難點(diǎn)詳解人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》單元測(cè)試試卷(解析版)_第1頁
難點(diǎn)詳解人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》單元測(cè)試試卷(解析版)_第2頁
難點(diǎn)詳解人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》單元測(cè)試試卷(解析版)_第3頁
難點(diǎn)詳解人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》單元測(cè)試試卷(解析版)_第4頁
難點(diǎn)詳解人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》單元測(cè)試試卷(解析版)_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》單元測(cè)試考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、如圖,在△ABC中,AC=BC=8,∠BCA=60°,直線AD⊥BC于點(diǎn)D,E是AD上的一個(gè)動(dòng)點(diǎn),連接EC,將線段EC繞點(diǎn)C按逆時(shí)針方向旋轉(zhuǎn)60°得到FC,連接DF,則在點(diǎn)E的運(yùn)動(dòng)過程中,DF的最小值是()A.1 B.1.5 C.2 D.42、如圖,在菱形中,P是對(duì)角線上一動(dòng)點(diǎn),過點(diǎn)P作于點(diǎn)E.于點(diǎn)F.若菱形的周長(zhǎng)為24,面積為24,則的值為()A.4 B. C.6 D.3、如圖所示,AB=CD,AD=BC,則圖中的全等三角形共有()A.1對(duì) B.2對(duì) C.3對(duì) D.4對(duì)4、如圖,菱形ABCD的對(duì)角線AC、BD的長(zhǎng)分別為6和8,O為AC、BD的交點(diǎn),H為AB上的中點(diǎn),則OH的長(zhǎng)度為()A.3 B.4 C.2.5 D.55、在Rt△ABC中,∠C=90°,若D為斜邊AB上的中點(diǎn),AB的長(zhǎng)為10,則DC的長(zhǎng)為()A.5 B.4 C.3 D.2第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、如圖,正方形ABCD中,BD為對(duì)角線,且BE為∠ABD的角平分線,并交CD延長(zhǎng)線于點(diǎn)E,則∠E=______°.2、如圖,正方形紙片ABCD的邊長(zhǎng)為12,E是邊CD上一點(diǎn),連接AE.折疊該紙片,使點(diǎn)A落在AE上的G點(diǎn),并使折痕經(jīng)過點(diǎn)B,得到折痕BF,點(diǎn)F在AD上.若,則GE的長(zhǎng)為__________.3、正方形的對(duì)角線長(zhǎng)為cm,則它的周長(zhǎng)為__________cm.4、如圖,在△ABC中,∠ACB=90°,以AC,BC和AB為邊向上作正方形ACED和正方形BCMI和正方形ABGF,點(diǎn)G落在MI上,若AC+BC=7,空白部分面積為16,則圖中陰影部分的面積是_____.5、如圖,在矩形ABCD中,BC=2,AB=x,點(diǎn)E在邊CD上,且CEx,將BCE沿BE折疊,若點(diǎn)C的對(duì)應(yīng)點(diǎn)落在矩形ABCD的邊上,則x的值為_______.三、解答題(5小題,每小題10分,共計(jì)50分)1、△ABC為等邊三角形,AB=4,AD⊥BC于點(diǎn)D,E為線段AD上一點(diǎn),AE=.以AE為邊在直線AD右側(cè)構(gòu)造等邊△AEF.連結(jié)CE,N為CE的中點(diǎn).

(1)如圖1,EF與AC交于點(diǎn)G,①連結(jié)NG,求線段NG的長(zhǎng);②連結(jié)ND,求∠DNG的大?。?)如圖2,將△AEF繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角為α.M為線段EF的中點(diǎn).連結(jié)DN、MN.當(dāng)30°<α<120°時(shí),猜想∠DNM的大小是否為定值,并證明你的結(jié)論.2、如圖,在?ABCD中,對(duì)角線AC的垂直平分線EF交AD于點(diǎn)F,交BC于點(diǎn)E,交AC于點(diǎn)O.求證:四邊形AECF是菱形.(小海的證明過程)證明:∵EF是AC的垂直平分線,∴OA=OC,OE=OF,EF⊥AC,∴四邊形AECF是平行四邊形.又∵EF⊥AC,∴四邊形AECF是菱形.(老師評(píng)析)小海利用對(duì)角線互相平分證明了四邊形AECF是平行四邊形,再利用對(duì)角線互相垂直證明它是菱形,可惜有一步錯(cuò)了.(挑錯(cuò)改錯(cuò))(1)請(qǐng)你幫小海找出錯(cuò)誤的原因;(2)請(qǐng)你根據(jù)小海的思路寫出此題正確的證明過程.

