可得到EH.【詳解】解:∵四邊形ABCD是矩形,∴∠A=∠B=∠D=90°,由折疊可知:△EAH≌△EMH,△HNG≌△HDG,△FBE≌△FME,∴EA=EM,AH=MH,HD=HN,EB=EM,F(xiàn)B=FM,∠AEH=∠MEH,∠BEF=∠MEF,∠BME=∠B=90°,∠HNG=∠D=90°,∴EA=EB=AB=3,∵∠AEH+∠MEH+∠BEF+∠MEF=180°,∴2∠MEH+2∠MEF=180°,∴∠HEF=90°,同理可知:∠EHG=∠EFG=∠HGF=90°,∴四邊形EHGF是矩形,∴HG∥FE,HG=FE,∴∠GHN=∠EFM,在△HNG和△FME中,,∴△HNG≌△FME(AAS),∴HN=FM,∴HD=FM,∴HF=HM+FM=AH+HD=AD=10,設AH=x,則HD=FM=FB=10-x,∵,,,∴,即,解得:x=1或x=9(舍),∴AH=1,∴,故答案為:.【考點】本題考查了翻折變換,矩形的性質,勾股定理,全等三角形的判定和性質,利用勾股定理列出方程是本題的關鍵.8、20【解析】【分析】設該地區(qū)人均收入增長率為x,根據(jù)2017年人均收入300美元,預計2019年人均收入將達到432美元,可列方程求解.【詳解】解:設該地區(qū)人均收入增長率為x,則300×(1+x)2=432,∴(1+x)2=1.44,解得x=0.2(x=-2.2舍),∴該地區(qū)人均收入增長率為20%.故本題答案應為:20%.【考點】一元二次方程在實際生活中的應用是本題的考點,根據(jù)題意列出方程是解題的關鍵.9、3【解析】【分析】根據(jù)直角三角形斜邊上的中線等于斜邊的一半解答.【詳解】∵∠ACB=90°,D為AB的中點,∴CD=AB=×6=3.故答案為3.【考點】本題考查了直角三角形斜邊上的中線等于斜邊的一半的性質,熟記性質是解題的關鍵.10、【解析】【分析】先求出黑色方磚在整個地面中所占的比值,再根據(jù)其比值即可得出結論.【詳解】解:∵由圖可知,黑色方磚6塊,共有16塊方磚,∴黑色方磚在整個區(qū)域中所占的比值=,∴小球停在黑色區(qū)域的概率是;故答案為:【考點】本題考查的是幾何概率,用到的知識點為:幾何概率=相應的面積與總面積之比.四、解答題1、(1)x1=-,x2=3(2)x1=2+,x2=2-(3)x1=-1,x2=-2【解析】【分析】(1)直接用公式法求解;(2)用配方法求解;(3)用因式分解法求解.(1)解:∵a=2,b=-5,c=-3,∴b2-4ac=(-5)2-4×2×(-3)=49>0,∴x==,∴x1=-,x2=3;(2)解:移項,得x2-4x=-1,配方,得x2-4x+4=-1+4,即(x-2)2=3,兩邊開平方,得x-2=±,即x-2=或x-2=-,∴x1=2+,x2=2-;(3)解:原方程可變形為(x+1)(x+2)=0,∴x+1=0或x+2=0,∴x1=-1,x2=-2.【考點】本題考查一元二次方程解法,根據(jù)方程的特征,選擇適當方法求解是解題的關鍵.2、(1)見解析(2)S四邊形BCMN=4-8【解析】【分析】(1)利用矩形的對邊平行和四個角都是直角的性質得到兩對相等的角,利用AAS證得兩三角形全等即可;(2)利用全等三角形的性質求得AD=BN=2,AN=4,從而利用勾股定理求得AB的長,利用S四邊形BCMN=S矩形ABCD-S△ABN-S△MAD求得答案即可.(1)證明:在矩形ABCD中,∠D=90°,DC∥AB,∴∠BAN=∠AMD.