考點解析重慶市興龍湖中學7年級數(shù)學下冊第四章三角形專題測評試題_第1頁
考點解析重慶市興龍湖中學7年級數(shù)學下冊第四章三角形專題測評試題_第2頁
考點解析重慶市興龍湖中學7年級數(shù)學下冊第四章三角形專題測評試題_第3頁
考點解析重慶市興龍湖中學7年級數(shù)學下冊第四章三角形專題測評試題_第4頁
考點解析重慶市興龍湖中學7年級數(shù)學下冊第四章三角形專題測評試題_第5頁
已閱讀5頁,還剩25頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

重慶市興龍湖中學7年級數(shù)學下冊第四章三角形專題測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計20分)1、如圖,為估計池塘岸邊A、B兩點的距離,小方在池塘的一側選取一點O,OA=15米,OB=10米,A、B間的距離不可能是()A.5米 B.10米 C.15米 D.20米2、在△ABC中,若AB=3,BC=4,且周長為奇數(shù),則第三邊AC的長可以是()A.1 B.3 C.4 D.53、根據(jù)下列已知條件,不能畫出唯一的是()A.,, B.,,C.,, D.,,4、下列所給的各組線段,能組成三角形的是:()A.2,11,13 B.5,12,7 C.5,5,11 D.5,12,135、一個三角形的兩邊長分別是3和5,則它的第三邊可能為()A.2 B.4 C.8 D.116、如圖,已知∠BAC=∠ABD=90°,AD和BC相交于O.在①AC=BD;②BC=AD;③∠C=∠D;④OA=OB.條件中任選一個,可使△ABC≌△BAD.可選的條件個數(shù)為()A.1 B.2 C.3. D.47、如圖,D為∠BAC的外角平分線上一點,過D作DE⊥AC于E,DF⊥AB交BA的延長線于F,且滿足∠FDE=∠BDC,則下列結論:①△CDE≌△BDF;②CE=AB+AE;③∠BDC=∠BAC;④∠DAF=∠CBD.其中正確的結論有()A.1個 B.2個 C.3個 D.4個8、以下列長度的三條線段為邊,能組成三角形的是()A. B. C. D.9、以長為15cm,12cm,8cm、5cm的四條線段中的三條線段為邊,可以畫出三角形的個數(shù)是()A.1個 B.2個 C.3個 D.4個10、如圖,AC=DC,∠BCE=∠DCA,要使△ABC≌△DEC,不能添加下列選項中的()A.∠A=∠D B.BC=ECC.AB=DE D.∠B=∠E第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計20分)1、如圖,在長方形ABCD中,,.延長BC到點E,使,連結DE,動點P從點B出發(fā),以每秒2個單位長度的速度沿向終點A運動.設點P的運動時間為t秒,當t的值為______________時,和全等.2、一個零件的形狀如圖,按規(guī)定∠A=90°,∠B=∠D=25°,判斷這個零件是否合格,只要檢驗∠BCD的度數(shù)就可以了.量得∠BCD=150°,這個零件______(填“合格”不合格”).3、如圖,已知AC與BD相交于點P,ABCD,點P為BD中點,若CD=7,AE=3,則BE=_________.4、如圖,在△中,已知點分別為的中點,若△的面積為,則陰影部分的面積為_________5、如圖,已知AB=12m,CA⊥AB于點A,DB⊥AB于點B,且AC=4m,點P從點B向點A運動,每分鐘走1m,點Q從點B向點D運動,每分鐘走2m.若P,Q兩點同時出發(fā),運動_____分鐘后,△CAP與△PQB全等.6、已知:如圖,AB=DB.只需添加一個條件即可證明.這個條件可以是______.(寫出一個即可).7、如圖,A、F、C、D在同一條直線上,△ABC≌△DEF,AF=1,F(xiàn)D=3.