難點解析-人教版8年級數(shù)學(xué)下冊《平行四邊形》專項練習(xí)試題(含詳解)_第1頁
難點解析-人教版8年級數(shù)學(xué)下冊《平行四邊形》專項練習(xí)試題(含詳解)_第2頁
難點解析-人教版8年級數(shù)學(xué)下冊《平行四邊形》專項練習(xí)試題(含詳解)_第3頁
難點解析-人教版8年級數(shù)學(xué)下冊《平行四邊形》專項練習(xí)試題(含詳解)_第4頁
難點解析-人教版8年級數(shù)學(xué)下冊《平行四邊形》專項練習(xí)試題(含詳解)_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

人教版8年級數(shù)學(xué)下冊《平行四邊形》專項練習(xí)考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,在平面直角坐標(biāo)系中,點A是x軸正半軸上的一個動點,點C是y軸正半軸上的點,于點C.已知,.點B到原點的最大距離為()A.22 B.18 C.14 D.102、如圖,下列條件中,能使平行四邊形ABCD成為菱形的是()A. B. C. D.3、如圖,已知四邊形ABCD和四邊形BCEF均為平行四邊形,∠D=60°,連接AF,并延長交BE于點P,若AP⊥BE,AB=3,BC=2,AF=1,則BE的長為()A.5 B.2 C.2 D.34、在Rt△ABC中,∠C=90°,若D為斜邊AB上的中點,AB的長為10,則DC的長為()A.5 B.4 C.3 D.25、如圖,已知菱形ABCD的對角線AC,BD的長分別為6,8,AE⊥BC,垂足為點E,則AE的長是()A.5 B.2 C. D.第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,在平行四邊形ABCD中,AB=4,BC=5,以點C為圓心,適當(dāng)長為半徑畫弧,交BC于點P,交CD于點Q,再分別以點P,Q為圓心,大于PQ的長為半徑畫弧,兩弧相交于點N,射線CN交BA的延長線于點E,則AE的長是_____.2、如圖,在一張矩形紙片ABCD中,AB=30cm,將紙片對折后展開得到折痕EF.點P為BC邊上任意一點,若將紙片沿著DP折疊,使點C恰好落在線段EF的三等分點上,則BC的長等于_________cm.3、在四邊形ABCD中,AB=BC=CD=DA=5cm,對角線AC,BD相交于點O,且AC=8cm,則四邊形ABCD的面積為______cm2.4、正方形的對角線長為cm,則它的周長為__________cm.5、判斷:(1)菱形的對角線互相垂直且相等____()____(2)菱形的對角線把菱形分成四個全等的直角三角形____()____三、解答題(5小題,每小題10分,共計50分)1、如圖所示,正方形中,點E,F(xiàn)分別為BC,CD上一點,點M為EF上一點,D,M關(guān)于直線AF對稱.連結(jié)DM并延長交AE的延長線于N,求證:.2、如圖,△ABC中,∠ACB=90°,AB=5cm,BC=4cm,過點A作射線l∥BC,若點P從點A出發(fā),以每秒2cm的速度沿射線l運動,設(shè)運動時間為t秒(t>0),作∠PCB的平分線交射線l于點D,記點D關(guān)于射線CP的對稱點是點E,連接AE、PE、BP.(1)求證:PC=PD;(2)當(dāng)△PBC是等腰三角形時,求t的值;(3)是否存在點P,使得△PAE是直角三角形,如果存在,請直接寫出t的值,如果不存在,請說明理由.3、如圖,在四邊形ABCD中,∠ABC=∠ADC=90°,E是AC的中點,連接BD,ED,EB.求證:∠1=∠2.4、已知:?ABCD的對角線AC,BD相交于O,M是AO的中點,N是CO的中點,求證:BM∥DN,BM=DN.

