難點(diǎn)解析-滬科版9年級(jí)下冊(cè)期末試卷含答案詳解(輕巧奪冠)_第1頁(yè)
難點(diǎn)解析-滬科版9年級(jí)下冊(cè)期末試卷含答案詳解(輕巧奪冠)_第2頁(yè)
難點(diǎn)解析-滬科版9年級(jí)下冊(cè)期末試卷含答案詳解(輕巧奪冠)_第3頁(yè)
難點(diǎn)解析-滬科版9年級(jí)下冊(cè)期末試卷含答案詳解(輕巧奪冠)_第4頁(yè)
難點(diǎn)解析-滬科版9年級(jí)下冊(cè)期末試卷含答案詳解(輕巧奪冠)_第5頁(yè)
已閱讀5頁(yè),還剩25頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

滬科版9年級(jí)下冊(cè)期末試卷考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計(jì)16分)1、下列圖形中,是中心對(duì)稱圖形,但不是軸對(duì)稱圖形的是()A. B. C. D.2、同時(shí)拋擲兩枚質(zhì)地均勻的硬幣,兩枚硬幣全部正面向上的概率是()A. B. C. D.3、如圖,在中,,,若以點(diǎn)為圓心,的長(zhǎng)為半徑的圓恰好經(jīng)過的中點(diǎn),則的長(zhǎng)等于()A. B. C. D.4、小張同學(xué)去展覽館看展覽,該展覽館有A、B兩個(gè)驗(yàn)票口(可進(jìn)可出),另外還有C、D兩個(gè)出口(只出不進(jìn)).則小張從不同的出入口進(jìn)出的概率是()A. B. C. D.5、7個(gè)小正方體按如圖所示的方式擺放,則這個(gè)圖形的左視圖是()A.B. C.D.6、如圖,PA,PB是⊙O的切線,A,B為切點(diǎn),PA=4,則PB的長(zhǎng)度為()A.3 B.4 C.5 D.67、下面的圖形中既是軸對(duì)稱圖形又是中心對(duì)稱圖形的是()A. B. C. D.8、拋一枚質(zhì)地均勻的硬幣三次,其中“至少有兩次正面朝上”的概率是()A. B. C. D.第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計(jì)14分)1、如圖,將矩形繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到矩形的位置,旋轉(zhuǎn)角為.若,則的大小為________(度).2、在平面直角坐標(biāo)系中,點(diǎn)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)是______.3、如圖,在中,,是內(nèi)的一個(gè)動(dòng)點(diǎn),滿足.若,,則長(zhǎng)的最小值為_______.4、如圖,已知⊙O的半徑為2,弦AB的長(zhǎng)度為2,點(diǎn)C是⊙O上一動(dòng)點(diǎn)若△ABC為等腰三角形,則BC2為_______.5、如圖,正方形ABCD是邊長(zhǎng)為2,點(diǎn)E、F是AD邊上的兩個(gè)動(dòng)點(diǎn),且AE=DF,連接BE、CF,BE與對(duì)角線AC交于點(diǎn)G,連接DG交CF于點(diǎn)H,連接BH,則BH的最小值為_______.6、在一個(gè)暗箱里放入除顏色外其它都相同的1個(gè)紅球和11個(gè)黃球,攪拌均勻后隨機(jī)任取一球,取到紅球的概率是_____.7、斛是中國(guó)古代的一種量器.據(jù)《漢書.