難點解析-人教版8年級數(shù)學(xué)上冊《全等三角形》單元測試試卷(附答案詳解)_第1頁
難點解析-人教版8年級數(shù)學(xué)上冊《全等三角形》單元測試試卷(附答案詳解)_第2頁
難點解析-人教版8年級數(shù)學(xué)上冊《全等三角形》單元測試試卷(附答案詳解)_第3頁
難點解析-人教版8年級數(shù)學(xué)上冊《全等三角形》單元測試試卷(附答案詳解)_第4頁
難點解析-人教版8年級數(shù)學(xué)上冊《全等三角形》單元測試試卷(附答案詳解)_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

人教版8年級數(shù)學(xué)上冊《全等三角形》單元測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,△ABC是邊長為4的等邊三角形,點P在AB上,過點P作PE⊥AC,垂足為E,延長BC至點Q,使CQ=PA,連接PQ交AC于點D,則DE的長為()A.1 B.1.8 C.2 D.2.52、如圖,在中,,,,平分交于D點,E,F(xiàn)分別是,上的動點,則的最小值為(

)A. B. C.3 D.3、如圖,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,點E是△ABC的內(nèi)心,過點E作EF∥AB交AC于點F,則EF的長為()A. B. C. D.4、如圖,在中,,觀察圖中尺規(guī)作圖的痕跡,可知的度數(shù)為()A. B. C. D.5、如圖,已知,那么添加下列一個條件后,仍無法判定的是(

)A. B.C. D.第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,△ABC中,AB=BC,∠ABC=90°,F(xiàn)為AB延長線上一點,點E在BC上,且AE=CF,若∠BAE=25°,則∠ACF=__________度.2、如圖所示的網(wǎng)格是正方形網(wǎng)格,點A,B,C,D均落在格點上,則∠BAD+∠ADC=_____.3、如圖,在中,按以下步驟作圖:①以點B為圓心,任意長為半徑作弧,分別交AB、BC于點D、E.②分別以點D、E為圓心,大于的同樣長為半徑作弧,兩弧交于點F.③作射線BF交AC于點G.如果,,的面積為18,則的面積為________.4、如圖,已知在四邊形中,厘米,厘米,厘米,,點為線段的中點.如果點在線段上以3厘米/秒的速度由點向點運動,同時,點在線段上由點向點運動.當(dāng)點的運動速度為___________厘米/秒時,能夠使與以,,三點所構(gòu)成的三角形全等.5、如圖,若△ABC≌△ADE,且∠1=35°,則∠2=_____.三、解答題(5小題,每小題10分,共計50分)1、如圖,在中,,點D在線段BC上運動(D不與B、C重合),連接AD,作,DE交線段AC于E.(1)點D從B向C運動時,逐漸變__________(填“大”或“小”),但與的度數(shù)和始終是__________度.(2)當(dāng)DC的長度是多少時,,并說明理由.2、中,,,過點作,連接,,為平面內(nèi)一動點.(1)如圖1,點在上,連接,,過點作于點,為中點,連接并延長,交于點.①若,,則;②求證:.(2)如圖2,連接,,過點作于點,且滿足,連接,,過點作于點,若,,,請求出線段的取值范圍.3、【問題解決】(1)已知△ABC中,AB=AC,D,A,E三點都在直線l上,且有∠BDA=∠AEC=∠BAC.如圖①,當(dāng)∠BAC=90°時,線段DE,BD,CE的數(shù)量關(guān)系為:______________;【類比探究】(2)如圖②,在(1)的條件下,當(dāng)0°<∠BAC<180°時,線段DE,BD,CE的數(shù)量關(guān)系是否變化,若不變,請證明:若變化,寫出它們的關(guān)系式;【拓展應(yīng)用】(3)如圖③,AC=BC,∠ACB=90°,點C的坐標(biāo)為(-2,0),點B的坐標(biāo)為(1,2),請求出點A的坐標(biāo).4、如圖,在四邊形ABCD中,已知BD平分∠ABC,∠BAD+∠C=180°,求證:AD=CD.5、如圖,在五邊形ABCDE中,AB=CD,∠ABC=∠BCD,BE,CE分別是∠ABC,∠BCD的角平分線.