3、如圖,正方形網(wǎng)格中的每個(gè)小正方形邊長(zhǎng)都是1,每個(gè)小格的頂點(diǎn)叫做格點(diǎn),以格點(diǎn)為頂點(diǎn)分別按下列要求畫三角形.(1)在圖1中,畫一個(gè)三邊長(zhǎng)都是有理數(shù)的直角三角形;(2)在圖2中,畫一個(gè)以BC為斜邊的直角三角形,使它們的三邊長(zhǎng)都是無理數(shù)且都不相等;(3)在圖3中,畫一個(gè)正方形,使它的面積是10.4、如圖,在中,過點(diǎn)作于點(diǎn),點(diǎn)在邊上,,連接,.(1)求證:四邊形是矩形;(2)若,,,求證:平分.5、在Rt△ABC中,∠ACB=90°,AC=BC,點(diǎn)D為AB邊上一點(diǎn),過點(diǎn)D作DE⊥AB,交BC于點(diǎn)E,連接AE,取AE的中點(diǎn)P,連接DP,CP.(1)觀察猜想:如圖(1),DP與CP之間的數(shù)量關(guān)系是,DP與CP之間的位置關(guān)系是.(2)類比探究:將圖(1)中的△BDE繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)45°,(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)就圖(2)的情形給出證明;若不成立,請(qǐng)說明理由.(3)問題解決:若BC=3BD=3,將圖(1)中的△BDE繞點(diǎn)B在平面內(nèi)自由旋轉(zhuǎn),當(dāng)BE⊥AB時(shí),請(qǐng)直接寫出線段CP的長(zhǎng).-參考答案-一、單選題1、C【解析】【分析】取線段AC的中點(diǎn)G,連接EG,根據(jù)等邊三角形的性質(zhì)以及角的計(jì)算即可得出CD=CG以及∠FCD=∠ECG,由旋轉(zhuǎn)的性質(zhì)可得出EC=FC,由此即可利用全等三角形的判定定理SAS證出△FCD≌△ECG,進(jìn)而即可得出DF=GE,再根據(jù)點(diǎn)G為AC的中點(diǎn),即可得出EG的最小值,此題得解.【詳解】解:取線段AC的中點(diǎn)G,連接EG,如圖所示.∵AC=BC=8,∠BCA=60°,∴△ABC為等邊三角形,且AD為△ABC的對(duì)稱軸,∴CD=CG=AB=4,∠ACD=60°,∵∠ECF=60°,∴∠FCD=∠ECG,在△FCD和△ECG中,,∴△FCD≌△ECG(SAS),∴DF=GE.當(dāng)EG∥BC時(shí),EG最小,∵點(diǎn)G為AC的中點(diǎn),∴此時(shí)EG=DF=CD=BC=2.故選:C.【點(diǎn)睛】本題考查了等邊三角形的性質(zhì)以及全等三角形的判定與性質(zhì),三角形中位線的性質(zhì),解題的關(guān)鍵是通過全等三角形的性質(zhì)找出DF=GE,本題屬于中檔題,難度不大,解決該題型題目時(shí),根據(jù)全等三角形的性質(zhì)找出相等的邊是關(guān)鍵.2、A【解析】【分析】連接BP,通過菱形的周長(zhǎng)為24,求出邊長(zhǎng),菱形面積為24,求出的面積,然后利用面積法,,即可求出的值.【詳解】解:如圖所示,連接BP,∵菱形ABCD的周長(zhǎng)為24,∴,又∵菱形ABCD的面積為24,∴,∴,∴,∵,∴,∵,∴,故選:A.【點(diǎn)睛】本題主要考查菱形的性質(zhì),解題關(guān)鍵在于添加輔助線,通過面積法得出等量關(guān)系.3、D【解析】【分析】根據(jù)平行四邊形的判定與性質(zhì),求解即可.【詳解】解:∵AB=CD,AD=BC∴四邊形為平行四邊形∴,,,∴、又∵,∴、∴圖中的全等三角形共有4對(duì)故選:D【點(diǎn)睛】此題考查了平行四邊形的判定與性質(zhì),全等三角形的判定與性質(zhì),解題的關(guān)鍵是掌握平行四邊形的判定與性質(zhì).4、C【解析】【分析】根據(jù)菱形的性質(zhì)求得邊長(zhǎng),進(jìn)而根據(jù)三角形中位線定理求得的長(zhǎng)度.