律歷志》記載:“斛底,方而圜(huán)其外,旁有庣(tiāo)焉”.意思是說:“斛的底面為:正方形外接一個(gè)圓,此圓外是一個(gè)同心圓”.如圖所示,問題:現(xiàn)有一斛,其底面的外圓直徑為兩尺五寸(即2.5尺),“庣旁”為兩寸五分(即兩同心圓的外圓與內(nèi)圓的半徑之差為0.25尺),則此斛底面的正方形的邊長(zhǎng)為________尺.三、解答題(7小題,每小題0分,共計(jì)0分)1、如圖,是⊙的直徑,弦,垂足為E,弦與弦相交于點(diǎn)G,且,過點(diǎn)C作的垂線交的延長(zhǎng)線于點(diǎn)H.(1)判斷與⊙的位置關(guān)系并說明理由;(2)若,求弧的長(zhǎng).2、新高考“3+1+2”是指:3,語(yǔ)數(shù)外三科是必考科目;1,物理、歷史兩科中任選一科;2,化學(xué)、生物、地理、政治四科中任選兩科.某同學(xué)確定選擇“物理”,但他不確定其它兩科選什么,于是他做了一個(gè)游戲:他拿來四張不透明的卡片,正面分別寫著“化學(xué)、生物、地理、政治”,再將這四張卡片背面朝上并打亂順序,然后從這四張卡片中隨機(jī)抽取兩張,請(qǐng)你用畫樹狀圖(或列表)的方法,求該同學(xué)抽出的兩張卡片是“化學(xué)、政治”的概率.3、如圖,內(nèi)接于,BC是的直徑,D是AC延長(zhǎng)線上一點(diǎn).(1)請(qǐng)用尺規(guī)完成基本作圖:作出的角平分線交于點(diǎn)P.(保留作圖痕跡,不寫作法)(2)在(1)所作的圖形中,過點(diǎn)P作,垂足為E.則PE與有怎樣的位置關(guān)系?請(qǐng)說明理由.4、如圖1,在⊙O中,AC=BD,且AC⊥BD,垂足為點(diǎn)E.(1)求∠ABD的度數(shù);(2)圖2,連接OA,當(dāng)OA=2,∠OAB=15°,求BE的長(zhǎng)度;(3)在(2)的條件下,求的長(zhǎng).5、如圖,AB是的直徑,CD是的一條弦,且于點(diǎn)E.(1)求證:;(2)若,,求的半徑.6、小明每天騎自行車.上學(xué),都要通過安裝有紅、綠燈的4個(gè)十字路口.假設(shè)每個(gè)路口紅燈和綠燈亮的時(shí)間相同.(1)小明從家到學(xué)校,求通過前2個(gè)十字路口時(shí)都是綠燈的概率.(請(qǐng)用“畫樹狀圖”或“列表”或“列舉”等方法給出分析過程)(2)小明從家到學(xué)校,通過這4個(gè)十字路口時(shí)至少有2個(gè)綠燈的概率為.(請(qǐng)直接寫出答案)7、一個(gè)不透明的口袋中有四個(gè)分別標(biāo)號(hào)為1,2,3,4的完全相同的小球,從中隨機(jī)摸取兩個(gè)小球.(1)請(qǐng)列舉出所有可能結(jié)果;(2)求取出的兩個(gè)小球標(biāo)號(hào)和等于5的概率.-參考答案-一、單選題1、B【分析】根據(jù)“把一個(gè)圖形繞著某一個(gè)點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個(gè)圖形叫做中心對(duì)稱圖形”及“如果一個(gè)平面圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個(gè)圖形就叫做軸對(duì)稱圖形”,由此問題可求解.【詳解】解:A、既不是軸對(duì)稱圖形也不是中心對(duì)稱圖形,故不符合題意;B、是中心對(duì)稱圖形但不是軸對(duì)稱圖形,故符合題意;C、既不是軸對(duì)稱圖形也不是中心對(duì)稱圖形,故不符合題意;D、是軸對(duì)稱圖形但不是中心對(duì)稱圖形,故不符合題意;故選B.