則線段FC的長為_____.8、如圖,AD是BC邊上的中線,AB=5cm,AD=4cm,△ABD的周長是12cm,則BC的長是____cm.9、如圖,在ABC中,已知點D,E,F(xiàn)分別為邊BC,AD,CE的中點,且ABC的面積等于24cm2,則陰影部分圖形面積等于_____cm210、如圖,點E,F(xiàn)分別為線段BC,DB上的動點,BE=DF.要使AE+AF最小值,若用作圖方式確定E,F(xiàn),則步驟是_____.三、解答題(6小題,每小題10分,共計60分)1、在邊長為10厘米的等邊三角形△ABC中,如果點M,N都以3厘米/秒的速度勻速同時出發(fā).(1)若點M在線段AC上由A向C運動,點N在線段BC上由C向B運動.①如圖①,當BD=6,且點M,N在線段上移動了2s,此時△AMD和△BND是否全等,請說明理由.②求兩點從開始運動經(jīng)過幾秒后,△CMN是直角三角形.(2)若點M在線段AC上由A向點C方向運動,點N在線段CB上由C向點B方向運動,運動的過程中,連接直線AN,BM,交點為E,探究所成夾角∠BEN的變化情況,結合計算加以說明.2、如圖,在每個小正方形的邊長均相等的網(wǎng)格中,△ABC的頂點均在格點(網(wǎng)格線的交點)上.(1)線段CD將△ABC分成面積相等的兩個三角形,且點D在邊AB上,畫出線段CD.(2)△CBE≌△CBD,且點E在格點上,畫出△CBE.3、已知的三邊長分別為a,b,c.若a,b,c滿足,試判斷的形狀.4、如圖1,在長方形ABCD中,AB=CD=6cm,BC=10cm,點P從點B出發(fā),以2cm/s的速度沿BC向點C運動,設點P的運動時間為ts,且t≤5(1)PC=cm(用含t的代數(shù)式表示)(2)如圖2,當點P從點B開始運動時,點Q從點C出發(fā),以cm/s的速度沿CD向點D運動,是否存在這樣的v值,使得以A﹑B﹑P為頂點的三角形與以P﹑Q﹑C為頂點的三角形全等?若存在,請求出的值;若不存在,請說明理由.5、如圖,CE⊥AB于點E,BF⊥AC于點F,BD=CD.(1)求證:△BDE≌△CDF;(2)求證:AE=AF.6、如圖,已知△ABC,按如下步驟作圖:①以點A為圓心,AB長為半徑畫?。谝渣cC為圓心,CB長為半徑畫弧,兩弧相交于點D.③連結BD,與AC交于點E,連結AD,CD.求證:∠BAC=∠DAC.-參考答案-一、單選題1、A【分析】根據(jù)三角形的三邊關系得出5<AB<25,根據(jù)AB的范圍判斷即可.【詳解】解:連接AB,根據(jù)三角形的三邊關系定理得:15﹣10<AB<15+10,即:5<AB<25,∴A、B間的距離在5和25之間,∴A、B間的距離不可能是5米;故選:A.【點睛】本題主要考查對三角形的三邊關系定理的理解和掌握,能正確運用三角形的三邊關系定理是解此題的關鍵.2、C【分析】先求解的取值范圍,再利用周長為奇數(shù),可得為偶數(shù),從而可得答案.【詳解】解:AB=3,BC=4,即△ABC周長為奇數(shù),而為偶數(shù),或或不符合題意,符合題意;故選C【點睛】本題考查的是三角形三邊的關系,掌握“三角形的任意兩邊之和大于第三邊,任意兩邊之差小于第三邊”是解本題的關鍵.3、B【分析】根據(jù)三角形存在的條件去判斷.【詳解】∵,,,滿足ASA的要求,∴可以畫出唯一的三角形,A不符合題意;∵,,,∠A不是AB,BC的夾角,∴可以畫出多個三角形,B符合題意;∵,,,滿足SAS的要求,∴可以畫出唯一的三角形,C不符合題意;∵,,,AB最大,∴可以畫出唯一的三角形,D不符合題意;故選B.【點睛】本題考查了三角形的存在性,熟練掌握三角形全等的判定方法是解題的關鍵.4、D【分析】根據(jù)三角形三邊關系定理,判斷選擇即可.【詳解】∵2+11=13,∴A不符合題意;∵5+7=12,∴B不符合題意;∵5+5=10<11,∴C不符合題意;∵5+12=17>13,∴D符合題意;故選D.【點睛】本題考查了構成三角形的條件,熟練掌握三角形三邊關系是解題的關鍵.5、B【分析】根據(jù)三角形的三邊關系定理:三角形兩邊之和大于第三邊,三角形的兩邊之差小于第三邊,設第三邊為,可得,再解即可.【詳解】設第三邊為,由題意得:,.