版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
試卷第=page22頁,共=sectionpages11頁試卷第=page22頁,共=sectionpages22頁人教版8年級(jí)數(shù)學(xué)下冊《平行四邊形》同步訓(xùn)練考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、如圖,在長方形ABCD中,AB=6,BC=8,點(diǎn)E是BC邊上一點(diǎn),將△ABE沿AE折疊,使點(diǎn)B落在點(diǎn)F處,連接CF,當(dāng)△CEF為直角三角形時(shí),則BE的長是()A.4 B.3 C.4或8 D.3或62、下列條件中,能判定四邊形是正方形的是()A.對角線相等的平行四邊形 B.對角線互相平分且垂直的四邊形C.對角線互相垂直且相等的四邊形 D.對角線相等且互相垂直的平行四邊形3、如圖,在四邊形中,AB∥CD,添加下列一個(gè)條件后,一定能判定四邊形是平行四邊形的是()A. B. C. D.4、下列∠A:∠B:∠C:∠D的值中,能判定四邊形ABCD是平行四邊形的是()A.1:2:3:4 B.1:4:2:3C.1:2:2:1 D.3:2:3:25、如圖,把一張長方形紙片ABCD沿對角線AC折疊,點(diǎn)B的對應(yīng)點(diǎn)為點(diǎn)B′,AB′與DC相交于點(diǎn)E,則下列結(jié)論正確的是()A.∠DAB′=∠CAB′ B.∠ACD=∠B′CDC.AD=AE D.AE=CE第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、如圖,在正方形ABCD中,點(diǎn)M,N為CD,BC上的點(diǎn),且DM=CN,AM與DN交于點(diǎn)P,連接AN,點(diǎn)Q為AN中點(diǎn),連接PQ,若AB=10,DM=4,則PQ的長為__________________.2、如圖,圓柱形容器高為0.8m,底面周長為4.8m,在容器內(nèi)壁離底部0.1m的點(diǎn)處有一只蚊子,此時(shí)一只壁虎正好在容器的頂部點(diǎn)處,若容器壁厚忽略不計(jì),則壁虎捕捉蚊子的最短路程是______m.3、如圖,點(diǎn)E,F(xiàn)在正方形ABCD的對角線AC上,AC=10,AE=CF=3,則四邊形BFDE的面積為_____.4、如圖,在矩形ABCD中,AB=2,AD=2,E為BC邊上一動(dòng)點(diǎn),F(xiàn)、G為AD邊上兩個(gè)動(dòng)點(diǎn),且∠FEG=30°,則線段FG的長度最大值為_____.5、如圖,四邊形ABCD是矩形,延長DA到點(diǎn)E,使AE=DA,連接EB,點(diǎn)F1是CD的中點(diǎn),連接EF1,BF1,得到△EF1B;點(diǎn)F2是CF1的中點(diǎn),連接EF2,BF2,得到△EF2B;點(diǎn)F3是CF2的中點(diǎn),連接EF3,BF3,得到△EF3B;…;按照此規(guī)律繼續(xù)進(jìn)行下去,若矩形ABCD的面積等于2,則△EFnB的面積為______.(用含正整數(shù)n的式子表示)三、解答題(5小題,每小題10分,共計(jì)50分)1、如圖,在四邊形ABCD中,∠ABC=∠ADC=90°,E是AC的中點(diǎn),連接BD,ED,EB.求證:∠1=∠2.2、已知:在中,點(diǎn)、點(diǎn)、點(diǎn)分別是、、的中點(diǎn),連接、.(1)如圖1,若,求證:四邊形為菱形;(2)如圖2,過作交延長線于點(diǎn),連接,,在不添加任何輔助線的情況下,請直接寫出圖中所有與面積相等的平行四邊形.
3、如圖,△AOB是等腰直角三角形.(1)若A(﹣4,1),求點(diǎn)B的坐標(biāo);(2)AN⊥y軸,垂足為N,BM⊥y軸,垂足為點(diǎn)M,點(diǎn)P是AB的中點(diǎn),連PM,求∠PMO度數(shù);(3)在(2)的條件下,點(diǎn)Q是ON的中點(diǎn),連PQ,求證:PQ⊥AM.