【點(diǎn)睛】本題主要考查中心對(duì)稱圖形及軸對(duì)稱圖形的識(shí)別,熟練掌握中心對(duì)稱圖形及軸對(duì)稱圖形的定義是解題的關(guān)鍵.2、A【分析】首先利用列舉法可得所有等可能的結(jié)果有:正正,正反,反正,反反,然后利用概率公式求解即可求得答案.【詳解】解:∵拋擲兩枚質(zhì)地均勻的硬幣,兩枚硬幣落地后的所有等可能的結(jié)果有:正正,正反,反正,反反,∴正面都朝上的概率是:

.故選A.【點(diǎn)睛】本題考查了列舉法求概率的知識(shí).此題比較簡(jiǎn)單,注意在利用列舉法求解時(shí),要做到不重不漏,注意概率=所求情況數(shù)與總情況數(shù)之比.3、D【分析】連接CD,由直角三角形斜邊中線定理可得CD=BD,然后可得△CDB是等邊三角形,則有BD=BC=5cm,進(jìn)而根據(jù)勾股定理可求解.【詳解】解:連接CD,如圖所示:∵點(diǎn)D是AB的中點(diǎn),,,∴,∵,∴,在Rt△ACB中,由勾股定理可得;故選D.【點(diǎn)睛】本題主要考查圓的基本性質(zhì)、直角三角形斜邊中線定理及勾股定理,熟練掌握?qǐng)A的基本性質(zhì)、直角三角形斜邊中線定理及勾股定理是解題的關(guān)鍵.4、D【分析】先畫樹狀圖得到所有的等可能性的結(jié)果數(shù),然后找到小張從不同的出入口進(jìn)出的結(jié)果數(shù),最后根據(jù)概率公式求解即可.【詳解】解:列樹狀圖如下所示:由樹狀圖可知一共有8種等可能性的結(jié)果數(shù),其中小張從不同的出入口進(jìn)出的結(jié)果數(shù)有6種,∴P小張從不同的出入口進(jìn)出的結(jié)果數(shù),故選D.【點(diǎn)睛】本題主要考查了用列表法或樹狀圖法求解概率,解題的關(guān)鍵在于能夠熟練掌握用列表法或樹狀圖法求解概率.5、C【分析】細(xì)心觀察圖中幾何體擺放的位置,根據(jù)左視圖是從左面看到的圖象判定則可.【詳解】解:從左邊看,是左邊3個(gè)正方形,右邊一個(gè)正方形.故選:C.【點(diǎn)睛】本題考查了三視圖的知識(shí),左視圖是從物體的左面看得到的視圖.6、B【分析】由切線的性質(zhì)可推出,.再根據(jù)直角三角形全等的判定條件“HL”,即可證明,即得出.【詳解】∵PA,PB是⊙O的切線,A,B為切點(diǎn),∴,,∴在和中,,∴,∴.故選:B【點(diǎn)睛】本題考查切線的性質(zhì),三角形全等的判定和性質(zhì).熟練掌握切線的性質(zhì)是解答本題的關(guān)鍵.7、A【詳解】解:A、既是軸對(duì)稱圖形又是中心對(duì)稱圖形,此項(xiàng)符合題意;B、是中心對(duì)稱圖形,不是軸對(duì)稱圖形,此項(xiàng)不符題意;C、是軸對(duì)稱圖形,不是中心對(duì)稱圖形,此項(xiàng)不符題意;D、是軸對(duì)稱圖形,不是中心對(duì)稱圖形,此項(xiàng)不符題意;故選:A.【點(diǎn)睛】本題考查了中心對(duì)稱圖形和軸對(duì)稱圖形,熟記中心對(duì)稱圖形的定義(在平面內(nèi),把一個(gè)圖形繞某點(diǎn)旋轉(zhuǎn),如果旋轉(zhuǎn)后的圖形與另一個(gè)圖形重合,那么這兩個(gè)圖形互為中心對(duì)稱圖形)和軸對(duì)稱圖形的定義(如果一個(gè)圖形沿一條直線折疊,直線兩旁的部分能夠完全重合,那么這個(gè)圖形叫做軸對(duì)稱圖形)是解題關(guān)鍵.8、B【分析】根據(jù)隨機(jī)擲一枚質(zhì)地均勻的硬幣三次,可以分別假設(shè)出三次情況,畫出樹狀圖即可.