




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
人教版8年級數(shù)學上冊《全等三角形》專題測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,在△ABC中,AC=5,AB=7,AD平分∠BAC,DE⊥AC,DE=2,則△ABC的面積為()A.14 B.12 C.10 D.72、已知:如圖,∠1=∠2,則不一定能使△ABD≌△ACD的條件是()A.AB=AC B.BD=CD C.∠B=∠C D.∠BDA=∠CDA3、如圖,已知,,,則的長為(
)A.7 B.3.5 C.3 D.24、如圖,△ABC的三邊AB,BC,CA長分別是20,30,40,其三條角平分線將△ABC分為三個三角形,則S△ABO:S△BCO:S△CAO等于()A.1:1:1 B.1:2:3 C.2:3:4 D.3:4:55、如圖,點O是△ABC中∠BCA,∠ABC的平分線的交點,已知△ABC的面積是12,周長是8,則點O到邊BC的距離是(
)A.1 B.2C.3 D.4第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,平分,.填空:因為平分,所以________.從而________.因此________.2、如圖,在中,,F(xiàn)是高AD和BE的交點,cm,則線段BF的長度為______.3、如圖,在和中,,,直線交于點M,連接.以下結論:①;②;③;④平分.其中正確的是___________(填序號).4、如圖,在△ABC中,∠ACB的平分線交AB于點D,
DE⊥AC于點E,F為BC上一點,若DF=AD,△ACD與△CDF的面積分別為10和4,則△AED的面積為______5、如圖所示的網(wǎng)格是正方形網(wǎng)格,點A,B,C,D均落在格點上,則∠BAD+∠ADC=_____.三、解答題(5小題,每小題10分,共計50分)1、(1)如圖①,和都是等邊三角形,且點,,在一條直線上,連結和,直線,相交于點.則線段與的數(shù)量關系為_____________.與相交構成的銳角的度數(shù)為___________.(2)如圖②,點,,不在同一條直線上,其它條件不變,上述的結論是否還成立.(3)應用:如圖③,點,,不在同一條直線上,其它條件依然不變,此時恰好有.設直線交于點,請把圖形補全.若,則___________.2、已知:如圖,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=50°.(1)求證:AC=BD;(2)求∠APB的度數(shù).3、如圖,已知,,,求證:.4、在△ABC中,∠ACB=90°,AC=BC,且AD⊥MN于D,BE⊥MN于E.(1)直線MN繞點C旋轉到圖(1)的位置時,求證:DE=AD+BE;(2)當直線MN繞點C旋轉到圖(2)的位置時,試問DE、AD、BE具有怎樣的等量關系?請直接寫出這個等量關系(不寫證明過程);(3)當直線MN繞點C旋轉到圖(3)的位置時,試問DE、AD、BE具有怎樣的等量關系?請直接寫出這個等量關系(不寫證明過程).5、如圖,△ABC中,∠B=2∠C,AE平分∠BAC.(1)若AD⊥BC于D,∠C=35°,求∠DAE的大?。唬?)若EF⊥AE交AC于F,求證:∠C=2∠FEC.-參考答案-一、單選題1、B【解析】【分析】過點D作DF⊥AB于點F,利用角平分線的性質(zhì)得出,將的面積表示為面積之和,分別以AB為底,DF為高,AC為底,DE為高,計算面積即可求得.【詳解】過點D作DF⊥AB于點F,∵AD平分∠BAC,DE⊥AC,DF⊥AB,∴,∴,故選:B.