故選:B.【點睛】此題主要考查了三角形的三邊關系:掌握第三邊大于已知的兩邊的差,而小于兩邊的和是解題的關鍵.6、D【分析】先得到∠BAC=∠ABD=90°,若添加AC=BD,則可根據(jù)“SAS”判斷△ABC≌△BAD;若添加BC=AD,則可利用“HL”證明Rt△ABC≌Rt△BAD,若添加∠C=∠D,則可利用“AAS”證明△ABC≌△BAD;若添加OA=OB,可先根據(jù)“ASA”證明△AOC≌△BOD得∠C=∠D,則可利用“AAS”證明△ABC≌△BAD.【詳解】解:在△ABC和△BAD中,∴△ABC≌△BAD故選AC=BD可使△ABC≌△BAD.∵∠BAC=∠ABD=90°,∴△ABC和△BAD均為直角三角形在Rt△ABC和Rt△BAD中,∴Rt△ABC≌Rt△BAD故選BC=AD可使△ABC≌△BAD.在△ABC和△BAD中,∴△ABC≌△BAD故選∠C=∠D可使△ABC≌△BAD.∵OA=OB∴∵∠BAC=∠ABD=90°,∴在△AOC和△BOD中,∴△AOC≌△BOD∴在△ABC和△BAD中,∴△ABC≌△BAD故選OA=OB可使△ABC≌△BAD.∴可選的條件個數(shù)有4個故選:D【點睛】本題考查了全等三角形的判定:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”、“HL”.7、D【分析】利用AAS證明△CDE≌△BDF,可判斷①④正確;再利用HL證明Rt△ADE≌Rt△ADF,可判斷②正確;由∠BAC=∠EDF,∠FDE=∠BDC,可判斷③正確.【詳解】解:∵AD平分∠CAF,DE⊥AC,DF⊥AB,∴DE=DF,∠DFB=∠DEC=90°,∵∠FDE=∠BDC,∴∠FDB=∠EDC,在△CDE與△BDF中,,∴△CDE≌△BDF(AAS),故①正確;∴CE=BF,在Rt△ADE與Rt△ADF中,,∴Rt△ADE≌Rt△ADF(HL),∴AE=AF,∴CE=AB+AF=AB+AE,故②正確;∵∠DFA=∠DEA=90°,∴∠EDF+∠FAE=180°,∵∠BAC+∠FAE=180°,∴∠FDE=∠BAC,∵∠FDE=∠BDC,∴∠BDC=∠BAC,故③正確;∵∠FAE是△ABC的外角,∴2∠DAF=∠ABC+∠ACB=∠ABD+∠DBC+∠ACB,∵Rt△CDE≌Rt△BDF,∴∠ABD=∠DCE,BD=DC,∴∠DBC=∠DCB,∴2∠DAF=∠DCE+∠DBC+∠ACB=∠DBC+∠DCB=2∠DBC,∴∠DAF=∠CBD,故④正確故選:D.【點睛】本題主要考查了全等三角形的判定及性質,外角的性質等,熟悉掌握全等三角形的判定方法,靈活尋找條件是解題的關鍵.8、D【分析】根據(jù)三角形的三邊關系,即可求解.【詳解】解:A、因為,所以不能構成三角形,故本選項不符合題意;B、因為,所以不能構成三角形,故本選項不符合題意;C、因為,所以不能構成三角形,故本選項不符合題意;D、因為,所以能構成三角形,故本選項符合題意;故選:D【點睛】本題主要考查了三角形的三邊關系,熟練掌握三角形的兩邊之和大于第三邊,兩邊之差小于第三邊是解題的關鍵.9、C【分析】從4條線段里任取3條線段組合,可有4種情況,看哪種情況不符合三角形三邊關系,舍去即可.【詳解】解:首先可以組合為15cm,12cm,8cm;15cm,12cm,5cm;15cm,8cm、5cm;12cm,8cm、5cm.再根據(jù)三角形的三邊關系,發(fā)現(xiàn)其中的12cm,8cm、5cm不符合,則可以畫出的三角形有3個.故選:C.【點睛】本題考查了三角形的三邊關系:即任意兩邊之和大于第三邊,任意兩邊之差小于第三邊.這里一定要首先把所有的情況組合后,再看是否符合三角形的三邊關系.10、C【分析】根據(jù)全等三角形的判定定理進行分析即可;【詳解】根據(jù)已知條件可得,即,∵AC=DC,∴已知三角形一角和角的一邊,根據(jù)全等條件可得:A.∠A=∠D,可根據(jù)ASA證明,A正確;B.BC=EC,可根據(jù)SAS證明,B正確;C.AB=DE,不能證明,C故錯誤;D.