【詳解】解:隨機(jī)擲一枚質(zhì)地均勻的硬幣三次,根據(jù)樹狀圖可知至少有兩次正面朝上的事件次數(shù)為:4,總的情況為8次,故至少有兩次正面朝上的事件概率是:.故選:B.【點(diǎn)睛】本題主要考查了樹狀圖法求概率,解題的關(guān)鍵是根據(jù)題意畫出樹狀圖.二、填空題1、20【分析】先利用旋轉(zhuǎn)的性質(zhì)得到∠ADC=∠D=90°,∠DAD′=α,再利用四邊形內(nèi)角和計(jì)算出∠BAD‘=70°,然后利用互余計(jì)算出∠DAD′,從而得到α的值.【詳解】∵矩形ABCD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到矩形A′B′C′D′的位置,∴∠ADC=∠D=90°,∠DAD′=α,∵∠ABC=90°,∴∠BAD’=180°-∠1=180°-110°=70°,∴∠DAD′=90°-70°=20°,即α=20°.故答案為20.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì):對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.2、(3,4)【分析】關(guān)于原點(diǎn)對(duì)稱的點(diǎn),橫坐標(biāo)與縱坐標(biāo)都互為相反數(shù).【詳解】:由題意,得點(diǎn)(-3,-4)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)是(3,4),故答案為:(3,4).【點(diǎn)睛】本題考查了關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo),解決本題的關(guān)鍵是掌握好對(duì)稱點(diǎn)的坐標(biāo)規(guī)律:關(guān)于原點(diǎn)對(duì)稱的點(diǎn),橫坐標(biāo)與縱坐標(biāo)都互為相反數(shù).3、2【分析】取AC中點(diǎn)O,由勾股定理的逆定理可知∠ADC=90°,則點(diǎn)D在以O(shè)為圓心,以AC為直徑的圓上,作△ADC外接圓,連接BO,交圓O于,則長(zhǎng)的最小值即為,由此求解即可.【詳解】解:如圖所示,取AC中點(diǎn)O,∵,即,∴∠ADC=90°,∴點(diǎn)D在以O(shè)為圓心,以AC為直徑的圓上,作△ADC外接圓,連接BO,交圓O于,則長(zhǎng)的最小值即為,∵,,∠ACB=90°,∴,∴,∴,∴,故答案為:2.【點(diǎn)睛】本題主要考查了一點(diǎn)到圓上一點(diǎn)的最短距離,勾股定理的逆定理,勾股定理,解題的關(guān)鍵在于確定點(diǎn)D的運(yùn)動(dòng)軌跡.4、4或12或【分析】分三種情況討論:當(dāng)AB=BC時(shí)、當(dāng)AB=AC時(shí)、當(dāng)AC=BC時(shí),根據(jù)垂徑定理和勾股定理即可求解.