【詳解】∵四邊形ABCD是菱形,∴AO=OC,OB=OD,AO⊥BO,又∵點(diǎn)H是AD中點(diǎn),∴OH是△DAB的中位線,在Rt△AOB中,AB5,則OHAB=2.5故選C【點(diǎn)睛】本題考查了菱形的性質(zhì),三角形中位線定理,求得的長(zhǎng)是解題的關(guān)鍵.5、A【解析】【分析】利用直角三角形斜邊的中線的性質(zhì)可得答案.【詳解】解:∵∠C=90°,若D為斜邊AB上的中點(diǎn),∴CD=AB,∵AB的長(zhǎng)為10,∴DC=5,故選:A.【點(diǎn)睛】此題主要考查了直角三角形斜邊的中線,關(guān)鍵是掌握在直角三角形中,斜邊上的中線等于斜邊的一半.二、填空題1、22.5【解析】【分析】由平行線的性質(zhì)可知,由角平分線的定義得,進(jìn)而可求∠E的度數(shù).【詳解】解:為正方形,,,,平分,,又,,故答案為:22.5.【點(diǎn)睛】本題考查了正方形的性質(zhì),平行線的性質(zhì),角平分線的定義,熟練掌握正方形的性質(zhì)是解答本題的關(guān)鍵.2、##【解析】【分析】由折疊及軸對(duì)稱的性質(zhì)可知,△ABF≌△GBF,BF垂直平分AG,先證△ABF≌△DAE,推出AF的長(zhǎng),再利用勾股定理求出BF的長(zhǎng),最后在Rt△ABF中利用面積法可求出AH的長(zhǎng),可進(jìn)一步求出AG的長(zhǎng),GE的長(zhǎng).【詳解】解:∵四邊形ABCD為正方形,∴AB=AD=12,∠BAD=∠D=90°,由折疊及軸對(duì)稱的性質(zhì)可知,△ABF≌△GBF,BF垂直平分AG,∴BF⊥AE,AH=GH,∴∠BAH+∠ABH=90°,又∵∠FAH+∠BAH=90°,∴∠ABH=∠FAH,∴△ABF≌△DAE(ASA),∴AF=DE=5,在Rt△ABF中,BF==13,S△ABF=AB?AF=BF?AH,∴12×5=13AH,∴AH=,∴AG=2AH=,∵AE=BF=13,∴GE=AE-AG=13-=,故答案為:.【點(diǎn)睛】本題考查了正方形的性質(zhì),軸對(duì)稱的性質(zhì),全等三角形的判定與性質(zhì),勾股定理,面積法求線段的長(zhǎng)度等,解題關(guān)鍵是能夠靈活運(yùn)用正方形的性質(zhì)和軸對(duì)稱的性質(zhì).3、16【解析】【分析】根據(jù)正方形對(duì)角線的長(zhǎng),可將正方形的邊長(zhǎng)求出,進(jìn)而可將正方形的周長(zhǎng)求出.【詳解】解:設(shè)正方形的邊長(zhǎng)為x,∵正方形的對(duì)角線長(zhǎng)為cm,∴,解得:x=4,∴正方形的邊長(zhǎng)為:4(cm),∴正方形的周長(zhǎng)為4×4=16(cm).故答案為:16.【點(diǎn)睛】本題考查了正方形的性質(zhì),勾股定理,解決本題的關(guān)鍵是掌握正方形的性質(zhì).4、【解析】【分析】根據(jù)余角的性質(zhì)得到,根據(jù)全等三角形的性質(zhì)得到,推出,根據(jù)勾股定理得到,解方程組得到,接著由圖可知空白部分為重疊部分,陰影部分為非重疊部分,所以2倍的空白部分與陰影部分面積和等于三個(gè)正方形與三角形面積和.結(jié)合即可得出結(jié)論.依此即可求解.【詳解】解:如圖,四邊形是正方形,,,,,,,∵,即,,在中,,,,,,,陰影部分的面積和=三個(gè)正方形面積+三角形面積-2倍空白部分面積=.故答案為:.【點(diǎn)睛】本題考查勾股定理的知識(shí),有一定難度,解題關(guān)鍵是將勾股定理和正方形的面積公式進(jìn)行靈活的結(jié)合和應(yīng)用.5、或【解析】【分析】分兩種情況進(jìn)行解答,即當(dāng)點(diǎn)落在邊上和點(diǎn)落在邊上,分別畫出相應(yīng)的圖形,利用翻折變換的性質(zhì),勾股定理進(jìn)行計(jì)算即可.【詳解】解:如圖1,當(dāng)點(diǎn)落在邊上,由翻折變換可知,,,在△中,由勾股定理得,,,在中,由勾股定理得,,即,解得,或(舍去),如圖2,當(dāng)點(diǎn)落在邊上,由翻折變換可知,四邊形是正方形,,,故答案為:或.【點(diǎn)睛】本題考查翻折變換,解題的關(guān)鍵是掌握翻折變換的性質(zhì)以及勾股定理是解決問題的前提.三、解答題1、(1)①;②;(2)的大小是定值,證明見解析.