∠B=∠E,根據(jù)AAS證明,D正確;故選:C.【點睛】本題主要考查了全等三角形的判定定理,掌握全等三角形的判定方法是解題的關鍵.二、填空題1、1或7【分析】分兩種情況進行討論,根據(jù)題意得出BP=2t=2或AP=16-2t=2即可求得結果.【詳解】解:當點P在BC上時,∵AB=CD,∴當△ABP≌△DCE,得到BP=CE,由題意得:BP=2t=2,∴t=1,當P在AD上時,∵AB=CD,∴當△BAP≌△DCE,得到AP=CE,由題意得:AP=6+6-4﹣2t=2,解得t=7.∴當t的值為1或7秒時.△ABP和△DCE全等.故答案為:1或7.【點睛】本題考查了全等三角形的判定,解題的關鍵在于能夠利用分類討論的思想進行求解.2、不合格【分析】連接AC并延長,然后根據(jù)三角形的一個外角等于與它不相鄰的兩個內角的和可得∠3=∠1+∠B,∠4=∠2+∠D,再求出∠BCD即可進行判定.【詳解】解:如圖,連接AC并延長,由三角形的外角性質可得,∠3=∠1+∠B,∠4=∠2+∠D,∴∠BCD=∠3+∠4=∠1+∠B+∠2+∠D=∠BAD+∠B+∠D=90°+25°+25°=140°,∵140°≠150°,∴這個零件不合格.故答案為:不合格.【點睛】本題考查了三角形的一個外角等于與它不相鄰的兩個內角的和的性質,熟記性質并作輔助線構造出兩個三角形是解題的關鍵.3、4【分析】由題意利用全等三角形的判定得出,進而依據(jù)全等三角形的性質得出進行分析計算即可.【詳解】解:∵ABCD,∴,∵點P為BD中點,∴,∵,,∴,∴,∵CD=7,AE=3,∴.故答案為:4.【點睛】本題考查全等三角形的判定與性質,熟練掌握全等三角形的判定與性質是解題的關鍵.4、1【分析】根據(jù)三角形的中線把三角形分成兩個面積相等的三角形解答.【詳解】解:∵點E是AD的中點,∴S△ABE=S△ABD,S△ACE=S△ADC,∴S△ABE+S△ACE=S△ABC=×4=2cm2,∴S△BCE=S△ABC=×4=2cm2,∵點F是CE的中點,∴S△BEF=S△BCE=×2=1cm2.故答案為:1.【點睛】本題考查了三角形的面積,主要利用了三角形的中線把三角形分成兩個面積相等的三角形,原理為等底等高的三角形的面積相等.5、4【分析】根據(jù)題意CA⊥AB,DB⊥AB,則,則分或兩種情況討論,根據(jù)路程等于速度乘以時間求得的長,根據(jù)全等列出一元一次方程解方程求解即可【詳解】解:CA⊥AB,DB⊥AB,點P從點B向點A運動,每分鐘走1m,點Q從點B向點D運動,每分鐘走2m,設運動時間為,且AC=4m,,當時則,即,解得當時,則,即,解得且不符合題意,故舍去綜上所述即分鐘后,△CAP與△PQB全等.故答案為:【點睛】本題考查了三角形全等的性質,根據(jù)全等的性質列出方程是解題的關鍵.6、AC=DC【分析】由題意可得,BC為公共邊,AB=DB,即添加一組邊對應相等,可證△ABC與△DBC全等.【詳解】解:∵AB=DB,BC=BC,添加AC=DC,∴在△ABC與△DBC中,,∴△ABC≌△DBC(SSS),故答案為:AC=DC.【點睛】本題考查了全等三角形的判定,靈活運用全等三角形的判定是本題的關鍵.7、【分析】根據(jù)全等三角形的性質得出AC=FD=3,再求出FC即可.【詳解】解:∵△ABC≌△DEF,F(xiàn)D=3,∴AC=FD=3,∵AF=1,∴FC=AC﹣AF=3﹣1=2,故答案為:2.【點睛】本題主要是考查了全等三角形的性質,熟練應用全等三角形的性質,找到對應相等的邊,是求解該問題的關鍵.8、6【分析】根據(jù)AD是BC邊上的中線,得出為的中點,可得,根據(jù)條件可求出.【詳解】解:AD是BC邊上的中線,為的中點,,,△ABD的周長是12cm,,,故答案是:6.【點睛】本題考查了三角形的中線,解題的關鍵利用中線的性質得出為的中點.9、6【分析】因為點F是CE的中點,所以△BEF的底是△BEC的底的一半,△BEF高等于△BEC的高;同理,D、E、分別是BC、AD的中點,可得△EBC的面積是△ABC面積的一半;利用三角形的等積變換可解答.