難點解析滬科版9年級下冊期末測試卷【模擬題】附答案詳解_第1頁
難點解析滬科版9年級下冊期末測試卷【模擬題】附答案詳解_第2頁
難點解析滬科版9年級下冊期末測試卷【模擬題】附答案詳解_第3頁
難點解析滬科版9年級下冊期末測試卷【模擬題】附答案詳解_第4頁
難點解析滬科版9年級下冊期末測試卷【模擬題】附答案詳解_第5頁
已閱讀5頁,還剩29頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

滬科版9年級下冊期末測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、如圖,在中,,,將繞點C逆時針旋轉(zhuǎn)90°得到,則的度數(shù)為()A.105° B.120° C.135° D.150°2、的邊經(jīng)過圓心,與圓相切于點,若,則的大小等于()A. B. C. D.3、如圖,中,,O是AB邊上一點,與AC、BC都相切,若,,則的半徑為()A.1 B.2 C. D.4、如圖,的半徑為6,將劣弧沿弦翻折,恰好經(jīng)過圓心O,點C為優(yōu)弧上的一個動點,則面積的最大值是()A. B. C. D.5、下列判斷正確的是()A.明天太陽從東方升起是隨機事件;B.購買一張彩票中獎是必然事件;C.擲一枚骰子,向上一面的點數(shù)是6是不可能事件;D.任意畫一個三角形,其內(nèi)角和是360°是不可能事件;6、把6張大小、厚度、顏色相同的卡片上分別畫上線段、等邊三角形、正方形、長方形、圓、拋物線.在看不見圖形的條件下任意摸出1張,這張卡片上的圖形是中心對稱圖形的概率是()A. B. C. D.7、如圖,,,,都是上的點,,垂足為,若,則的度數(shù)為()A. B. C. D.8、如圖,在中,,,,將繞原點O逆時針旋轉(zhuǎn)90°,則旋轉(zhuǎn)后點A的對應點的坐標是()A. B. C. D.第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、已知圓O的圓心到直線l的距離為2,且圓的半徑是方程x2﹣5x+6=0的根,則直線l與圓O的的位置關系是______.2、在同一平面上,外有一點P到圓上的最大距離是8cm,最小距離為2cm,則的半徑為______cm.3、點(2,-3)關于原點的對稱點的坐標為_____.4、一個五邊形共有__________條對角線.5、如圖,AB是半圓O的直徑,AB=4,點C,D在半圓上,OC⊥AB,,點P是OC上的一個動點,則BP+DP的最小值為______.6、在一個不透明的盒子里裝有若干個紅球和20個白球,這些球除顏色外其余全部相同,每次從袋子中摸出一球記下顏色后放回,通過多次重復實驗發(fā)現(xiàn)摸到紅球的頻率穩(wěn)定在0.6附近,則袋中紅球大約有________個.7、如圖,半圓O中,直徑AB=30,弦CD∥AB,長為6π,則由與AC,AD圍成的陰影部分面積為_______.三、解答題(7小題,每小題0分,共計0分)1、在平面直角坐標系xOy中,對于點P,O,Q給出如下定義:若OQ<PO<PQ且PO≤2,我們稱點P是線段OQ的“潛力點”已知點O(0,0),Q(1,0)(1)在P1(0,-1),P2(,),P3(-1,1)中是線段OQ的“潛力點”是_____________;(2)若點P在直線y=x上,且為線段OQ的“潛力點”,求點P橫坐標的取值范圍;(3)直線y=2x+b與x軸交于點M,與y軸交于點N,當線段MN上存在線段OQ的“潛力點”時,直接寫出b的取值范圍2、如圖,在直角坐標系中,將△ABC繞點A順時針旋轉(zhuǎn)90°.(1)畫出旋轉(zhuǎn)后的△AB1C1,并寫出B1、C1的坐標;(2)求線段AB在旋轉(zhuǎn)過程中掃過的面積.3、正方形綠化場地擬種植兩種不同顏色(用陰影部分和非陰影部分表示)的花卉,要求種植的花卉能組成軸對稱或中心對稱圖案,下面是三種不同設計方案中的一部分.