【分析】(1)①先根據(jù)等邊三角形的性質(zhì)、勾股定理可得,從而可得,再利用勾股定理可得,然后根據(jù)等邊三角形的性質(zhì)可得,最后根據(jù)直角三角形斜邊上的中線等于斜邊的一半即可得;②先根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得,再根據(jù)等腰三角形的性質(zhì)可得,從而可得,然后根據(jù)四邊形的內(nèi)角和即可得;(2)連接,先證出,根據(jù)全等三角形的性質(zhì)可得,從而可得,再根據(jù)三角形中位線定理可得,然后根據(jù)三角形的外角性質(zhì)、角的和差即可得出結(jié)論.【詳解】解:(1)①∵是等邊三角形,,,∴,∴,∵,∴,∴,∵是等邊三角形,,,∴,即,又∵點(diǎn)為的中點(diǎn),∴;②如圖,連接,由(1)①知,,∵,點(diǎn)為的中點(diǎn),∴,,,∴;(2)的大小是定值,證明如下:如圖,連接,∵和都是等邊三角形,∴,∴,即,在和中,,∴,∴,∵,∴,∵點(diǎn)為的中點(diǎn),點(diǎn)為的中點(diǎn),∴,∴,∵,即點(diǎn)是的中點(diǎn),∴,∴,∵,∴,∴的大小為定值.【點(diǎn)睛】本題考查了等邊三角形的性質(zhì)、直角三角形斜邊上的中線等于斜邊的一半、三角形中位線定理等知識(shí)點(diǎn),較難的是題(2),通過作輔助線,構(gòu)造全等三角形和利用到三角形中位線定理是解題關(guān)鍵.2、(1)見解析;(2)見解析【分析】(1)由垂直平分線的性質(zhì)可求解;(2)由“”可證,可得,且,,由菱形的判定可證四邊形是菱形.【詳解】解:(1)是的垂直平分線,,,不能得出;(2)四邊形是平行四邊形,.是的垂直平分線,,,且,,且四邊形是平行四邊形.四邊形是菱形.【點(diǎn)睛】本題考查了菱形的判定,全等三角形的判定和性質(zhì),線段垂直平分線的性質(zhì),平行四邊形的性質(zhì),解題的關(guān)鍵是熟練運(yùn)用線段垂直平分線的性質(zhì).3、(1)見解析;(2)見解析;(3)見解析【分析】(1)如圖,AB=4,BC=3,,利用勾股定理逆定理即可得到△ABC是直角三角形;(2)如圖,,,利用勾股定理逆定理即可得到△ABC是直角三角形;(3)如圖,,則,∠ABC=90°,即可得到四邊形ABCD是正方形,.【詳解】解:(1)如圖所示,AB=4,BC=3,,∴,∴△ABC是直角三角形;

(2)如圖所示,,∴,∴△ABC是直角三角形;

(3)如圖所示,,,∴,∴∠ABC=90°,∴四邊形ABCD是正方形,∴.

【點(diǎn)睛】本題主要考查了有理數(shù)與無理數(shù),正方形的判定,勾股定理和勾股定理的逆定理,熟知相關(guān)知識(shí)是解題的關(guān)鍵.4、(1)見解析;(2)見解析【分析】(1)先證明四邊形是平行四邊形,結(jié)合,從而可得結(jié)論;(2)先證明,再求解證明證明從而可得結(jié)論.【詳解】(1)證明:四邊形是平行四邊形,.即,,四邊形是平行四邊形.,,四邊形是矩形;(2)四邊形是平行四邊形,,.四邊形是矩形;在中,由勾股定理,得,,,,即平分.【點(diǎn)睛】本題考查的是勾股定理的應(yīng)用,角平分線的定義,平行四邊形的判定與性質(zhì),矩形的判定,證明四邊形是平行四邊形是解(1)的關(guān)鍵,證明是解(2)的關(guān)鍵.5、(1)PD=PC,PD⊥PC;(2)成立,見解析;(3)2或4【分析】(1)根據(jù)直角三角形斜邊中線的性質(zhì),可得,根據(jù)角之間的關(guān)系即可,即可求解;(2)過點(diǎn)P作PT⊥AB交BC的延長(zhǎng)線于T,交AC于點(diǎn)O,根據(jù)全等三角形的判定與性質(zhì)求解即可;(3)分兩種情況,當(dāng)點(diǎn)E在BC的上方時(shí)和當(dāng)點(diǎn)E在BC的下方時(shí),過點(diǎn)P作PQ⊥BC于Q,利用等腰直角三角形的性質(zhì)求得,即可求解.【詳解】解:(1)∵∠ACB=90°

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論