【考點】本題考查角平分線的性質(zhì),角平分線上的點到角兩邊的距離相等,熟記性質(zhì)作出輔助線是解題關鍵.2、B【解析】【分析】利用全等三角形判定定理ASA,SAS,AAS對各個選項逐一分析即可得出答案.【詳解】解:A、∵∠1=∠2,AD為公共邊,若AB=AC,則△ABD≌△ACD(SAS);故A不符合題意;B、∵∠1=∠2,AD為公共邊,若BD=CD,不符合全等三角形判定定理,不能判定△ABD≌△ACD;故B符合題意;C、∵∠1=∠2,AD為公共邊,若∠B=∠C,則△ABD≌△ACD(AAS);故C不符合題意;D、∵∠1=∠2,AD為公共邊,若∠BDA=∠CDA,則△ABD≌△ACD(ASA);故D不符合題意.故選B.3、C【解析】【分析】利用全等三角形的性質(zhì)求解即可.【詳解】解:∵△ABC≌△DAE,∴AC=DE=5,AE=BC=2,∴CE=AC-AE=3,故選C.【考點】本題主要考查了全等三角形的性質(zhì),熟知全等三角形對應邊相等是解題的關鍵.4、C【解析】【分析】過點作于點,作于點,作于點,先根據(jù)角平分線的性質(zhì)可得,再根據(jù)三角形的面積公式即可得.【詳解】解:如圖,過點作于點,作于點,作于點,是的三條角平分線,,,故選:C.【考點】本題考查了角平分線的性質(zhì),熟練掌握角平分線的性質(zhì)是解題關鍵.5、C【解析】【分析】過點O作OE⊥AB于E,OF⊥AC于F,連接OA,根據(jù)角平分線的性質(zhì)得:OE=OF=OD然后根據(jù)△ABC的面積是12,周長是8,即可得出點O到邊BC的距離.【詳解】如圖,過點O作OE⊥AB于E,OF⊥AC于F,連接OA.∵點O是∠ABC,∠ACB平分線的交點,∴OE=OD,OF=OD,即OE=OF=OD∴S△ABC=S△ABO+S△BCO+S△ACO=AB·OE+BC·OD+AC·OF=×OD×(AB+BC+AC)=×OD×8=12OD=3故選:C【考點】此題主要考查了角平分線的性質(zhì)以及三角形面積求法,角的平分線上的點到角的兩邊的距離相等,正確表示出三角形面積是解題關鍵.二、填空題1、
【解析】【分析】由AC平分∠DAB,∠1=∠2,可得出∠CAB=∠2,由內(nèi)錯角相等可以得出兩直線平行.【詳解】解:∵AC平分∠DAB,∴∠1=∠CAB.又∵∠1=∠2,∴∠CAB=∠2,∴ABDC(內(nèi)錯角相等,兩直線平行).故答案為:∠CAB,∠CAB,DC.【考點】本題考查了平行線的判定定理以及角平分線的定義,解題的關鍵是找出∠CAB=∠2.解決該類題型只需牢牢掌握平行線的判定定理即可.2、8cm【解析】【分析】先求,推導出,再求出,,根據(jù)ASA證明,即可得出答案.【詳解】∵,,∴,∴,∴,∵,,∴,在△BFD和△ACD中,∴(ASA),∴cm故答案為:8cm【考點】本題考查了全等三角形的性質(zhì)和判定,全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的對應邊相等.3、①②③【解析】【分析】由SAS證明△AOC≌△BOD得出∠OAC=∠OBD,AC=BD,①②正確;由全等三角形的性質(zhì)得出∠OAC=∠OBD,由三角形的外角性質(zhì)得:∠AMB+∠OBD=∠OAC+∠AOB,得出∠AMB=∠AOB=α,可得③正確;作OG⊥AM于G,OH⊥DM于H,利用全等三角形的對應高相等得出OG=OH,由角平分線的判定方法得∠AMO=∠DMO,假設OM平分∠BOC,則可求出∠AOM=∠DOM,由全等三角形的判定定理可得△AMO≌△DMO,得AO=OD,而OC=OD,所以OA=OC,而OA<OC,故④錯誤;即可得出結論.