5、如圖,△ABC中,點D是邊AC的中點,過D作直線PQ∥BC,∠BCA的平分線交直線PQ于點E,點G是△ABC的邊BC延長線上的點,∠ACG的平分線交直線PQ于點F.求證:四邊形AECF是矩形.-參考答案-一、單選題1、B【解析】【分析】首先取AC的中點E,連接BE,OE,OB,可求得OE與BE的長,然后由三角形三邊關(guān)系,求得點B到原點的最大距離.【詳解】解:取AC的中點E,連接BE,OE,OB,∵∠AOC=90°,AC=16,∴OE=CEAC=8,∵BC⊥AC,BC=6,∴BE10,若點O,E,B不在一條直線上,則OB<OE+BE=18.若點O,E,B在一條直線上,則OB=OE+BE=18,∴當(dāng)O,E,B三點在一條直線上時,OB取得最大值,最大值為18.故選:B【點睛】此題考查了直角三角形斜邊上的中線的性質(zhì)以及三角形三邊關(guān)系.此題難度較大,注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想的應(yīng)用.2、C【解析】【分析】根據(jù)菱形的性質(zhì)逐個進行證明,再進行判斷即可.【詳解】解:A、?ABCD中,本來就有AB=CD,故本選項錯誤;B、?ABCD中本來就有AD=BC,故本選項錯誤;C、?ABCD中,AB=BC,可利用鄰邊相等的平行四邊形是菱形判定?ABCD是菱形,故本選項正確;D、?ABCD中,AC=BD,根據(jù)對角線相等的平行四邊形是矩形,即可判定?ABCD是矩形,而不能判定?ABCD是菱形,故本選項錯誤.故選:C.【點睛】本題考查了平行四邊形的性質(zhì),菱形的判定的應(yīng)用,注意:菱形的判定定理有:①有一組鄰邊相等的平行四邊形是菱形,②四條邊都相等的四邊形是菱形,③對角線互相垂直的平行四邊形是菱形.3、D【解析】【分析】過點D作DH⊥BC,交BC的延長線于點H,連接BD,DE,先證∠DHC=90o,再證四邊形ADEF是平行四邊形,最后利用勾股定理得出結(jié)果.【詳解】過點D作DH⊥BC,交BC的延長線于點H,連接BD,DE,∵四邊形ABCD是平行四邊形,AB=3,∠ADC=60o,∴CD=AB=3,∠DCH=∠ABC=∠ADC=60o,∵DH⊥BC,∴∠DHC=90o,∴∠ADC+∠CDH=90°,∴∠CDH=30°,在Rt△DCH中,CH=CD=,DH=,∴,∵四邊形BCEF是平行四邊形,∴AD=BC=EF,AD∥EF,∴四邊形ADEF是平行四邊形,∴AF∥DE,AF=DE=1,∵AF⊥BE,∴DE⊥BE,∴,∴,故選D.【點睛】本題考查了平行四邊形的判定與性質(zhì),勾股定理,解題的關(guān)鍵是熟練運用這些性質(zhì)解決問題.4、A【解析】【分析】利用直角三角形斜邊的中線的性質(zhì)可得答案.【詳解】解:∵∠C=90°,若D為斜邊AB上的中點,∴CD=AB,∵AB的長為10,∴DC=5,故選:A.【點睛】此題主要考查了直角三角形斜邊的中線,關(guān)鍵是掌握在直角三角形中,斜邊上的中線等于斜邊的一半.5、D【解析】【分析】根據(jù)菱形的性質(zhì)得出BO、CO的長,在Rt△BOC中求出BC,利用菱形面積等于對角線乘積的一半,也等于BC×AE,可得出AE的長度.【詳解】解:∵四邊形ABCD是菱形,∴CO=AC=3,BO=BD=4,AO⊥BO,∴BC==5,∴S菱形ABCD=,∵S菱形ABCD=BC×AE,∴BC×AE=24,∴AE=,故選:D.