版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
人教版8年級數(shù)學(xué)上冊《全等三角形》專項測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、下列說法正確的是(
)①近似數(shù)精確到十分位;②在,,,中,最小的是;③如圖所示,在數(shù)軸上點所表示的數(shù)為;④用反證法證明命題“一個三角形最多有一個鈍角”時,首先應(yīng)假設(shè)“這個三角形中有兩個鈍角”;⑤如圖,在內(nèi)一點到這三條邊的距離相等,則點是三個角平分線的交點.A.1 B.2 C.3 D.42、有一個小口瓶(如圖所示),想知道它的內(nèi)徑是多少,但是尺子不能伸到里邊直接測,于是拿兩根長度相同的細(xì)木條,把兩根細(xì)木條的中點固定在一起,木條可以繞中點轉(zhuǎn)動,這樣只要量出AB的長,就可以知道玻璃瓶的內(nèi)徑是多少,那么△OAB≌△OCD理由是(
)A.邊角邊 B.角邊角 C.邊邊邊 D.角角邊3、如圖,已知,下面甲、乙、丙、丁四個三角形中,與全等的是(
)A.甲 B.乙 C.丙 D.丁4、如圖,Rt△ACB中,∠ACB=90°,△ABC的角平分線AD、BE相交于點P,過P作PF⊥AD交BC的延長線于點F,交AC于點H,則下列結(jié)論:①∠APB=135°;②BF=BA;③PH=PD;④連接CP,CP平分∠ACB,其中正確的是()A.①②③ B.①②④ C.①③④ D.①②③④5、如圖,若,則的理由是(
)A.SAS B.AAS C.ASA D.HL第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、在△ABC中,∠C=90°,AD是△ABC的角平分線,BC=6、AC=8、AB=10,則點D到AB的距離為_______.2、如圖,在中,、的平分線相交于點I,且,若,則的度數(shù)為______度.3、如圖,△ABC中,∠ACB=90°,AC=12,BC=16.點P從A點出發(fā)沿A—C—B路徑向終點運動,終點為B點;點Q從B點出發(fā)沿B—C—A路徑向終點運動,終點為A點.點P和Q分別以2和6的運動速度同時開始運動,兩點都要到相應(yīng)的終點時才能停止運動,在某時刻,分別過P和Q作PE⊥l于E,QF⊥l于F.若要△PEC與△QFC全等,則點P的運動時間為_______.4、如圖,△ABC中,BD平分∠ABC,AD⊥BD,△BCD的面積為10,△ACD的面積為6,則△ABD的面積是_________.5、如圖,在△ABC中,點D、E分別為邊AC、BC上的點,且AD=DE,AB=BE,∠A=70°,則∠CED=______度.三、解答題(5小題,每小題10分,共計50分)1、如圖,和都是等邊三角形,連接與,延長交于點H.(1)證明:;(2)求的度數(shù);(3)連接,求證:平分.2、【閱讀理解】課外興趣小組活動時,老師提出了如下問題:如圖,△ABC中,若AB=8,AC=6,求BC邊上的中線AD的取值范圍.小明在組內(nèi)經(jīng)過合作交流,得到了如下的解決方法:如圖,延長AD到點E,使DE=AD,連結(jié)BE.請根據(jù)小明的方法思考:(1)由已知和作圖能得到的理由是(
).A.SSS
B.SAS
C.AAS
D.ASA(2)AD的取值范圍是(
).A.
B.
C.