4、如圖,在△ABC中,點(diǎn)D,E分別是AC,AB的中點(diǎn),點(diǎn)F是CB延長線上的一點(diǎn),且CF=3BF,連接DB,EF.(1)求證:四邊形DEFB是平行四邊形;(2)若∠ACB=90°,AC=12cm,DE=4cm,求四邊形DEFB的周長.5、如圖,在平面直角坐標(biāo)系中,ΔABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(1,1)、B(4,2)、C(3,5).(1)請畫出△ABC關(guān)于x軸的對稱圖形ΔA1B1C1;(2)借助網(wǎng)格,利用無刻度直尺畫出線段CD,使CD平分ΔABC的面積.(保留確定點(diǎn)D的痕跡).-參考答案-一、單選題1、D【解析】【分析】當(dāng)為直角三角形時(shí),有兩種情況:①當(dāng)點(diǎn)F落在矩形內(nèi)部時(shí)連接,先利用勾股定理計(jì)算出,根據(jù)折疊的性質(zhì)得,而當(dāng)為直角三角形時(shí),只能得到,所以點(diǎn)A、F、C共線,即沿折疊,使點(diǎn)B落在對角線上的點(diǎn)F處,則,,可計(jì)算出然后利用勾股定理求解即可;②當(dāng)點(diǎn)F落在邊上時(shí).此時(shí)為正方形,由此即可得到答案.【詳解】解:當(dāng)為直角三角形時(shí),有兩種情況:①當(dāng)點(diǎn)F落在矩形內(nèi)部時(shí),如圖所示.連接,在中,,,∴,∵△ABE沿折疊,使點(diǎn)B落在點(diǎn)F處,∴,BE=EF,當(dāng)為直角三角形時(shí),只能得到,∴∴點(diǎn)A、F、C共線,即△ABE沿折疊,使點(diǎn)B落在對角線上的點(diǎn)F處,∴,∴,設(shè)BE=EF=x,則EC=BC-BE=8-x,∵,∴,解得,∴BE=3;②當(dāng)點(diǎn)F落在邊上時(shí),如圖所示,由折疊的性質(zhì)可知AB=AF,BE=EF,∠AEF=∠B=90°,∠FEC=90°,∴為正方形,∴,綜上所述,BE的長為3或6.故選D.【點(diǎn)睛】本題考查折疊問題:折疊前后兩圖形全等,即對應(yīng)線段相等;對應(yīng)角相等.也考查了矩形的性質(zhì),正方形的性質(zhì)與判定以及勾股定理.解題的關(guān)鍵是要注意本題有兩種情況,需要分類討論,避免漏解.2、D【解析】【分析】根據(jù)正方形的判定定理進(jìn)行判斷即可.【詳解】解:A、對角線相等的平行四邊形是矩形,不符合題意;B、對角線互相平分且垂直的四邊形是菱形,不符合題意;對角線相等且互相垂直的平行四邊形是正方形,故C選項(xiàng)不符合題意;D選項(xiàng)符合題意;故選:D.【點(diǎn)睛】本題考查了正方形的判定,熟知正方形的判定定理是解本題的關(guān)鍵.3、C【解析】【分析】由平行線的性質(zhì)得,再由,得,證出,即可得出結(jié)論.【詳解】解:一定能判定四邊形是平行四邊形的是,理由如下:,,,,,又,四邊形是平行四邊形,故選:C.【點(diǎn)睛】本題考查了平行四邊形的判定,解題的關(guān)鍵是熟練掌握平行四邊形的判定,證明出.4、D【解析】【分析】兩組對角分別相等的四邊形是平行四邊形,所以∠A和∠C是對角,∠B和∠D是對角,對角的份數(shù)應(yīng)相等.【詳解】解:根據(jù)平行四邊形的判定:兩組對角分別相等的四邊形是平行四邊形,所以只有D符合條件.故選:D.【點(diǎn)睛】本題考查了平行四邊形的判定,在應(yīng)用判定定理判定平行四邊形時(shí),應(yīng)仔細(xì)觀察題目所給的條件,仔細(xì)選擇適合于題目的判定方法進(jìn)行解答,避免混用判定方法.5、D【解析】【分析】根據(jù)翻折變換的性質(zhì)可得∠BAC=∠CAB′,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠BAC=∠ACD,從而得到∠ACD=∠CAB′,然后根據(jù)等角對等邊可得AE=CE,從而得解.