(1)求證:△ABE≌△DCE;(2)當(dāng)∠A=80°,∠ABC=140°,時,∠AED=_________度(直接填空).-參考答案-一、單選題1、C【解析】【分析】過作的平行線交于,通過證明≌,得,再由是等邊三角形,即可得出.【詳解】解:過作的平行線交于,,是等邊三角形,,,是等邊三角形,,∵CQ=PA,∴在中和中,,≌,,于,是等邊三角形,,,,,,故選:C.【考點】本題主要考查了等邊三角形的判定與性質(zhì),全等三角形的判定與性質(zhì),作輔助線構(gòu)造全等三角形是解題的關(guān)鍵.2、D【解析】【分析】利用角平分線構(gòu)造全等,使兩線段可以合二為一,則EC+EF的最小值即為點C到AB的垂線段長度.【詳解】在AB上取一點G,使AG=AF.∵在Rt△ABC中,∠ACB=90°,AC=3,BC=4∴AB=5,∵∠CAD=∠BAD,AE=AE,∴△AEF≌△AEG(SAS)∴FE=GE,∴要求CE+EF的最小值即為求CE+EG的最小值,故當(dāng)C、E、G三點共線時,符合要求,此時,作CH⊥AB于H點,則CH的長即為CE+EG的最小值,此時,,∴CH==,即:CE+EF的最小值為,故選:D.【考點】本題考查了角平分線構(gòu)造全等以及線段和差極值問題,靈活構(gòu)造輔助線是解題關(guān)鍵.3、A【解析】【分析】延長FE交BC于點D,作EG⊥AB、作EH⊥AC,由EF∥AC可證四邊形BDEG是矩形,由角平分線可得ED=EH=EG、∠GAE=∠HAE,從而知四邊形BDEG是正方形,再證△GAE≌△HAE、△DCE≌△HCE得AG=AH、CD=CH,設(shè)BD=BG=x,則AG=AH=6-x、CD=CH=8-x,由AC=10可得x=2,即BD=DE=2、AG=4,再證△CDF∽△CBA,可得,據(jù)此得出EF=DF-DE=.【詳解】解:如圖,延長FE交BC于點D,作EG⊥AB于點G,作EH⊥AC于點H,∵EF∥AB、∠ABC=90°,∴FD⊥AB,∵EG⊥BC,∴四邊形BDEG是矩形,∵AE平分∠BAC、CE平分∠ACB,∴ED=EH=EG,∠GAE=∠HAE,∴四邊形BDEG是正方形,在△GAE和△HAE中,∵,∴△GAE≌△HAE(AAS),∴AG=AH,同理△DCE≌△HCE,∴CD=CH,設(shè)BD=BG=x,則AG=AH=6﹣x、CD=CH=8﹣x,∵AC===10,∴6﹣x+8﹣x=10,解得:x=2,∴BD=DE=BG=2,AG=4,∵DF∥AB,∴△DCF∽△BCA,∴,即,解得:,則EF=DF﹣DE=,故選A【考點】本題主要考查相似三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)及正方形的判定與性質(zhì),熟練掌握角平分線的性質(zhì)和正方形的判定與性質(zhì)、相似三角形的判定與性質(zhì)是解題的關(guān)鍵.4、C【解析】【分析】利用等腰三角形的性質(zhì)和基本作圖得到,則平分,利用和三角形內(nèi)角和計算出,從而得到的度數(shù).【詳解】由作法得,∵,∴平分,,∵,∴.故選C.【考點】本題考查了作圖-基本作圖:熟練掌握基本作圖(作一條線段等于已知線段;作一個角等于已知角;作已知線段的垂直平分線;作已知角的角平分線;過一點作已知直線的垂線).也考查了等腰三角形的性質(zhì).5、C【解析】【分析】根據(jù)三角形全等的判定方法求解即可.【詳解】解:A、∵,,,∴,選項不符合題意;B、∵,,,∴,選項不符合題意;C、∵由,,,∴無法判定,選項符合題意;D、∵,,,∴,選項不符合題意.故選:C.