【詳解】解:如圖1,當(dāng)AB=BC時(shí),BC=2,故BC2=4;如圖2,當(dāng)AB=AC=2時(shí),過A作AD⊥BC于D,連接OC,∴BD=CD,設(shè)OD=x,則在Rt△ACD中,AC2=CD2+AD2,在Rt△OCD中,OC2=CD2+OD2,∴CD2=AC2-AD2=OC2-OD2即22-(2-x)2=22-x2解得x=1∴CD=∴BC=2∴BC2=12;如圖3,當(dāng)AC=BC時(shí),則C在AB的垂直平分線上,∴CD經(jīng)過圓心O,AD=BD==1,∵OA=2,∴OD=,∴CD=CO+OD=2+,CD=C'O-OD=2-,∴BC2=CD2+BD2=(2+)2+12=,BC2=CD2+BD2=(2-)2+12=,綜上,BC2為4或12或故答案為:4或12或.【點(diǎn)睛】本題考查了垂徑定理,等腰三角形的性質(zhì),勾股定理的應(yīng)用,熟練掌握性質(zhì)定理是解題的關(guān)鍵.5、##【分析】延長(zhǎng)AG交CD于M,如圖1,可證△ADG≌△DGC可得∠GCD=∠DAM,再證△ADM≌△DFC可得DF=DM=AE,可證△ABE≌△ADM,可得H是以AB為直徑的圓上一點(diǎn),取AB中點(diǎn)O,連接OD,OH,根據(jù)三角形的三邊關(guān)系可得不等式,可解得DH長(zhǎng)度的最小值.【詳解】解:延長(zhǎng)AG交CD于M,如圖1,∵ABCD是正方形,∴AD=CD=AB,∠BAD=∠ADC=90°,∠ADB=∠BDC,∵AD=CD,∠ADB=∠BDC,DG=DG,∴△ADG≌△DGC,∴∠DAM=∠DCF且AD=CD,∠ADC=∠ADC,∴△ADM≌△CDF,∴FD=DM且AE=DF,∴AE=DM且AB=AD,∠ADM=∠BAD=90°,∴△ABE≌△DAM,∴∠DAM=∠ABE,∵∠DAM+∠BAM=90°,∴∠BAM+∠ABE=90°,即∠AHB=90°,∴點(diǎn)H是以AB為直徑的圓上一點(diǎn).如圖2,取AB中點(diǎn)O,連接OD,OH,∵AB=AD=2,O是AB中點(diǎn),∴AO=1=OH,在Rt△AOD中,OD=,∵DH≥OD-OH,∴DH≥-1,∴DH的最小值為-1,故答案為:-1.【點(diǎn)睛】本題考查正方形的性質(zhì),全等三角形的判定和性質(zhì),勾股定理,關(guān)鍵是證點(diǎn)H是以AB為直徑的圓上一點(diǎn).6、【分析】由題意可知,共有12個(gè)球,取到每個(gè)球的機(jī)會(huì)均等,根據(jù)概率公式解題.【詳解】解:P(紅球)=故答案為:【點(diǎn)睛】本題考查簡(jiǎn)單事件的概率,是基礎(chǔ)考點(diǎn),掌握相關(guān)知識(shí)是解題關(guān)鍵.7、【分析】如圖,根據(jù)四邊形CDEF為正方形,可得∠D=90°,CD=DE,從而得到CE是直徑,∠ECD=45°,然后利用勾股定理,即可求解.【詳解】解:如圖,∵四邊形CDEF為正方形,∴∠D=90°,CD=DE,∴CE是直徑,∠ECD=45°,根據(jù)題意得:AB=2.5,,∴,∴,即此斛底面的正方形的邊長(zhǎng)為尺.故答案為:【點(diǎn)睛】本題主要考查了圓內(nèi)接四邊形,勾股定理,熟練掌握?qǐng)A內(nèi)接四邊形的性質(zhì),勾股定理是解題的關(guān)鍵.三、解答題1、(1)相切,見解析(2)【分析】(1)連接OC、OD、AC,OC交AF于點(diǎn)M,根據(jù)AG=CG,CD⊥AB,可得,從而OC⊥AF,再由∠AFB=90°,可得CH∥AF,即可求證;(2)先證明四邊形CMFH為矩形,可得OC⊥AF,CM=HF=2,從而得到AM=FM,進(jìn)而得到OM=BF=2,可得到CM=OM,進(jìn)而得到OC=4,AM垂直平分OC,可證得△AOC為等邊三角形,即可求解.