【詳解】解:∵矩形紙片ABCD沿對角線AC折疊,點(diǎn)B的對應(yīng)點(diǎn)為B′,∴∠BAC=∠CAB′,∵AB∥CD,∴∠BAC=∠ACD,∴∠ACD=∠CAB′,∴AE=CE,∴結(jié)論正確的是D選項(xiàng).故選D.【點(diǎn)睛】本題考查了翻折變換的性質(zhì),平行線的性質(zhì),矩形的對邊互相平行,等角對等邊的性質(zhì),熟記各性質(zhì)并準(zhǔn)確識(shí)圖是解題的關(guān)鍵.二、填空題1、【解析】【分析】由△ADM與△DCN全等,得出∠CDN=∠DAM,從而得到∠DPM=90°,由此∠APN=90°,再由直角三角形斜邊的中線的性質(zhì)求出PQ.【詳解】解:在正方形ABCD中,AD=CD,∠ADC=∠DCN=90°,在△ADM與△DCN中,∵AD=CD,DM=CN,∠ADC=∠DCN,∴△ADM≌△DCN(SAS),∴∠DAM=∠CDN,∴∠DMA=∠CND,在△DPM中,∠PDM+∠PMD=90°,∴∠DPM=90°,∵∠DPM=∠APN,∴△ANP為直角三角形,AN為直角三角形的斜邊,由直角三角形的性質(zhì)得PQ=AN,在△ANB中,AN==2,∴PQ=,故答案為:.【點(diǎn)睛】本題考查正方形的性質(zhì),全等三角形的判定和性質(zhì),直角三角形斜邊上的中線,勾股定理等知識(shí),解題的關(guān)鍵是熟練掌握正方形的性質(zhì).2、2.5.【解析】【分析】如圖所示,將容器側(cè)面展開,連接AB,則AB的長即為最短距離,然后分別求出AC,BC的長度,利用勾股定理求解即可.【詳解】解:如圖所示,將容器側(cè)面展開,連接AB,則AB的長即為最短距離,∵圓柱形容器高為0.8m,底面周長為4.8m在容器內(nèi)壁離底部0.1m的點(diǎn)B處有一只蚊子,此時(shí)一只壁虎正好在容器的頂部點(diǎn)A處,∴,,,過點(diǎn)B作BC⊥AD于C,∴∠BCD=90°,∵四邊形ADEF是矩形,∴∠ADE=∠DEF=90°∴四邊形BCDE是矩形,∴,,∴,∴,答:則壁虎捕捉蚊子的最短路程是2.5m.故答案為:2.5.【點(diǎn)睛】本題主要考查了平面展開—最短路徑,解題的關(guān)鍵在于能夠根據(jù)題意確定展開圖中AB的長即為所求.3、20【解析】【分析】連接BD,交AC于O,根據(jù)題意和正方形的性質(zhì)可求得EF=4,AC⊥BD,由即可求解.【詳解】解:如圖,連接BD,交AC于O,∵四邊形ABCD是正方形,AC=10,∴AC=BD=10,AC⊥BD,OA=OC=OB=OD=5,∵AE=CF=3,∴EO=FO=2,∴EF=EO+FO=4,∴故答案為:20.【點(diǎn)睛】本題主要考查了正方形的性質(zhì),熟練掌握正方形的對角線相等且互相垂直平分是解題的關(guān)鍵.4、【解析】【分析】如圖所示,在中,F(xiàn)G邊的高為AB=2,∠FEG=30°,為定角定高的三角形,故當(dāng)E與B點(diǎn)或C點(diǎn)重合,G與D點(diǎn)重合或F與A點(diǎn)重合時(shí),F(xiàn)G的長度最大,則由矩形ABCD中,AB=2,AD=2可知,∠ABD=60°,故∠ABF=60°-30°=30°,則AF=,則FG=AD-AF=.【詳解】如圖所示,在中,F(xiàn)G邊的高為AB=2,∠FEG=30°,為定角定高的三角形故當(dāng)E與B點(diǎn)或C點(diǎn)重合,G與D點(diǎn)重合或F與A點(diǎn)重合時(shí),F(xiàn)G的長度最大∵矩形ABCD中,AB=2,AD=2∴∠ABD=60°∴∠ABF=60°-30°=30°∴AF=∴FG=AD-AF=.故答案為:.【點(diǎn)睛】本題考查了四邊形中動(dòng)點(diǎn)問題,圖解法數(shù)學(xué)思想依據(jù)是數(shù)形結(jié)合思想.它的應(yīng)用能使復(fù)雜問題簡單化、抽象問題具體化.特殊四邊形的幾何問題,很多困難源于問題中的可動(dòng)點(diǎn).