【詳解】解:∵∠AOB=∠COD=α,∴∠AOB+∠BOC=∠COD+∠BOC,即∠AOC=∠BOD,在△AOC和△BOD中,,∴△AOC≌△BOD(SAS),∴∠OAC=∠OBD,AC=BD,故①②正確;由三角形的內(nèi)角和定理得:∠AMB+∠OBD=∠OAC+∠AOB,∵∠OAC=∠OBD,∴∠AMB=∠AOB=α,,故③正確;作OG⊥AM于G,OH⊥DM于H,如圖所示,△AOC≌△BOD,∴結合全等三角形的對應高可得:OG=OH,∴MO平分∠AMD,∴∠AMO=∠DMO,假設OM平分∠BOC,則∠BOM=∠COM,∵∠AOB=∠COD,∴∠AOB+∠BOM=∠COD+∠COM,即∠AOM=∠DOM,在△AMO與△DMO中,,∴△AMO≌△DMO(ASA),∴OA=OD,∵OC=OD,∴OA=OC,而OA<OC,故④錯誤;正確的個數(shù)有3個;故答案為:①②③.【考點】本題屬于三角形的綜合題,是中考填空題的壓軸題,本題考查了全等三角形的判定與性質(zhì)、三角形的外角性質(zhì)、角平分線的判定等知識,證明三角形全等是解題的關鍵.4、3【解析】【分析】如圖(見解析),過點D作,根據(jù)角平分線的性質(zhì)可得,再利用三角形全等的判定定理得出,從而有,最后根據(jù)三角形面積的和差即可得出答案.【詳解】如圖,過點D作平分,又則解得故答案為:3.【考點】本題考查了角平分線的性質(zhì)、直角三角形全等的判定定理等知識點,通過作輔助線,構造兩個全等的三角形是解題關鍵.5、或度【解析】【分析】證明△DCE≌△ABD(SAS),得∠CDE=∠DAB,根據(jù)同角的余角相等和三角形的內(nèi)角和可得結論.【詳解】解:如圖,設AB與CD相交于點F,在△DCE和△ABD中,∵,∴△DCE≌△ABD(SAS),∴∠CDE=∠DAB,∵∠CDE+∠ADC=∠ADC+∠DAB=90°,∴∠AFD=90°,∴∠BAC+∠ACD=90°,故答案為:90度.【考點】本題網(wǎng)格型問題,考查了三角形全等的性質(zhì)和判定及直角三角形各角的關系,本題構建全等三角形是關鍵.三、解答題1、(1)相等,;(2)成立,證明見解析;(3)見解析,4.【解析】【分析】(1)證明△BCD≌△ACE,并運用三角形外角和定理和等邊三角形的性質(zhì)求解即可;(2)是第(1)問的變式,只是位置變化,結論保持不變;(3)根據(jù)∠AEC=30°,判定AE是等邊三角形CDE的高,運用前面的結論,把條件集中到一個含有30°角的直角三角形中求解即可.【詳解】(1)相等;
.理由如下:∵和都是等邊三角形,∴,,,∴,在和中,∴.∴,.又∵,∴.(2)成立;理由如下:證明:∵和都是等邊三角形,∴,,,∴,在和中,∴.∴,.又∵,∴.(3)補全圖形(如圖),∵△CDE是等邊三角形,∴∠DEC=60°,∵∠AEC=30°,∴∠AEC=∠AED,∴EQ⊥DQ,∴∠DQP=90°,根據(jù)(1)知,∠BDC=∠AEC=30°,∵PQ=2,∴DP=4.故答案為:4.【考點】本題是一道猜想證明題,以兩線段之間的大小關系為基礎,考查了等邊三角形的性質(zhì),三角形的全等,直角三角形的性質(zhì),證明兩個手拉手模型三角形全等是解題的關鍵.2、(1)見解析;(2)【解析】【分析】(1)通過證明,即可求證;(2)利用三角形外角的性質(zhì)可得,由(1)可得,從而得到,利用三角形內(nèi)角和的性質(zhì)即可求解.(1)證明:∵,∴,又∵OA=OB,OC=OD,∴,∴;(2)解:由(1)可得,由三角形外角的性質(zhì)可得∴,∴,【考點】此題考查了全等三角形的判定與性質(zhì),三角形內(nèi)角的性質(zhì)以及三角形外角的性質(zhì),解題的關鍵是熟練掌握相關基本性質(zhì).3、證明見解析.