【點睛】此題考查了菱形的性質(zhì),也涉及了勾股定理,要求我們掌握菱形的面積的兩種表示方法,及菱形的對角線互相垂直且平分.二、填空題1、1【解析】【分析】根據(jù)基本作圖,得到EC是∠BCD的平分線,由AB∥CD,得到∠BEC=∠ECD=∠ECB,從而得到BE=BC,利用線段差計算即可.【詳解】根據(jù)基本作圖,得到EC是∠BCD的平分線,∴∠ECD=∠ECB,∵四邊形ABCD是平行四邊形,∴AB∥CD,∴∠BEC=∠ECD,∴∠BEC=∠ECB,∴BE=BC=5,∴AE=BE-AB=5-4=1,故答案為:1.【點睛】本題考查了角的平分線的尺規(guī)作圖,等腰三角形的判定,平行線的性質(zhì),平行四邊形的性質(zhì),熟練掌握尺規(guī)作圖,靈活運用等腰三角形的判定定理是解題的關(guān)鍵.2、或【解析】【分析】分為將紙片沿縱向?qū)φ?,和沿橫向?qū)φ蹆煞N情況,利用折疊的性質(zhì),以及勾股定理解答即可【詳解】如圖:當(dāng)將紙片沿縱向?qū)φ鄹鶕?jù)題意可得:為的三等分點在中有如圖:當(dāng)將紙片沿橫向?qū)φ鄹鶕?jù)題意得:,在中有為的三等分點故答案為:或【點睛】本題考查了矩形的性質(zhì),折疊的性質(zhì),以及勾股定理解直角三角形,解題關(guān)鍵是分兩種情況作出折痕,考慮問題應(yīng)全面,不應(yīng)丟解.3、24【解析】【分析】根據(jù)題意作圖,得出四邊形為菱形,再根據(jù)菱形的性質(zhì)進行求解面積即可.【詳解】解:根據(jù)題意作圖如下:由題意得四邊形為菱形,,且平分,,,由勾股定理:,,,故答案為:24.【點睛】本題考查了菱形的判定及形,勾股定理,解題的關(guān)鍵是判斷四邊形是菱形.4、16【解析】【分析】根據(jù)正方形對角線的長,可將正方形的邊長求出,進而可將正方形的周長求出.【詳解】解:設(shè)正方形的邊長為x,∵正方形的對角線長為cm,∴,解得:x=4,∴正方形的邊長為:4(cm),∴正方形的周長為4×4=16(cm).故答案為:16.【點睛】本題考查了正方形的性質(zhì),勾股定理,解決本題的關(guān)鍵是掌握正方形的性質(zhì).5、×√【解析】【分析】根據(jù)菱形的性質(zhì),即可求解.【詳解】解:(1)菱形的對角線互相垂直且平分;(2)菱形的對角線把菱形分成四個全等的直角三角形.故答案為:(1)×;(2)√【點睛】本題主要考查了菱形的性質(zhì),熟練掌握菱形的對角線互相垂直且平分是解題的關(guān)鍵.三、解答題1、見解析【分析】連結(jié),由對稱的性質(zhì)可知,進而可證,即可得,由∠AON=90°,可得.【詳解】證明:連結(jié),、關(guān)于對稱,∴垂直平分,,∴,∴,,在Rt和Rt中,∴,又,∴,∴.【點睛】本題是四邊形綜合題,主要考查了軸對稱的性質(zhì),等腰直角三角形的判定,全等三角形的判定與性質(zhì),綜合性較強,有一定難度.準(zhǔn)確作出輔助線是解題的關(guān)鍵.有關(guān)45°角的問題,往往利用全等,構(gòu)造等腰直角三角形,使問題迅速獲解.2、(1)見解析;(2)t=1或或;(3)存在,△PAE是直角三角形時t=或【分析】(1)根據(jù)平行線的性質(zhì)可得∠PDC=∠∠BCD,根據(jù)角平分線的定義可得∠PCD=∠BCD,則∠PCD=∠PDC,即可得到PC=PD;(2)分當(dāng)BP=BC=4cm時,當(dāng)PC=BC=4cm時,當(dāng)PC=PB時三種情況討論求解即可;(3)分當(dāng)∠PAE=90°時,當(dāng)∠APE=90°時,當(dāng)∠AEP=90°時,三種情況討論求解即可.【詳解】解:(1)∵l∥BC,∴∠PDC=∠∠BCD,∵CD平分∠BCP,∴∠PCD=∠BCD,∴∠PCD=∠PDC,∴PC=PD;(2)在△ABC中,∠ACB=90°,,,∴,