(1)解:CH與⊙O相切.理由如下:如圖,連接OC、OD、AC,OC交AF于點(diǎn)M,∵AG=CG,∴∠ACG=∠CAG,∴,∵CD⊥AB,∴,∴,∴OC⊥AF,∵AB為直徑,∴∠AFB=90°,∵BH⊥CH,∴CH∥AF,∴OC⊥CH,∵OC為半徑,∴CH為⊙O的切線;(2)解:由(1)得:BH⊥CH,OC⊥CH,∴OC∥BH,∵CH∥AF,∴四邊形CMFH為平行四邊形,∵OC⊥CH,∴∠OCH=90°,∴四邊形CMFH為矩形,∴OC⊥AF,CM=HF=2,∴AM=FM,∵點(diǎn)O為AB的中點(diǎn),∴OM=BF=2,∴CM=OM,∴OC=4,AM垂直平分OC,∴AC=AO,而AO=OC,∴AC=OC=OA,,∴△AOC為等邊三角形,∴∠AOC=60°,∵,∴∠AOD=∠AOC=60°,∴∠COD=120°,∴弧CD的長(zhǎng)度為.【點(diǎn)睛】本題主要考查了圓的基本性質(zhì),垂徑定理,切線的判定,等邊三角形的判定和性質(zhì),熟練掌握相關(guān)知識(shí)點(diǎn)是解題的關(guān)鍵.2、【分析】用A、B、C、D分別表示化學(xué)、生物、地理、政治,然后畫出樹狀圖求解.【詳解】解:用A、B、C、D分別表示化學(xué)、生物、地理、政治,畫樹狀圖如下,,由樹狀圖可知,共有12種等可能發(fā)生的情況,其中符合條件的情況有2種,所以該同學(xué)抽出的兩張卡片是“化學(xué)、政治”的概率=.【點(diǎn)睛】本題考查了樹狀圖法或列表法求概率,解題的關(guān)鍵是正確畫出樹狀圖或表格,然后用符合條件的情況數(shù)m除以所有等可能發(fā)生的情況數(shù)n即可,即.3、(1)作圖見解析(2)是的切線,理由見解析【分析】(1)如圖1所示,以點(diǎn)為圓心,大于為半徑畫弧,交于點(diǎn),交于點(diǎn);分別以點(diǎn)為圓心,大于的長(zhǎng)度為半徑畫弧,交點(diǎn)為,連接即為角平分線,與的交點(diǎn)即為點(diǎn).(2)如圖2所示,連接,由題意可知,,,,;在四邊形中,,,求出,得出,由于是半徑,故有是的切線.(1)解:如圖1所示(2)解:是的切線.如圖2所示,連接由題意可知,,,,在四邊形中∵∴∴又∵是半徑∴是的切線【點(diǎn)睛】本題考查了角平分線的畫法與性質(zhì),切線的判定,圓周角等知識(shí)點(diǎn).解題的關(guān)鍵在于將知識(shí)綜合靈活運(yùn)用.4、(1);(2);(3)【分析】(1)如圖,過作垂足分別為連接證明四邊形為正方形,可得證明可得答案;(2)先求解再結(jié)合(1)的結(jié)論可得答案;(3)如圖,連接先求解再證明再求解可得再利用弧長(zhǎng)公式計(jì)算即可.【詳解】解:(1)如圖,過作垂足分別為連接四邊形為矩形,由勾股定理可得:而四邊形為正方形,而(2)如圖,過作垂足分別為由(1)得:四邊形為正方形,OA=2,∠OAB=15°,(3)如圖,連接【點(diǎn)睛】本題考查的是勾股定理的應(yīng)用,等腰三角形的判定與性質(zhì),矩形,正方形的判定與性質(zhì),垂徑定理的應(yīng)用,弧長(zhǎng)的計(jì)算,掌握以上知識(shí)并靈活運(yùn)用是解本題的關(guān)鍵.5、(1)見解析;(2)3【分析】(1)根據(jù)∠D=∠B,∠BCO=∠B,代換證明;(2)根據(jù)垂徑定理,得CE=,,利用勾股定理計(jì)算即可.【

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論