【解析】【分析】利用SSS可證明△ABD≌△ACE,可得∠BAD=∠1,∠ABD=∠2,根據(jù)三角形外角的性質(zhì)即可得∠3=∠BAD+∠ABD,即可得結論.【詳解】在△ABD和△ACE中,,∴△ABD≌△ACE,∴∠BAD=∠1,∠ABD=∠2,∵∠3=∠BAD+∠ABD,∴∠3=∠1+∠2.【考點】本題考查全等三角形的判定與性質(zhì)及三角形外角性質(zhì),熟練掌握判定定理及外角性質(zhì)是解題關鍵.4、(1)證明見詳解(2)DE+BE=AD.理由見詳解(3)DE=BE-AD(或AD=BE-DE,BE=AD+DE等).理由見詳解.【解析】【分析】(1)根據(jù)題意由垂直得∠ADC=∠BEC=90°,由同角的余角相等得:∠DAC=∠BCE,因此根據(jù)AAS可以證明△ADC≌△CEB,結合全等三角形的對應邊相等證得結論;(2)由題意根據(jù)全等三角形的判定定理AAS推知△ACD≌△CBE,然后由全等三角形的對應邊相等、圖形中線段間的和差關系以及等量代換證得DE+BE=AD;(3)由題意可知DE、AD、BE具有的等量關系為:DE=BE-AD(或AD=BE-DE,BE=AD+DE等).證明的方法與(2)相同.(1)證明:如圖1,∵AD⊥MN,BE⊥MN,∴∠ADC=∠BEC=90°,∴∠DAC+∠ACD=90°,∵∠ACB=90°,∴∠ACD+∠BCE=90°,∴∠DAC=∠BCE,在△ADC和△CEB中,∵,∴△ADC≌△CEB;∴DC=BE,AD=EC,∵DE=DC+EC,∴DE=BE+AD.(2)解:DE+BE=AD.理由如下:如圖2,∵∠ACB=90°,∴∠ACD+∠BCE=90°.又∵AD⊥MN于點D,∴∠ACD+∠CAD=90°,∴∠CAD=∠BCE.在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴CD=BE,AD=CE,∴DE+BE=DE+CD=EC=AD,即DE+BE=AD.(3)解:DE=BE-AD(或AD=BE-DE,BE=AD+DE等).理由如下:如圖3,易證得△ADC≌△CEB,∴AD=CE,DC=BE,∴DE=CD-CE=BE-AD,即DE=BE-AD.【考點】本題屬于幾何變換綜合題,考查等腰直角三角形和全等三角形的性質(zhì)和判定,熟練掌握全等三角形的四種判定方法是關鍵:SSS、SAS、AAS、ASA;在證明線段的和與差時,利用全等三角形將線段轉化到同一條直線上得出結論.5、(1)17.5°;(2)證明過程見解析【解析】
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 校外安全應急知識培訓總結課件
- 校園防火安全知識培訓課件
- 校園物業(yè)安全知識培訓課件
- 校園應急知識培訓課件會議記錄
- 淄博駕照考試試題及答案
- 播音模擬測試題及答案
- 安東集團面試題及答案
- 鐵軍學院考試題及答案
- 光大證券財務面試題及答案
- 2025年合肥肥東縣招聘鄉(xiāng)鎮(zhèn)消防崗位人員考試筆試試題(含答案)
- ECRS原則課件教學課件
- 2024年遼源市應急管理局招聘應急管理專員筆試真題及答案
- 2025年大慶市中考語文試題卷(含答案解析)
- 2025年大學試題(大學選修課)-創(chuàng)業(yè):道與術歷年參考題庫含答案解析(5套典型考題)
- 易氧化有機碳的測定
- 壓力性尿失禁專題宣講PPT培訓課件
- 化學藥品新注冊分類申報資料要求英文版-1類
- (完整版)100句搞定雅思閱讀長難句——練習版
- 中國銀監(jiān)會關于整治銀行業(yè)金融機構不規(guī)范經(jīng)營的通知
- 礦山機電設備綜述ppt課件
- 高壓配電裝置設計技術規(guī)程
評論
0/150
提交評論