如何合理運(yùn)用各動(dòng)點(diǎn)之間的關(guān)系,同學(xué)們往往缺乏思路,常常導(dǎo)致思維混亂.實(shí)際上求解特殊四邊形的動(dòng)點(diǎn)問題,關(guān)鍵是是利用圖解法抓住它運(yùn)動(dòng)中的某一瞬間,尋找合理的代數(shù)關(guān)系式,確定運(yùn)動(dòng)變化過程中的數(shù)量關(guān)系,圖形位置關(guān)系,分類畫出符合題設(shè)條件的圖形進(jìn)行討論,就能找到解決的途徑,有效避免思維混亂.5、.【解析】【分析】由AE=DA,點(diǎn)F1是CD的中點(diǎn),矩形ABCD的面積等于2,結(jié)合矩形的性質(zhì)可得△EF1D和△EAB的面積都等于1,結(jié)合三角形中線的性質(zhì)可得△EF1F2的面積等于,同理可得△EFn﹣1Fn的面積為,△BCFn的面積為22,即可得出結(jié)論.【詳解】∵AE=DA,點(diǎn)F1是CD的中點(diǎn),矩形ABCD的面積等于2,∴△EF1D和△EAB的面積都等于1,∵點(diǎn)F2是CF1的中點(diǎn),∴△EF1F2的面積等于,同理可得△EFn﹣1Fn的面積為,∵△BCFn的面積為22,∴△EFnB的面積為2+1﹣12﹣(1).故答案為:.【點(diǎn)睛】本題考查了矩形的性質(zhì),三角形中線的性質(zhì),解題的關(guān)鍵是根據(jù)面積找出規(guī)律.三、解答題1、見解析【分析】根據(jù)直角三角形斜邊上的中線等于斜邊的一半和等腰三角形的性質(zhì)即可證明.【詳解】解:∵∠ABC=∠ADC=90°,∴△ABC和△ADC是直角三角形,∵點(diǎn)E是AC的中點(diǎn),∴EB=AC,ED=AC,∴EB=ED,∴∠1=∠2.【點(diǎn)睛】本題考查了直角三角形斜邊上的中線、等腰三角形的判定與性質(zhì),解決本題的關(guān)鍵是掌握直角三角形斜邊上的中線等于斜邊的一半.2、(1)證明見詳解;(2)與面積相等的平行四邊形有、、、.【分析】(1)根據(jù)三角形中位線定理可得:,,,,依據(jù)平行四邊形的判定定理可得四邊形DECF為平行四邊形,再由,可得,依據(jù)菱形的判定定理即可證明;(2)根據(jù)三角形中位線定理及平行四邊形的判定定理可得四邊形DEFB、DECF、ADFE是平行四邊形,根據(jù)平行四邊形的性質(zhì)得出與各平行四邊形面積之間的關(guān)系,再根據(jù)平行四邊形的判定得出四邊形EGCF是平行四邊形,根據(jù)其性質(zhì)得到,根據(jù)等底同高可得,據(jù)此即可得出與面積相等的平行四邊形.【詳解】解:(1)∵D、E、F分別是AB、AC、BC的中點(diǎn),∴,,,,∴四邊形DECF為平行四邊形,∵,,∴四邊形DECF為菱形;(2)∵D、E、F分別是AB、AC、BC的中點(diǎn),∴,,,,,,且,,,∴四邊形DEFB、DECF、ADFE是平行四邊形,∴,∵,,∴四邊形EGCF是平行四邊形,∴,∴,∴∴與面積相等的平行四邊形有、、、.【點(diǎn)睛】題目主要考查菱形及平行四邊形的判定定理和性質(zhì),中位線的性質(zhì)等,熟練掌握平行四邊形及菱形的判定定理及性質(zhì)是解題關(guān)鍵.3、(1)(1,4);(2)45°;(3)見解析
【分析】(1)過點(diǎn)A作AE⊥x軸于E,過點(diǎn)B作BF⊥x軸于F,證明△OAE≌△BOF得到OF=AE,BF=OE,再由點(diǎn)A的坐標(biāo)為(-4,1),得到OF=AE=1,BF=OE=4,則點(diǎn)B的坐標(biāo)為(1,4);(2)延長MP與AN交于H,證明△APH≌△BPM得到AH=BM,再由A點(diǎn)坐標(biāo)為(-4,1),B點(diǎn)坐標(biāo)為(1,4),得到AN=4,OM=4,BM=1,ON=1,則HN=AN-AH=AN-BM=3,MN=OM-ON=3,瑞出HN=MN,即可得到∠NHM=∠NMH=45°,即∠PMO=45°;(3)連接OP,AM,取BM中點(diǎn)G,連接GP,則GP是△ABM的中位線,AM∥GP,證明