




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
浙江省永康市中考數(shù)學真題分類(平行線的證明)匯編章節(jié)練習考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、在△ABC中,如果∠A﹣∠B=90°,那么△ABC是()A.直角三角形 B.鈍角三角形 C.銳角三角形 D.斜三角形2、如圖,在△ABC中,∠C=90°,點D在AC上,DE∥AB,若∠CDE=165°,則∠B的度數(shù)為()A.15° B.55° C.65° D.75°3、如下圖,在下列條件中,能判定AB//CD的是(
)A.∠1=∠3 B.∠2=∠3 C.∠1=∠4 D.∠3=∠44、如圖所示,過點P畫直線a的平行線b的作法的依據(jù)是()A.兩直線平行,同位角相等 B.同位角相等,兩直線平行C.兩直線平行,內錯角相等 D.內錯角相等,兩直線平行5、已知,在中,,點在線段的延長線上,過點作,垂足為,若,則的度數(shù)為(
)A.76° B.65° C.56° D.54°6、如圖,直線a,b被直線c所截,下列條件中,不能判定a∥b()A.∠2=∠4 B.∠1+∠4=180° C.∠5=∠4 D.∠1=∠37、如圖,將三角形紙片沿折疊,當點落在四邊形的外部時,測量得,,則的度數(shù)為(
)A. B. C. D.8、兩個直角三角板如圖擺放,其中,,,AB與DF交于點M.若,則的大小為(
)A. B. C. D.第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、兩條直線平行的條件(除平行線定義和平行公理推論外):兩條直線被第三條直線所截,如果___________,那么這兩條直線平行.這個判定方法可簡述為:_________,兩直線平行.2、命題“全等三角形的對應角相等”的逆命題是_____命題.(填“真”或“假”)3、如圖,三角形ABC中,D是AB上一點,F(xiàn)是BC上一點,E,H是AC上的點,EF的延長線交AB的延長線于點G,連接DE,DH,DE∥BC.若∠CEF=∠CHD,∠EFC=∠ADH,∠CEF:∠EFC=5:2,∠C=47°,則∠ADE的度數(shù)為__.4、如圖,將一張三角形紙片ABC的一角(∠A)折疊,使得點A落在四邊形BCDE的外部點的位置,且點與點C在直線AB的異側,折痕為DE.已知,,若的一邊與BC平行,且,則m=______.5、如圖,在△ABC中,AD平分∠BAC,如果∠B=80°,∠C=40°,那么∠ADC的度數(shù)等于_____.6、如圖,用鐵絲折成一個四邊形ABCD(點C在直線BD的上方),且∠A=70°,∠BCD=120°,若使∠ABC、∠ADC平分線的夾角∠E的度數(shù)為100°,可保持∠A不變,將∠BCD______(填“增大”或“減小”)________°.7、用反證法證明:“如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行”.第一步應假設:______.三、解答題(7小題,每小題10分,共計70分)1、問題情景:如圖1,在同一平面內,點和點分別位于一塊直角三角板的兩條直角邊,上,點與點在直線的同側,若點在內部,試問,與的大小是否滿足某種確定的數(shù)量關系?(1)特殊探究:若,則_________度,________度,_________度;(2)類比探索:請猜想與的關系,并說明理由;(3)類比延伸:改變點的位置,使點在外,其它條件都不變,判斷(2)中的結論是否仍然成立?若成立,請說明理由;若不成立,請直接寫出,與滿足的數(shù)量關系式.2、已知:如圖,點A、B、C在一條直線上,AD∥BE,∠1=∠2,求證:∠A=∠E.3、如圖,在△中,,分別是邊,上的點,若△≌△≌△,求的度數(shù).4、如圖,在△ABC中,∠A=∠DBC=36°,∠C=72°.求∠1,∠2的度數(shù).5、(1)如圖(a),BD平分,CD平分.試確定和的數(shù)量關系.(2)如圖(b),BE平分,CE平分外角.試確定和的數(shù)量關系.(3)如圖(c),BF平分外角,CF平分外角.