D.(3)【感悟】解題時,條件中若出現(xiàn)“中點”、“中線”字樣,可以考慮延長中線構(gòu)造全等三角形,把分散的已知條件和所求證的結(jié)論轉(zhuǎn)化到同一個三角形中.【問題解決】如圖,AD是△ABC的中線,BE交AC于點E,交AD于F,且AE=EF.求證:AC=BF.3、(1)如圖①,和都是等邊三角形,且點,,在一條直線上,連結(jié)和,直線,相交于點.則線段與的數(shù)量關(guān)系為_____________.與相交構(gòu)成的銳角的度數(shù)為___________.(2)如圖②,點,,不在同一條直線上,其它條件不變,上述的結(jié)論是否還成立.(3)應(yīng)用:如圖③,點,,不在同一條直線上,其它條件依然不變,此時恰好有.設(shè)直線交于點,請把圖形補全.若,則___________.4、如圖,在四邊形ABCD中,已知BD平分∠ABC,∠BAD+∠C=180°,求證:AD=CD.5、(2019秋?九龍坡區(qū)校級月考)如圖.在四邊形ABCD中,∠B+∠ADC=180°,AB=AD,E、F分別是邊BC、CD延長線上的點,且∠EAF∠BAD,求證:EF=BE﹣FD.-參考答案-一、單選題1、B【解析】【分析】根據(jù)近似數(shù)的精確度定義,可判斷①;根據(jù)實數(shù)的大小比較,可判斷②;根據(jù)點在數(shù)軸上所對應(yīng)的實數(shù),即可判斷③;根據(jù)反證法的概念,可判斷④;根據(jù)角平分線的性質(zhì),可判斷⑤.【詳解】①近似數(shù)精確到十位,故本小題錯誤;②,,,,最小的是,故本小題正確;③在數(shù)軸上點所表示的數(shù)為,故本小題錯誤;④用反證法證明命題“一個三角形最多有一個鈍角”時,首先應(yīng)假設(shè)“這個三角形中有兩個鈍角或三個鈍角”,故本小題錯誤;⑤在內(nèi)一點到這三條邊的距離相等,則點是三個角平分線的交點,故本小題正確.故選B【考點】本題主要考查近似數(shù)的精確度定義,實數(shù)的大小比較,點在數(shù)軸上所對應(yīng)的實數(shù),反證法的概念,角平分線的性質(zhì),熟練掌握上述知識點,是解題的關(guān)鍵.2、A【解析】【詳解】解:∵根據(jù)SAS得:△OAB≌△ODC.故選A.3、B【解析】【分析】根據(jù)全等三角形的判定定理逐判定即可.【詳解】解:A.△ABC和甲所示三角形只有一邊一角對應(yīng)相等,無法判定它們?nèi)?,故本選項不符合題意;B.△ABC和乙所示三角形有兩邊及其夾角對應(yīng)相等,根據(jù)SAS可判定它們?nèi)?,故本選項符合題意;C.△ABC和丙所示三角形有兩邊一角相等,但不是對應(yīng)的兩邊一角,無法判定它們?nèi)?,故本選項不符合題意;;D.△ABC和丁所示三角形有兩角對應(yīng)相等,有一邊相等,但相等邊不是兩角的夾邊,所以兩角一邊不是對應(yīng)相等,無法判定它們?nèi)?,故本選項不符合題意;;故選:B.4、D【解析】【分析】根據(jù)三角形內(nèi)角和定理以及角平分線定義判斷①;根據(jù)全等三角形的判定和性質(zhì)判斷②③;根據(jù)角平分線的判定與性質(zhì)判斷④.【詳解】解:在△ABC中,∵∠ACB=90°,∴∠BAC+∠ABC=90°,又∵AD、BE分別平分∠BAC、∠ABC,∴∠BAD+∠ABE=(∠BAC+∠ABC)=(180°-∠ACB)=(180°-90°)=45°,∴∠APB=135°,故①正確.∴∠BPD=45°,又∵PF⊥AD,∴∠FPB=90°+45°=135°,∴∠APB=∠FPB,又∵∠ABP=∠FBP,BP=BP,∴△ABP≌△FBP(ASA),∴∠BAP=∠BFP,AB=FB,PA=PF,故②正確.在△APH和△FPD中,∵∠APH=∠FPD=90°,∠PAH=∠BAP=∠BFP,PA=PF,∴△APH≌△FPD(ASA),∴PH=PD,故③正確.連接CP,如下圖所示:∵△ABC的角平分線AD、BE相交于點P,∴點P到AB、AC的距離相等,點P到AB、BC的距離相等,∴點P到BC、AC的距離相等,∴點P在∠ACB的平分線上,∴CP平分∠ACB,故④正確,綜上所述,①②③④均正確,故選:D.【考點】本題考查了角平分線的判定與性質(zhì),三角形全等的判定方法,三角形內(nèi)角和定理.掌握相關(guān)性質(zhì)是解題的關(guān)鍵.5、D【解析】【分析】根據(jù)兩直角三角形全等的判定定理HL推出即可.【詳解】解:∠B=∠C=90°,在Rt△ABD和Rt△ACD中,,∴Rt△ABD≌Rt△ACD(HL),故選:D.