(1)請把圖①、圖②補成既是軸對稱圖形,又是中心對稱圖形,并畫出一條對稱軸;(2)把圖③補成只是中心對稱圖形,并把中心標上字母P.4、如圖,在中,AB是直徑,弦EF∥AB.(1)請僅用無刻度的直尺畫出劣弧EF的中點P;(保留作圖痕跡,不寫作法)(2)在(1)的條件下,連接OP交EF于點Q,,,求PQ的長度.5、如圖,是由若干個完全相同的小正方體組成的一個幾何體.(1)請畫出這個幾何體的從左面看和從上面看的形狀圖;(用陰影表示)(2)已知每個小正方體的邊長是2cm,求出這個幾何體的表面積是多少?6、對于平面直角坐標系xOy中的圖形M和點P給出如下定義:Q為圖形M上任意一點,若P,Q兩點間距離的最大值和最小值都存在,且最大值是最小值的2倍,則稱點P為圖形M的“二分點”.已知點N(3,0),A(1,0),,.(1)①在點A,B,C中,線段ON的“二分點”是______;②點D(a,0),若點C為線段OD的“二分點”,求a的取值范圍;(2)以點O為圓心,r為半徑畫圓,若線段AN上存在的“二分點”,直接寫出r的取值范圍.7、如圖,已知AB是⊙O的直徑,,連接OC,弦,直線CD交BA的延長線于點.(1)求證:直線CD是⊙O的切線;(2)若,,求OC的長.-參考答案-一、單選題1、B【分析】由題意易得,然后根據(jù)三角形外角的性質(zhì)可求解.【詳解】解:由旋轉(zhuǎn)的性質(zhì)可得:,∴;故選B.【點睛】本題主要考查旋轉(zhuǎn)的性質(zhì)及三角形外角的性質(zhì),熟練掌握旋轉(zhuǎn)的性質(zhì)及三角形外角的性質(zhì)是解題的關鍵.2、A【分析】連接,根據(jù)圓周角定理求出,根據(jù)切線的性質(zhì)得到,根據(jù)直角三角形的性質(zhì)計算,得到答案.【詳解】解:連接,,,與圓相切于點,,,故選:A.【點睛】本題考查的是切線的性質(zhì)、圓周角定理,掌握圓的切線垂直于經(jīng)過切點的半徑是解題的關鍵.3、D【分析】作OD⊥AC于D,OE⊥BC于E,如圖,設⊙O的半徑為r,根據(jù)切線的性質(zhì)得OD=OE=r,易得四邊形ODCE為正方形,則CD=OD=r,再證明△ADO∽△ACB,然后利用相似比得到,再根據(jù)比例的性質(zhì)求出r即可.【詳解】解:作OD⊥AC于D,OE⊥BC于E,如圖,設⊙O的半徑為r,∵⊙O與AC、BC都相切,∴OD=OE=r,而∠C=90°,∴四邊形ODCE為正方形,∴CD=OD=r,∵OD∥BC,∴△ADO∽△ACB,∴∵AF=AC-r,BC=3,AC=4,代入可得,∴r=.故選:D.【點睛】本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點的半徑.運用切線的性質(zhì)來進行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構(gòu)造直角三角形解決有關問題.也考查了相似三角形的判定與性質(zhì).4、C【分析】如圖,過點C作CT⊥AB于點T,過點O作OH⊥AB于點H,交⊙O于點K,連接AO、AK,解直角三角形求出AB,求出CT的最大值,可得結(jié)論.【詳解】解:如圖,過點C作CT⊥AB于點T,過點O作OH⊥AB于點H,交⊙O于點K,連接AO、AK,由題意可得AB垂直平分線段OK,∴AO=AK,OH=HK=3,∵OA=OK,∴OA=OK=AK,∴∠OAK=∠AOK=60°,∴AH=OA×sin60°=6×=3,∵OH⊥AB,∴AH=BH,∴AB=2AH=6,∵OC+OH?CT,∴CT?6+3=9,∴CT的最大值為9,∴△ABC的面積的最大值為=27,故選:C.【點睛】本題考查垂徑定理、三角函數(shù)、三角形的面積、垂線段最短等知識,解題的關鍵是求出CT的最大值,屬于中考??