若△PBC是等腰三角形,存在以下三種情況:①當(dāng)BP=BC=4cm時,作PH⊥BC于H,∵∠ACB=90°,l∥BC,∴∠ACH=∠CAP=90°,∴四邊形ACHP是矩形,∴PH=AC=3cm,由勾股定理∴,∴,即,解得,②當(dāng)PC=BC=4cm時,由勾股定理,即,解得;③當(dāng)PC=PB時,P在BC的垂直平分線上,∴CH=BC=2cm,∴同理可得AP=CH=2cm,即2t=2,解得t=1,綜上所述,當(dāng)t=1或或時,△PBC是等腰三角形;(3)∵D關(guān)于射線CP的對稱點是點E,∴PD=PE,∠ECP=∠DCP,由(1)知,PD=PC,∴PC=PE,要使△PAE是直角三角形,則存在以下三種情況:①當(dāng)∠PAE=90°時,此時點C、A、E在一條直線上,且AE=AC=3cm,∵CD平分∠BCP,∴∠ECP=∠DCP=∠BCD,∴∠ACP=∠ACB=30°,∴,∵,即,∴即2t=,解得;②當(dāng)∠APE=90°時,∴∠EPD=90°∵D、E關(guān)于直線CP對稱,∴∠EPF=∠DPF=45°,∴∠APC=∠DPF=45°,∵l∥BC,∴∠CAP=180°-∠ACB=90°,∴∠ACP=45°,∴AP=AC=3cm,∴,∴;③當(dāng)∠AEP=90°時,在Rt△ACP中,PC>AP,在Rt△AEP中,AP>PE,∵PC=PE=PD,故此情況不存在,綜上,△PAE是直角三角形時或.【點睛】本題主要考查了軸對稱的性質(zhì),角平分線的定義,平行線的性質(zhì),等腰三角形的性質(zhì),勾股定理,矩形的性質(zhì)與判定,含30度角的直角三角形的性質(zhì),勾股定理等等,解題的關(guān)鍵在于能夠利用分類討論的思想求解.3、見解析【分析】根據(jù)直角三角形斜邊上的中線等于斜邊的一半和等腰三角形的性質(zhì)即可證明.【詳解】解:∵∠ABC=∠ADC=90°,∴△ABC和△ADC是直角三角形,∵點E是AC的中點,∴EB=AC,ED=AC,∴EB=ED,∴∠1=∠2.【點睛】本題考查了直角三角形斜邊上的中線、等腰三角形的判定與性質(zhì),解決本題的關(guān)鍵是掌握直角三角形斜邊上的中線等于斜邊的一半.4、見解析【分析】連接,根據(jù)平行四邊形的性質(zhì)可得AO=OC,DO=OB,由M是AO的中點,N是CO的中點,進而可得MO=ON,進而即可證明四邊形是平行四邊形,即可得證.【詳解】如圖,連接,

∵四邊形ABCD為平行四邊形,∴AO=OC,DO=OB.∵M為AO的中點,N為CO的中點,即∴MO=ON.四邊形是平行四邊形,∴BM∥DN,BM=DN.【點睛】本題考查了平行四邊形的性質(zhì)與判定,掌握平行四邊形的性質(zhì)與判定是解題的關(guān)鍵.5、見解析【分析】先根據(jù)平行線的性質(zhì)得到∠DEC=∠BCE,∠DFC=∠GCF,再由角平分線的定義得到,,則∠DEC=∠DCE,∠DFC=∠DCF,推出DE=DC,DF=DC,則DE=DF,再由AD=C

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論