【考點】本題考查了全等三角形的判定定理,能熟記全等三角形的判定定理是解此題的關(guān)鍵,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,兩直角三角形全等還有HL.二、填空題1、或【解析】【分析】作DE⊥AB于E,如圖,先根據(jù)勾股定理計算出BC=8,再利用角平分線的性質(zhì)得到DE=DC,設(shè)DE=DC=x,利用面積法得到10x=6(8-x),然后解方程即可.【詳解】解:作DE⊥AB于E,如圖,∵AD是△ABC的一條角平分線,DC⊥AC,DE⊥AB,∴DE=DC,設(shè)DE=DC=x,S△ABD=DE?AB=AC?BD,即10x=8(6-x),解得x=,即點D到AB邊的距離為.故答案為:.【考點】本題考查了角平分線的性質(zhì):角的平分線上的點到角的兩邊的距離相等,由已知能夠注意到D到AB的距離即為DE長是解決的關(guān)鍵.2、70【解析】【分析】在BC上取點D,令,利用SAS定理證明得到,,再利用得到,所以,再由角平分線可得,利用以及AI平分可知.【詳解】解:在BC上取點D,令,連接DI,BI,如下圖所示:∵CI平分∴在和中∴∴,∵∴,即:∵AI平分、CI平分,∴BI平分,∴∵∴故答案為:70.【考點】本題考查角平分線,全等三角形的判定及性質(zhì),三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和,利用,在BC上取點D等于AC,作出輔助線是解本題的關(guān)鍵點,也是難點.3、1或3.5或12【解析】【分析】分4種情況求解:①P在AC上,Q在BC上,推出方程6-t=8-3t,②P、Q都在AC上,此時P、Q重合,得到方程6-t=3t-8,Q在AC上,③P在BC上,Q在AC時,此時不存在,④當(dāng)Q到A點,與A重合,P在BC上時.【詳解】解:∵△PEC與△QFC全等,∴斜邊CP=CQ,有四種情況:①P在AC上,Q在BC上,,CP=12-2t,CQ=16-6t,∴12-2t=16-6t,∴t=1;②P、Q都在AC上,此時P、Q重合,∴CP=12-2t=6t-16,∴t=3.5;③P到BC上,Q在AC時,此時不存在;理由是:28÷6=,12÷2=6,即Q在AC上運動時,P點也在AC上運動;④當(dāng)Q到A點(和A重合),P在BC上時,∵CP=CQ=AC=12.CP=12-2t,∴2t-12=12,∴t=12符合題意;答:點P運動1或3.5或12時,△PEC與△QFC全等.【考點】本題主要考查對全等三角形的性質(zhì),解一元一次方程等知識點的理解和掌握,能根據(jù)題意得出方程是解此題的關(guān)鍵.4、16【解析】【分析】延長交于,由證明,得出,得出,進(jìn)而得出,即可得出結(jié)果.【詳解】如圖所示,延長、交于,∵平分,,∴,,在和中,,∴,∴,∴,,∴.故答案為:16.【考點】此題考查全等三角形的判定與性質(zhì),三角形面積的計算,證明三角形全等得出是解題關(guān)鍵.5、110【解析】【分析】根據(jù)SSS證△ABD≌△EBD,得∠BED=∠A=70°,進(jìn)而得出∠CED.【詳解】解:∵AD=DE,AB=BE又BD=BD∴△ABD≌△EBD(SSS)∴∠BED=∠A=70°∴∠CED=180°-∠BED=180°-70°=110°故本題答案為110.【考點】本題通過考查全等三角形的判定和性質(zhì),進(jìn)而得出結(jié)論.三、解答題1、(1)見解析(2)60°(3)見解析【解析】【分析】(1)由△ABD和△BCE都是等邊三角形得BA=BD,BE=BC,∠ABD=∠EBC=60°,所以∠ABE=∠DBC=60°?∠DBE,即可根據(jù)全等三角形的判定定理“SAS”證明△ABE≌△DBC,得AE=DC;(2)由△ABE≌△DBC得∠BAE=∠BDC,因為∠BAD=∠BDA=60°,所以∠HAD+∠HDA==120°,所以∠AHD=60°;(3)作BF⊥HA于點F,BG⊥HC交HC的延長線于點G,則∠AFB=∠BFH=∠G=90°,即可證明△BAF≌△BDG,則BF=BG,根據(jù)“到角的兩邊距離相等的點在角的平分線上”即可證明HB平分∠AHC.(1)證明:如圖1,∵△ABD和△BCE都是等邊三角形,∴BA=BD,BE=BC,∠ABD=∠EBC=60°,∴∠ABE=∠DBC=60°?∠DBE,在△ABE和△DBC中,,∴△ABE≌△DBC(SAS),∴AE=DC.(2)解:如圖1,由(1)得△ABE≌△DBC,∴∠BAE=∠BDC,∵∠BAD=∠BDA=60°,∴∠HAD+∠HAD=∠HAD+∠BDC+∠BDA=∠HAD+∠BAE+∠BDA=∠BAD+∠BDA=120°,∴∠AHD=180°?(∠HAD+∠HDA)=60°.