碱}型.5、D【詳解】解:A、明天太陽從東方升起是必然事件,故本選項錯誤,不符合題意;B、購買一張彩票中獎是隨機事件,故本選項錯誤,不符合題意;C、擲一枚骰子,向上一面的點數(shù)是6是隨機事件,故本選項錯誤,不符合題意;D、任意畫一個三角形,其內(nèi)角和是360°是不可能事件,故本選項正確,符合題意;故選:D【點睛】本題考查的是對必然事件的概念的理解,熟練掌握必然事件指在一定條件下一定發(fā)生的事件;不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件是解題的關鍵.6、D【分析】根據(jù)題意,判斷出中心對稱圖形的個數(shù),進而即可求得答案【詳解】解:∵線段、等邊三角形、正方形、長方形、圓、拋物線中,中心對稱圖形有:線段、正方形、長方形、圓,共4種,總數(shù)為6種∴在看不見圖形的條件下任意摸出1張,這張卡片上的圖形是中心對稱圖形的概率是故選D【點睛】本題考查了概率公式求概率,中心對稱圖形,掌握線段、等邊三角形、正方形、長方形、圓、拋物線的性質(zhì)是解題的關鍵.7、B【分析】連接OC.根據(jù)確定,,進而計算出,根據(jù)圓心角的性質(zhì)求出,最后根據(jù)圓周角的性質(zhì)即可求出.【詳解】解:如下圖所示,連接OC.∵,∴,.∴.∵.∴.∴∵和分別是所對的圓周角和圓心角,∴.故選:B.【點睛】本題考查垂徑定理,圓心角的性質(zhì),圓周角的性質(zhì),綜合應用這些知識點是解題關鍵.8、C【分析】過點A作AC⊥x軸于點C,設,則,根據(jù)勾股定理,可得,從而得到,進而得到∴,可得到點,再根據(jù)旋轉(zhuǎn)的性質(zhì),即可求解.【詳解】解:如圖,過點A作AC⊥x軸于點C,設,則,∵,,∴,∵,,∴,解得:,∴,∴,∴點,∴將繞原點O順時針旋轉(zhuǎn)90°,則旋轉(zhuǎn)后點A的對應點的坐標是,∴將繞原點O逆時針旋轉(zhuǎn)90°,則旋轉(zhuǎn)后點A的對應點的坐標是.故選:C【點睛】本題考查坐標與圖形變化一旋轉(zhuǎn),解直角三角形等知識,解題的關鍵是求出點A的坐標,屬于中考??碱}型.二、填空題1、相切或相交【詳解】首先求出方程的根,再利用半徑長度,由點O到直線l的距離為d,若d<r,則直線與圓相交;若d=r,則直線于圓相切;若d>r,則直線與圓相離,從而得出答案.【分析】解:∵x2﹣5x+6=0,(x﹣2)(x﹣3)=0,解得:x1=2,x2=3,∵圓的半徑是方程x2﹣5x+6=0的根,即圓的半徑為2或3,∴當半徑為2時,直線l與圓O的的位置關系是相切,當半徑為3時,直線l與圓O的的位置關系是相交,綜上所述,直線l與圓O的的位置關系是相切或相交.故答案為:相切或相交.【點睛】本題考查的是直線與圓的位置關系,因式分解法解一元二次方程,解決此類問題可通過比較圓心到直線距離d與圓的半徑大小關系完成判定.2、5或3【分析】分點P在圓內(nèi)或圓外進行討論.【詳解】解:①當點P在圓內(nèi)時,⊙O的直徑長為8+2=10(cm),半徑為5cm;②當點P在圓外時,⊙O的直徑長為8-2=6(cm),半徑為3cm;綜上所述:⊙O的半徑長為5cm或3cm.故答案為:5或3.【點睛】本題考查了點與圓的位置關系:點的位置可以確定該點到圓心距離與半徑的關系,反過來已知點到圓心距離與半徑的關系可以確定該點與圓的位置關系.3、(-2,3)【分析】根據(jù)“關于原點對稱的點的坐標關系,橫坐標與縱坐標都互為相反數(shù)”,即可求解.【詳解】點(2,-3)關于原點的對稱點的坐標是(-2,3).故答案為:

(-2,3).【點睛】本題主要考查點關于原點對稱,解決本題的關鍵是要熟練掌握關于原點對稱點的坐標的關系.4、5【分析】由n邊形的對角線有:條,再把代入計算即可得.【詳解】解:邊形共有條對角線,五邊形共有條對角線.故答案為:5【點睛】本題考查的是多邊形的對角線的條數(shù),掌握n邊形的對角線的條數(shù)是解題的關鍵.5、【分析】如圖,連接AD,PA,PD,OD.首先證明PA=PB,再根據(jù)PD+PB=PD+PA≥AD,求出AD即可解決問題.【詳解】解:如圖,連接AD,PA,PD,OD.