【詳解】解:如圖,點F是CE的中點,∴△BEF的底是EF,△BEC的底是EC,即EF=EC,而高相等,∴S△BEF=S△BEC,∵E是AD的中點,∴S△BDE=S△ABD,S△CDE=S△ACD,∴S△EBC=S△ABC,∴S△BEF=S△ABC,且S△ABC=24cm2,∴S△BEF=6cm2,即陰影部分的面積為6cm2.故答案為6.【點睛】本題考查了三角形面積的等積變換:若兩個三角形的高(或底)相等,面積之比等于底邊(高)之比.10、①連接,作;②以點為圓心、長為半徑畫弧,交于點;③連接交于點;④以點為圓心、長為半徑畫弧,交于點【分析】按照①連接,作;②以點為圓心、長為半徑畫弧,交于點;③連接交于點;④以點為圓心、長為半徑畫弧,交于點的步驟作圖即可得.【詳解】解:步驟是①連接,作;②以點為圓心、長為半徑畫弧,交于點;③連接交于點;④以點為圓心、長為半徑畫弧,交于點;如圖,點即為所求.故答案為:①連接,作;②以點為圓心、長為半徑畫弧,交于點;③連接交于點;④以點為圓心、長為半徑畫弧,交于點.【點睛】本題考查了作一個角等于已知角、兩點之間線段最短、作線段、全等三角形的判定與性質等知識點,熟練掌握尺規(guī)作圖的方法是解題關鍵.三、解答題1、(1)①證明見解析;②經(jīng)過或秒后,△CMN是直角三角形;(2)∠BEN=60°,證明見解析【分析】(1)①根據(jù)題意得出AM=BD,AD=BN,根據(jù)等邊三角形的性質得到∠A=∠B=∠C=60°,利用SAS定理證明△AMD≌△BDN;②分∠CNM=90°、∠CMN=90°兩種情況,根據(jù)直角三角形的性質列式計算即可;(2)證明△ABM≌△CAN,根據(jù)全等三角形的性質得到∠ABM=∠CAN,根據(jù)三角形的外角性質計算,得到答案.【詳解】(1)①∵△ABC為等邊三角形,∴∠A=∠B=∠C=60°,當點M,N在線段上移動了2s時,AM=6厘米,CN=6厘米,∴BN=BC﹣CN=4厘米,∵AB=10厘米,BD=6厘米,∴AD=4厘米,∴AM=BD,AD=BN,在△AMD和△BDN中,,∴△AMD≌△BDN(SAS);②設經(jīng)過t秒后,△CMN是直角三角形,由題意得:CM=(10﹣3t)厘米,CN=3t厘米,當∠CNM=90°時,∵∠C=60°,∴∠CMN=30°,∴CM=2CN,即10﹣3t=2×3t,解得:t=,當∠CMN=90°時,CN=2CM,即2(10﹣3t)=3t,解得:t=,綜上所述:經(jīng)過或秒后,△CMN是直角三角形;(2)如圖所示,由題意得:AM=CN,在△ABM和△CAN中,,∴△ABM≌△CAN(SAS),∴∠ABM=∠CAN,∴∠BEN=∠ABE+∠BAE=∠CAN+∠BAE=60°.【點睛】本題考查了全等三角形的判斷以及列一元一次方程動點相關問題,兩邊和它們的夾角對應相等的兩個三角形全等;一元一次方程與幾何圖形的相結合的題,多數(shù)會涉及到動點的問題,需要對動點的位置進行討論,討論時要注意討論全面,做到不重不漏,通常會按照從左到右或從上到下的方位進行考慮.2、(1)見解析;(2)見解析【分析】(1)根據(jù)三角形一邊上的中線將三角形面積平分,所以找到AB的中點D,連接CD即可;(2)根據(jù)全等三角形的性質得到BE=BD,CE=CD,進而找到E點即可解答.【詳解】解:(1)∵線段CD將△ABC分成面積相等的兩個三角形,且點D在邊AB上,∴點D為AB的中點,連接CD,如圖所示:(2)∵△CBE≌△CBD,∴BE=BD,CE=CD,∠CBD=∠CBE,∵點E在格點上,∴如圖,△CBE即為所求作的三角形.【點睛】本題考查基本作圖、三角形中線性質、全等三角形的性質,掌握三角形中線性質是解答的關鍵.3、的形狀是等邊三角形.【分析】利用平方數(shù)的非負性,求解a,b,c的關系,進而判斷.【詳解】解:∵,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論