試確定和的數(shù)量關系.6、完成下列推理過程:已知:如圖,∠1+∠2=180°,∠3=∠B求證:∠EDG+∠DGC=180°證明:∵∠1+∠2=180°(已知)∠1+∠DFE=180°()∴∠2=()∴EF∥AB()∴∠3=()又∵∠3=∠B(已知)∴∠B=∠ADE()∴DE∥BC()∴∠EDG+∠DGC=180°()7、如圖,∠1=∠2,∠3=∠4,∠5=∠6,求證:CEBF.-參考答案-一、單選題1、B【解析】【分析】因為∠A﹣∠B=90°,即∠A=90°+∠B,那么∠A一定大于90°,即為鈍角三角形.【詳解】解:在△ABC中,∵∠A﹣∠B=90°,∴∠A=90°+∠B>90°(∠B肯定大于0o),那么△ABC是鈍角三角形.故選:B.【考點】此題考查了三角形內角和定理,解題的關鍵是得到∠A一定大于90°.2、D【解析】【分析】根據(jù)鄰補角定義可得∠ADE=15°,由平行線的性質可得∠A=∠ADE=15°,再根據(jù)三角形內角和定理即可求得∠B=75°.【詳解】解:∵∠CDE=165°,∴∠ADE=15°,∵DE∥AB,∴∠A=∠ADE=15°,∴∠B=180°﹣∠C﹣∠A=180°﹣90°﹣15°=75°,故選D.【考點】本題考查了平行線的性質、三角形內角和定理等,熟練掌握平行線的性質以及三角形內角和定理是解題的關鍵.3、C【解析】【詳解】根據(jù)平行線的判定,可由∠2=∠3,根據(jù)內錯角相等,兩直線平行,得到AD∥BC,由∠1=∠4,得到AB∥CD.故選C.4、D【解析】【詳解】解:如圖所示,根據(jù)圖中直線a、b被c所截形成的內錯角相等,可得依據(jù)為內錯角相等,兩直線平行.故選D.5、D【解析】【分析】根據(jù)三角形的內角和是,即可求解.【詳解】,,在中,,,在中,,,故選:D.【考點】本題考查了垂直的性質和三角形的內角和,熟練掌握相關的性質是解題的關鍵.6、D【解析】【分析】根據(jù)同位角相等,兩直線平行;同旁內角互補,兩直線平行;內錯角相等,兩直線平行,進行判斷即可.【詳解】由∠2=∠4或∠1+∠4=180°或∠5=∠4,可得a∥b;由∠1=∠3,不能得到a∥b,故選D.【考點】本題主要考查了平行線的判定,熟記平行線的判定方法是解題的關鍵.解答此類要判定兩直線平行的題,可圍繞截線找同位角、內錯角和同旁內角.7、B【解析】【分析】根據(jù)折疊∠A′=∠A,根據(jù)鄰補角性質求出∠A′DA,再根據(jù)三角形外角性質即可求解.【詳解】解:根據(jù)折疊可知∠A′=∠A,∵∠1=70°,∴∠A′DA=180°-∠1=110°,∴根據(jù)三角形外角∠A′=∠2-∠A′DA=152°-110°=42°,∴∠A=42°.故選B.【考點】本題考查折疊性質,鄰補角性質,三角形外角性質,掌握折疊性質,鄰補角性質,三角形外角性質是解題關鍵.8、C【解析】【分析】根據(jù),可得再根據(jù)三角形內角和即可得出答案.【詳解】由圖可得∵,∴∴故選:C.【考點】本題考查了平行線的性質和三角形的內角和,掌握平行線的性質和三角形的內角和是解題的關鍵.二、填空題1、
同位角相等(答案不唯一)
同位角相等(答案不唯一)【解析】【分析】根據(jù)平行線的判定定理解答即可.【詳解】兩條直線平行的條件(除平行線定義和平行公理推論外):兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行.這個判定方法可簡述為:同位角相等,兩直線平行.故答案為:同位角相等,同位角相等.【考點】本題主要考查平行線的判定定理,屬于基礎題,熟練掌握平行線的判定定理是解題關鍵.2、假【解析】【分析】首先分清題設是:兩個三角形全等,結論是:對應角相等,把題設與結論互換即可得到逆命題,然后判斷正誤即可.【詳解】解:“全等三角形的對應角相等”的題設是:兩個三角形全等,結論是:對應角相等,因而逆命題是:對應角相等的三角形全等.是一個假命題.故答案為:假.【考點】本題考查了互逆命題的知識,兩個命題中,如果第一個命題的條件是第二個命題的結論,而第一個命題的結論又是第二個命題的條件,那么這兩個命題叫做互逆命題.其中一個命題稱為另一個命題的逆命題.命題的真假判斷,正確的命題叫真命題,錯誤的命題叫做假命題.判斷命題的真假關鍵是要熟悉課本中的性質定理.3、76°【解析】【分析】根據(jù)平行線的性質和三角形的內角和解答即可.