(3)證明:如圖2,作BF⊥HA于點F,BG⊥HC交HC的延長線于點G,則∠AFB=∠BFH=∠G=90°,由△ABE≌△DBC得∠BAF=∠BDG,在△BAF和△BDG中,,∴△BAF≌△BDG(AAS),∴BF=BG,∴點B在∠AHC的平分線上,∴HB平分∠AHC.【考點】此題考查等邊三角形的性質(zhì)、全等三角形的判定與性質(zhì)、到角的兩邊距離相等的點在角的平分線上等知識,證明三角形全等是解題的關(guān)鍵.2、(1)B(2)C(3)見解析【解析】【分析】(1)根據(jù)AD=DE,∠ADC=∠BDE,BD=DC推出△ADC和△EDB全等即可;(2)根據(jù)全等得出BE=AC=6,AE=2AD,由三角形三邊關(guān)系定理得出8-6<2AD<8+6,求出即可;(3)延長AD到M,使AD=DM,連接BM,根據(jù)SAS證△ADC≌△MDB,推出BM=AC,∠CAD=∠M,根據(jù)AE=EF,推出∠CAD=∠AFE=∠BFD,求出∠BFD=∠M,根據(jù)等腰三角形的性質(zhì)求出即可.(1)∵在△ADC和△EDB中,∴△ADC≌△EDB(SAS),故選B;(2)∵由(1)知:△ADC≌△EDB,∴BE=AC=6,AE=2AD,∵在△ABE中,AB=8,由三角形三邊關(guān)系定理得:8-6<2AD<8+6,∴1<AD<7,故選:C.(3)延長AD到點M,使AD=DM,連接BM.∵AD是△ABC中線∴CD=BD∵在△ADC和△MDB中∴∴BM=AC(全等三角形的對應(yīng)邊相等)∠CAD=∠M(全等三角形的對應(yīng)角相等)∵AE=EF,∴∠CAD=∠AFE(等邊對等角)∵∠AFE=∠BFD,∴∠BFD=∠M,∴BF=BM(等角對等邊)又∵BM=AC,∴AC=BF.【考點】本題考查了三角形的中線,三角形的三邊關(guān)系定理,等腰三角形性質(zhì)和判定,全等三角形的性質(zhì)和判定等知識點,主要考查學(xué)生運用定理進(jìn)行推理的能力.3、(1)相等,;(2)成立,證明見解析;(3)見解析,4.【解析】【分析】(1)證明△BCD≌△ACE,并運用三角形外角和定理和等邊三角形的性質(zhì)求解即可;(2)是第(1)問的變式,只是位置變化,結(jié)論保持不變;(3)根據(jù)∠AEC=30°,判定AE是等邊三角形CDE的高,運用前面的結(jié)論,把條件集中到一個含有30°角的直角三角形中求解即可.【詳解】(1)相等;
.理由如下:∵和都是等邊三角形,∴,,,∴,在和中,∴.∴,.又∵,∴.(2)成立;理由如下:證明:∵和都是等邊三角形,∴,,,∴,在和中,∴.∴,.又∵,∴.(3)補全圖形(如圖),∵△CDE是等邊三角形,∴∠DEC=60°,∵∠AEC=30°,∴∠AEC=∠AED,∴EQ⊥DQ,∴∠DQP=90°,根據(jù)(1)知,∠BDC=∠AEC=30°,∵PQ=2,∴DP=4.故答案為:4.【考點】本題是一道猜想證明題,以兩線段之間的大小關(guān)系為基礎(chǔ),考查了等邊三角形的性質(zhì),三角形的全等,直角三角形的性質(zhì),證明兩個手拉手模型三角形全等是解題的關(guān)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年高端酒店客房翻新與智能化客房設(shè)備采購協(xié)議
- 綿陽七中考試題目及答案
- 2025年型智能酒店客房租賃及經(jīng)營合作協(xié)議
- 2025金融行業(yè)年度盛會策劃與實施服務(wù)協(xié)議
- 2025年智慧城市藥渣資源化處理與環(huán)保達(dá)標(biāo)合同
- 2025年新型儲能設(shè)施工程設(shè)計與建造一體化服務(wù)合同
- 2025年度教育產(chǎn)業(yè)股東合作協(xié)議:社會責(zé)任履行與公益助學(xué)項目實施
- 2025年校園周邊學(xué)生創(chuàng)業(yè)園門面租賃與品牌推廣合同
- 2025年老舊小區(qū)改造項目安置房建設(shè)安全協(xié)議
- 2025-2030禮品包裝行業(yè)技術(shù)壁壘及研發(fā)投入與風(fēng)險投資分析報告
- 銳澳RIO抖音dp運營方案
- 2025年交通安全法規(guī)題庫及答案
- 輸電線路路經(jīng)復(fù)測安全、技術(shù)交底
- lpr利率管理辦法
- 第三章 金融遠(yuǎn)期
- 課堂有效教學(xué)課件
- 規(guī)范診療培訓(xùn)課件
- 咳嗽變異性哮喘病例分析
- 檢驗檢測機構(gòu)授權(quán)簽字人考核試題(+答案)
- 人教版七年級英語下冊期末復(fù)習(xí)專練:短文填空(含答案解析)
- 種植基地考核管理辦法
評論
0/150
提交評論