【考點】此題考查了三角形全等的判定方法,解題的關(guān)鍵是熟練掌握三角形全等的判定方法.判定三角形全等的方法有:SSS,SAS,AAS,ASA,HL(直角三角形).二、填空題1、70【解析】【分析】先利用HL證明△ABE≌△CBF,可證∠BCF=∠BAE=25°,即可求出∠ACF=45°+25°=70°.【詳解】∵∠ABC=90°,AB=AC,∴∠CBF=180°-∠ABC=90°,∠ACB=45°,在Rt△ABE和Rt△CBF中,,∴Rt△ABE≌Rt△CBF(HL),∴∠BCF=∠BAE=25°,∴∠ACF=∠ACB+∠BCF=45°+25°=70°,故答案為70.【考點】本題考查了等腰直角三角形的性質(zhì),全等三角形的判定與性質(zhì),熟練掌握全等三角形的判定與性質(zhì)是解題的關(guān)鍵.2、或度【解析】【分析】證明△DCE≌△ABD(SAS),得∠CDE=∠DAB,根據(jù)同角的余角相等和三角形的內(nèi)角和可得結(jié)論.【詳解】解:如圖,設(shè)AB與CD相交于點F,在△DCE和△ABD中,∵,∴△DCE≌△ABD(SAS),∴∠CDE=∠DAB,∵∠CDE+∠ADC=∠ADC+∠DAB=90°,∴∠AFD=90°,∴∠BAC+∠ACD=90°,故答案為:90度.【考點】本題網(wǎng)格型問題,考查了三角形全等的性質(zhì)和判定及直角三角形各角的關(guān)系,本題構(gòu)建全等三角形是關(guān)鍵.3、27【解析】【分析】由作圖步驟可知BG為∠ABC的角平分線,過G作GH⊥BC,GM⊥AB,可得GM=GH,然后再結(jié)合已知條件和三角形的面積公式求得GH,最后運用三角形的面積公式解答即可.【詳解】解:由作圖作法可知:BG為∠ABC的角平分線過G作GH⊥BC,GM⊥AB∴GM=GH∴,故答案為27.【考點】本題考查了角平分線定理和三角形面積公式的應(yīng)用,通過作法發(fā)現(xiàn)角平分線并靈活應(yīng)用角平分線定理是解答本題的關(guān)鍵.4、3或【解析】【分析】分兩種情況討論,依據(jù)全等三角形的對應(yīng)邊相等,即可得到點Q的運動速度.【詳解】解:設(shè)點P運動的時間為t秒,則BP=3t,CP=8﹣3t,∵∠B=∠C,∴①當(dāng)BE=CP=6,BP=CQ時,△BPE與△CQP全等,此時,6=8﹣3t,解得t,∴BP=CQ=2,此時,點Q的運動速度為23厘米/秒;②當(dāng)BE=CQ=6,BP=CP時,△BPE與△CQP全等,此時,3t=8﹣3t,解得t,∴點Q的運動速度為6厘米/秒;故答案為:3或.【考點】本題考查了全等三角形的性質(zhì)和判定的應(yīng)用,解題的關(guān)鍵是掌握全等三角形的對應(yīng)邊相等.5、35°.【解析】【分析】根據(jù)全等的性質(zhì)可得:∠EAD=∠CAB,再根據(jù)等式的基本性質(zhì)可得∠1=∠2=35°.【詳解】解:∵△ABC≌△ADE,∴∠EAD=∠CAB,∴∠EAD-∠CAD=∠CAB-∠CAD,∴∠2=∠1=35°.故答案為35°.【考點】此題考查的是全等三角形的性質(zhì),掌握全等三角形的對應(yīng)角相等是解決此題的關(guān)鍵.三、解答題1、(1)小;140(2)當(dāng)DC=2時,△ABD≌△DCE,理由見解析【解析】【分析】(1)利用三角形的內(nèi)角和即可得出結(jié)論;(2)當(dāng)DC=2時,利用∠DEC+∠EDC=140°,∠ADB+∠EDC=140°,求出∠ADB=∠DEC,再利用AB=DC=2,即可得出△ABD≌△DCE.(1)在△ABD中,∠B+∠BAD+∠ADB=180°,設(shè)∠BAD=x°,∠BDA=y°,∴40°+x+y=180°,∴y=140-x(0<x<100),當(dāng)點D從點B向C運動時,x增大,∴y減小,+=180°-故答案為:小,140;(2)當(dāng)DC=2時,△ABD≌△DCE,理由:∵∠C=40°,∴∠DEC+∠EDC=140°,又∵∠ADE=40°,∴∠ADB+∠EDC=140°,∴∠ADB=∠DEC,又∵AB=DC=2,在△ABD和△DCE中,∴△ABD≌△DCE(AAS);【考點】此題主要考查學(xué)生對等腰三角形的判定與性質(zhì),全等三角形的判定與性質(zhì),三角形外角的性質(zhì)等知識點的理解和掌握,三角形的內(nèi)角和公式,解本題的關(guān)鍵是分類討論.2、(1)①