【詳解】解:∵∠CEF=∠CHD,∴DH∥GE,∴∠ADH=∠G,∵∠EFC=∠ADH,∵∠BFG=∠EFC,∴∠G=∠BFG,∴∠ABC=∠G+∠BFG=2∠EFC,∵∠CEF:∠EFC=5:2,∠C=47°,∴∠EFC=38°,∴∠ABC=76°,∵DE∥BC,∴∠ADE=∠ABC=76°,故答案為:76°.【考點】本題主要考查了平行線的性質和三角形內角和定理,準確計算是解題的關鍵.4、45或30【解析】【分析】分類討論①當時、②當時和③當時,根據(jù)平行線的性質,折疊的性質結合題意即可求解.【詳解】解:分類討論,①如圖,當時,∵,∴.∴由翻折可知,∴m=45;②如圖,當時,∵,∴.∵,∴由折疊可知,∴,∴,∴,∴m=30;③當時,點與點C在直線AB的同側,不符合題意.綜上可知m的值為45或30.故答案為:45或30.【考點】本題主要考查平行線的性質,折疊的性質.利用分類討論的思想是解題關鍵.5、110°##110度【解析】【分析】由三角形的內角和可求得∠BAC=60°,再由角平分線的定義得∠BAD=30°,利用三角形的外角性質即可求∠ADC的度數(shù).【詳解】解:∵∠B=80°,∠C=40°,∴∠BAC=180°﹣∠B﹣∠C=60°,∵AD平分∠BAC,∴∠BAD=∠BAC=30°,∴∠ADC=∠B+∠BAD=110°.故答案為:110°.【考點】本題主要考查三角形的外角性質,三角形的內角和定理,角平分線的定義,解答的關鍵是對相應的知識的掌握.6、
增大
10【解析】【分析】利用三角形的外角性質先求得∠ABE+∠ADE=30°,根據(jù)角平分線的定義得到∠ABC+∠ADC=60°,再利用三角形的外角性質求解即可.【詳解】解:如圖,連接AE并延長,連接AC并延長,∠BED=∠BEF+∠DEF=∠ABE+∠BAD+∠ADE=100°,∵∠BAD=70°,∴∠ABE+∠ADE=30°,∵BE,DE分別是∠ABC、∠ADC平分線,∴∠ABC+∠ADC=2(∠ABE+∠ADE)=60°,同上可得,∠BCD=∠BAD+∠ABC+∠ADC=130°,130°-120°=10°,∴∠BCD增大了10°.故答案為:增大,10.【考點】本題考查了三角形的外角性質,三角形的內角和定理,角平分線的定義等知識,熟練運用題目中所給的結論是解題的關鍵.7、這兩條直線不平行【解析】【分析】本題需先根據(jù)已知條件和反證法的特點進行證明,即可求出答案.【詳解】證明:已知兩條直線都和第三條直線平行;
假設這兩條直線不平行,則兩條直線有交點,因為過直線外一點有且只有一條直線與已知直線平行因此,兩條直線有交點時,它們不可能同時與第三條直線平行因此假設與結論矛盾.故假設不成立,即如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行.故答案為:這兩條直線不平行.【考點】本題主要考查了反證法,在解題時要根據(jù)反證法的特點進行證明是本題的關鍵.三、解答題1、(1)125,90,35;(2)∠ABP+∠ACP=90°-∠A,證明見解析;(3)結論不成立.∠ABP-∠ACP=90°-∠A,∠ABP+∠ACP=∠A-90°或∠ACP-∠ABP=90°-∠A.【解析】【分析】(1)根據(jù)三角形內角和即可得出∠ABC+∠ACB,∠PBC+∠PCB,然后即可得出∠ABP+∠ACP;(2)根據(jù)三角形內角和定理進行等量轉換,即可得出∠ABP+∠ACP=90°-∠A;(3)按照(2)中同樣的方法進行等量轉換,求解即可判定.【詳解】(1)∠ABC+∠ACB=180°-∠A=180°-55°=125度,∠PBC+∠PCB=180°-∠P=180°-90°=90度,∠ABP+∠ACP=∠ABC+∠ACB-(∠PBC+∠PCB)=125°-90°=35度;
(2)猜想:∠ABP+∠ACP=90°-∠A;
證明:在△ABC中,∠ABC+∠ACB=180°-∠A,∵∠ABC=∠ABP+∠PBC,∠ACB=∠ACP+∠PCB,∴(∠ABP+∠PBC)+(∠ACP+∠PCB)=180°-∠A,∴(∠ABP+∠ACP)+(∠PBC+∠PCB)=180°-∠A,又∵在Rt△PBC中,∠P=90°,∴∠PBC+∠PCB=90°,∴(∠ABP+∠ACP)+90°=180°-∠A,∴∠ABP+∠ACP=90°-∠A.