△PQO≌△PGB得到∠OPQ=∠BPG,再由∠OPQ+∠BPQ=90°,得到∠BPG+∠BPQ=90°,即∠GPQ=90°,則PQ⊥PG,即PG⊥AM;【詳解】解:(1)如圖所示,過點(diǎn)A作AE⊥x軸于E,過點(diǎn)B作BF⊥x軸于F,∴∠AEO=∠OFB=90°,∴∠AOE+∠OAE=90°,又∵∠AOB=90°,∴∠AOE+∠BOF=90°,∴∠OAE=∠BOF,∵AO=OB,∴△OAE≌△BOF(AAS),∴OF=AE,BF=OE,∵點(diǎn)A的坐標(biāo)為(-4,1),∴OF=AE=1,BF=OE=4,∴點(diǎn)B的坐標(biāo)為(1,4);(2)如圖所示,延長MP與AN交于H,∵AH⊥y軸,BM⊥y軸,∴BM∥AN,∴∠MBP=∠HAP,∠AHP=∠BMP,∵點(diǎn)P是AB的中點(diǎn),∴AP=BP,∴△APH≌△BPM(AAS),∴AH=BM,∵A點(diǎn)坐標(biāo)為(-4,1),B點(diǎn)坐標(biāo)為(1,4),∴AN=4,OM=4,BM=1,ON=1,∴HN=AN-AH=AN-BM=3,MN=OM-ON=3,∴HN=MN,∴∠NHM=∠NMH=45°,即∠PMO=45°;(3)如圖所示,連接OP,AM,取BM中點(diǎn)G,連接GP,∴GP是△ABM的中位線,∴AM∥GP,∵Q是ON的中點(diǎn),G是BM的中點(diǎn),ON=BM=1,∴,∵P是AB中點(diǎn),△AOB是等腰直角三角形,∠AOB=90°,∴,∠OAB=∠OBA=45°,∠OPB=90°∴∠PAO=∠POA=45°,∴∠POB=45°,∵∠NAO+∠NOA=90°,∠NOA+∠BON=90°,∴∠NAO=∠BON,∵∠OAB=∠POB=45°,∴∠BAN+∠NAO=∠POQ+∠BON,即∠BAN=∠POQ,由(2)得∠GBP=∠BAN,∴∠GBP=∠QOP,∴△PQO≌△PGB(SAS),∴∠OPQ=∠BPG,∵∠OPQ+∠BPQ=90°,∴∠BPG+∠BPQ=90°,即∠GPQ=90°,∴PQ⊥PG,∴PG⊥AM;【點(diǎn)睛】本題主要考查了坐標(biāo)與圖形,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版廚房設(shè)備智能監(jiān)控系統(tǒng)安裝及維護(hù)合同
- 二零二五年度企業(yè)融資第三方擔(dān)保合同書
- 2025版熱力發(fā)電機(jī)組購銷服務(wù)合同
- 二零二五年度城市軌道交通單項(xiàng)勞務(wù)分包合同模板
- 二零二五年度斷橋鋁門窗安裝與售后服務(wù)標(biāo)準(zhǔn)合同
- 二零二五年度國際海上石油勘探開發(fā)合同規(guī)范文本
- 二零二五年度插畫藝術(shù)展覽合作協(xié)議
- 2025版公路養(yǎng)護(hù)副班司機(jī)勞動(dòng)合同范本
- 二零二五年度空壓機(jī)設(shè)備技術(shù)改造升級(jí)合作協(xié)議
- 市場推廣服務(wù)合同之廣告發(fā)布與內(nèi)容審核責(zé)任
- 消防桌面應(yīng)急預(yù)案方案(3篇)
- (2025年標(biāo)準(zhǔn))校車修理協(xié)議書
- 服裝廠 安全生產(chǎn)管理制度
- 2025年山東省教育廳直屬事業(yè)單位招聘18人筆試模擬試題帶答案詳解
- 2025年汽車駕駛員(高級(jí))考試題及汽車駕駛員(高級(jí))試題及答案
- 2025年“艾梅乙”母嬰阻斷培訓(xùn)試題(附答案)
- 2025年中小學(xué)體育教師招聘考試專業(yè)基礎(chǔ)知識(shí)考試題庫及答案(共2687題)
- Unit1SectionA1a-1c課件-人教版九年級(jí)英語全冊
- 360上網(wǎng)行為管理系統(tǒng)產(chǎn)品白皮書
- 酒店股東消費(fèi)管理辦法
- DB3713-T 344-2024 古樹名木管護(hù)復(fù)壯技術(shù)規(guī)程
評(píng)論
0/150
提交評(píng)論