4,②見解析;(2)6≤≤12【解析】【分析】(1)①根據(jù)三角形的面積公式計算即可;②先根據(jù)AAS證得△ABF≌△BCM,得出BF=MC,AF=BM,再利用AAS證得△AFD≌△CHD,得出AF=CH,即可得出結(jié)論;(2)連接CM,先利用SAS得出△≌△CBM,得出,再根據(jù)等底同高的三角形的面積相等得出,再利用三角形的面積公式得出EC的長,從而利用三角形的三邊關(guān)系得出的取值范圍;【詳解】解:(1)①∵,,,∴,②∵,,∴∠AFB=∠BMC=∠FMC=90°,∴∠ABF+∠BAF=90°,∵,∴∠ABF+∠CBM=90°,∴∠BAF=∠CBM,∵,∴△ABF≌△BCM,∴BF=MC,AF=BM,∵∠AFB=∠FMC=90°,∴AF//CM,∴∠FAC=∠HCD,∵為中點,∴AD=CD,∵∠FDA=∠HDC,∴△AFD≌△CHD,∴AF=CH,∴BM=CH,∵BF=CM∴BF-BM=CM-CH∴.(2)連接CM,∵,,∴∠ABC=∠=90°,∴∠BA=∠CBM,∵,,∴△≌△CBM,∴,∵,,∴∠ABC+∠BAE=180°,∴AE//BC,∴,∵,,∴,∴EC=9在△ECM中,,則9-3≤CM≤9+3,∴6≤CM≤12,∴6≤≤12,【考點】本題考查了全等三角形的判定和性質(zhì)以及三角形的三邊關(guān)系,靈活運用全等三角形的判定是解題的關(guān)鍵.3、(1)DE=BD+CE;(2)DE=BD+CE的數(shù)量關(guān)系不變,理由見解析;(3)(﹣4,3)【解析】【分析】(1)證明△ABD≌△CAE,根據(jù)全等三角形的性質(zhì)得到AD=CE,BD=AE,結(jié)合圖形證明結(jié)論;(2)根據(jù)三角形的外角性質(zhì)得到∠ABD=∠CAE,證明△ABD≌△CAE,根據(jù)全等三角形的性質(zhì)解答;(3)過點A作AM⊥x軸于點M,過點B作BN⊥x軸于點N,根據(jù)(1)的結(jié)論得到△ACM≌△BCN,根據(jù)全等三角形的性質(zhì)解答即可.【詳解】解:(1)∵∠BAC=90°,∴∠BDA=∠AEC=∠BAC=90°,∴∠ABD+∠BAD=90°,∠CAE+∠BAD=90°,∴∠ABD=∠CAE,在△ABD和△CAE中,,∴△ABD≌△CAE(AAS),∴AD=CE,BD=AE,∴DE=AD+AE=BD+CE,故答案為:DE=BD+CE;(2)DE=BD+CE的數(shù)量關(guān)系不變,理由如下:∵∠BAE是△ABD的一個外角,∴∠BAE=∠ADB+∠ABD,∵∠BDA=∠BAC,∴∠ABD=∠CAE,在△ABD和△CAE中,,∴△ABD≌△CAE(AAS),∴AD=CE,BD=AE,∴DE=AD+AE=BD+CE;(3)過點A作AM⊥x軸于點M,過點B作BN⊥x軸于點N,∵點C的坐標(biāo)為(﹣2,0),點B的坐標(biāo)為(1,2),∴OC=2,ON=1,BN=2,∴CN=3,由(1)可知,△ACM≌△CBN,∴AM=CN=3,CM=BN=2,∴OM=OC+CM=4,∴點A的坐標(biāo)為(﹣4,3).【考點】本題考查的是三角形全等的判定和性質(zhì)、坐標(biāo)與圖形性質(zhì),掌握全等三角形的判定定理和性質(zhì)定理是解題的關(guān)鍵.4、見解析【解析】【詳解】試題分析:在邊BC上截取BE=BA,連接DE,根據(jù)SAS證△

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論