(3)判斷:(2)中的結論不成立.
證明:在△ABC中,∠ABC+∠ACB=180°-∠A,∵∠ABC=∠PBC-∠ABP,∠ACB=∠PCB-∠ACP,∴(∠PBC+∠PCB)-(∠ABP+∠ACP)=180°-∠A,又∵在Rt△PBC中,∠P=90°,∴∠PBC+∠PCB=90°,∴∠ABP-∠ACP=90°-∠A,∠ABP+∠ACP=∠A-90°或∠ACP-∠ABP=90°-∠A.【考點】此題主要考查利用三角形內角和定理進行等角轉換,熟練掌握,即可解題.2、見解析【解析】【分析】先根據(jù)平行線的性質由AD∥BE得∠A=∠EBC,再根據(jù)平行線的判定由∠1=∠2得DE∥AC,則∠E=∠EBC,所以∠A=∠E.【詳解】證明:∵AD∥BE,∴∠A=∠EBC,∵∠1=∠2,∴DE∥AC,∴∠E=∠EBC,∴∠A=∠E.【考點】考查了平行線性質:兩直線平行,同位角相等;兩直線平行,同旁內角互補;兩直線平行,內錯角相等.3、30°【解析】【分析】根據(jù)全等三角形的性質及三角形內角和定理,即可求得.【詳解】解:∵△≌△≌△,∴,,又∵,∴,∴,
∵,∴,∴.【考點】本題考查了全等三角形的性質及三角形內角和定理,求得是解決本題的關鍵.4、∠1=36°,∠2=72°.【解析】【分析】在△ABC和△BDC中,根據(jù)三角形內角和定理,即可得出結論.【詳解】在△ABC中,∠ABC=180°﹣∠A﹣∠C=180°-36°-72°=72°,∴∠1=∠ABC﹣∠DBC=72°-36°=36°;在△BCD中,∠2=180°﹣∠DBC﹣∠C=180°-36°-72°=72°.【考點】本題考查了三角形的內角和定理,注意掌握數(shù)形結合思想的應用.5、(1);(2);(3)【解析】【分析】(1)根據(jù)三角形的內角和定理以及角平分線的定義即可確定和的數(shù)量關系;(2)根據(jù)三角形的外角性質以及角平分線的定義可得,進而可
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年上海市虹口公證處招聘真題
- 2025版新能源設備定向采購合同
- 安徽交通職業(yè)技術學院招聘筆試真題2024
- 2025版企業(yè)廣告設計制作與品牌推廣策劃合同
- 光伏配件專用知識培訓總結課件
- 岸坡帷幕灌漿施工方案
- 水泥講臺改造方案(3篇)
- 酒水品牌運營規(guī)劃方案(3篇)
- 廁所清洗改造方案范本
- 護士個人衛(wèi)生防護課件
- 麥當勞-標準化管理
- 法國西電MICS中文操作說明書
- 第9章探放水鉆機及相關設備的安全使用.
- (高清正版)JJF 1908-2021 雙金屬溫度計校準規(guī)范
- 交通部農村公路建設標準指導意見
- 衛(wèi)浴店面管理
- 清表施工方案4常用
- 純化水系統(tǒng)再驗證方案E
- 5立方米液化石油氣儲罐課程設計說明書
- 臨床技術操作規(guī)范_骨科學分冊資料全
- 華為內部虛擬股管理暫行條例
評論
0/150
提交評論