∵BN⊥AM,∴∠BNA=90°,在△ABN與△MAD中,,∴△ABN≌△MAD(AAS).(2)解:∵△ABN≌△MAD,∴BN=AD.∵AD=2,∴BN=2.又∵AN=4,∴在Rt△ABN中,由勾股定理,得AB=2.∴S矩形ABCD=2×2=4.又∵S△ABN=S△MAD=×2×4=4.∴S四邊形BCMN=S矩形ABCD-S△ABN-S△MAD=4-8.【考點】本題考查了矩形的性質及全等三角形的判定,了解矩形的對邊平行且相等,四個角都是直角,對角線相等且互相平分是解答本題的關鍵,難度不大.3、(1)1秒;(2)不可能,見解析【解析】【分析】(1)經(jīng)過x秒鐘,△PBQ的面積等于4cm2,根據(jù)點P從A點開始沿AB邊向點B以1cm/s的速度移動,點Q從B點開始沿BC邊向點C以2cm/s的速度移動,表示出BP和BQ的長可列方程求解;(2)看△PBQ的面積能否等于7cm2,只需令×2x(5﹣x)=7,化簡該方程后,判斷該方程的△與0的關系,大于或等于0則可以,否則不可以.【詳解】解:(1)設經(jīng)過x秒以后△PBQ面積為4cm2,根據(jù)題意得(5﹣x)×2x=4,整理得:x2﹣5x+4=0,解得:x=1或x=4(舍去).答:1秒后△PBQ的面積等于4cm2;(2)由(1)同理可得(5﹣x)2x=7.整理,得x2﹣5x+7=0,因為b2﹣4ac=25﹣28<0,所以,此方程無解.所以△PBQ的面積不可能等于7cm2.【考點】本題主要考查一元二次方程的應用,關鍵在于理解清楚題意,找出等量關系列出方程求解,判斷某個三角形的面積是否等于一個值,只需根據(jù)題意列出方程,判斷該方程是否有解,若有解則存在,否則不存在.4、(1)見解析(2)【解析】【分析】(1)作∠DAE的角平分線,與DC的交點即為所求,理由:可先證明△AEF≌△ADF,可得∠AEF=∠D=90°,從而得到∠DAE+∠DFE=180°,進而得到∠EFC=∠DAE,再由AD∥BC,即可求解;(2)根據(jù)矩形的性質可得∠B=∠C=∠D=90°,AD=BC=5,AB=CD=4,從而得到BE=3,進而得到EC=2,然后在中,由勾股定理,即可求解.(1)解:如圖,作∠DAE的角平分線,與DC的交點即為所求.∵AE=AD,∠EAF=∠DAF,AF=AF,∴△AEF≌△ADF,∴∠AEF=∠D=90°,∴∠DAE+∠DFE=180°,∵∠EFC+
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 北歐家裝設計知識培訓
- 校外騎車安全知識培訓課件
- 校園預防偷竊安全知識培訓課件
- 辯論修養(yǎng)試題及答案
- 電廠化學考試題及答案
- 北京面部護理知識培訓班課件
- 校園安全知識培訓教材課件
- 靜態(tài)代理面試題及答案
- 音標課堂測試題及答案
- 三農(nóng)培訓考試題及答案
- 高一新生入學教育
- 線纜公司倉庫管理制度
- 醫(yī)院培訓課件:《十八項核心醫(yī)療制度解讀》
- 課題申報書:英語單元整體教學設計與實施研究
- 2024中國演播室市場運行態(tài)勢及行業(yè)發(fā)展前景預測報告
- 十字相乘法(最終版)
- LY/T 3408-2024林下經(jīng)濟術語
- 腎內(nèi)科醫(yī)生進修總結匯報
- 小學數(shù)學跨學科學習案例
- 2025年度智能金融服務平臺保險業(yè)務居間服務合同
- 肺栓塞課件完整版本
評論
0/150
提交評論