∵OC⊥AB,OA=OB,∴PA=PB,∠COB=90°,∵,∴∠DOB=×90°=60°,∵OD=OB,∴△OBD是等邊三角形,∴∠ABD=60°∵AB是直徑,∴∠ADB=90°,∴AD=AB?sin∠ABD=2,∵PB+PD=PA+PD≥AD,∴PD+PB≥2,∴PD+PB的最小值為2,故答案為:2.【點睛】本題考查圓周角定理,垂徑定理,圓心角,弧,弦之間的關系等知識,解題的關鍵是學會用轉(zhuǎn)化的思想思考問題.6、30【分析】設袋中紅球有x個,根據(jù)題意用紅球數(shù)除以白球和紅球的總數(shù)等于紅球的頻率列出方程即可求出紅球數(shù).【詳解】解:設袋中紅球有x個,根據(jù)題意,得:,解并檢驗得:x=30.所以袋中紅球有30個.故答案為:30.【點睛】本題考查了利用頻率估計概率,解決本題的關鍵是用頻率的集中趨勢來估計概率,這個固定的近似值7、45【分析】連接OC,OD,根據(jù)同底等高可知S△ACD=S△OCD,把陰影部分的面積轉(zhuǎn)化為扇形OCD的面積,利用扇形的面積公式S=來求解.【詳解】解:連接OC,OD,∵直徑AB=30,∴OC=OD=,∴CD∥AB,∴S△ACD=S△OCD,∵長為6π,∴陰影部分的面積為S陰影=S扇形OCD=,故答案為:45π.【點睛】本題主要考查了扇形的面積公式,正確理解陰影部分的面積=扇形COD的面積是解題的關鍵.三、解答題1、(1);(2);(3)或【分析】(1)分別計算出OQ、PO和PQ的長度,比較即可得出答案;(2)先判斷點P在以O為圓心,1為半徑的圓外且點P在線段OQ垂直平分線的左側(cè),結(jié)合PO≤2,點P在以O為圓心,2為半徑的圓上或圓內(nèi),可得點P在如圖所示的線段AB上(不包含點B),過作軸,過作軸,垂足分別為再根據(jù)圖形的性質(zhì)求解從而可得答案;(3)由(2)得:點P在以O為圓心,1為半徑的圓外且點P在以O為圓心,2為半徑的圓上或圓內(nèi),而PO<PQ,點P在線段OQ垂直平分線的左側(cè),再分兩種情況討論:當時,當時,分別畫出兩種情況下的臨界直線再根據(jù)臨界直線經(jīng)過的特殊點求解的值,再確定范圍即可.【詳解】解:(1)O(0,0),Q(1,0),P1(0,-1),P2(,),P3(-1,1)不滿足OQ<PO<PQ且PO≤2,所以不是線段OQ的“潛力點”,同理:所以不滿足OQ<PO<PQ且PO≤2,所以不是線段OQ的“潛力點”,同理:所以滿足:OQ<PO<PQ且PO≤2,所以是線段OQ的“潛力點”,故答案為:P3(2)∵點P為線段OQ的“潛力點”,∴OQ<PO<PQ且PO≤2,∵OQ<PO,∴點P在以O為圓心,1為半徑的圓外∵PO<PQ,∴點P在線段OQ垂直平分線的左側(cè),而的垂直平分線為:∵PO≤2,∴點P在以O為圓心,2為半徑的圓上或圓內(nèi)又∵點P在直線y=x上,∴點P在如圖所示的線段AB上(不包含點B)過作軸,過作軸,垂足分別為由題意可知△BOC和△AOD是等腰三角形,∴∴-≤xp<-(3)由(2)得:點P在以O為圓心,1為半徑的圓外且點P在以O為圓心,2為半徑的圓上或圓內(nèi),而PO<PQ,點P在線段OQ垂直平分線的左側(cè)當時,過時,即函數(shù)解析式為:此時則當與半徑為2的圓相切于時,則由而當時,如圖,同理可得:點P在以O為圓心,1為半徑的圓外且點P在以O為圓心,2為半徑的圓上或圓內(nèi),而PO<PQ,點P在線段OQ垂直平分線的左側(cè),同理:當過則直線為在直線上,此時當過時,則所以此時:綜上:的范圍為:1<b≤或<b<-1【點睛】本題考查的是新定義情境下的知識運用,圓的基本性質(zhì),圓的切線的性質(zhì),一次函數(shù)的綜合應用,銳角三角函數(shù)的應用,勾股定理的應用,數(shù)形結(jié)合是解本題的關鍵.2、(1)作圖見解析,、;(2)【分析】(1)將繞點A順時針旋轉(zhuǎn)90°得,根據(jù)點A、B、C坐標,即可確定出點、的坐標;(2)根據(jù)勾股定理求出AB的長,由扇形面積公式即可得出答案.【詳解】(1)將繞點A順時針旋轉(zhuǎn)90°得如圖所示:∴、;(2)由圖可知:,∴線段AB在旋轉(zhuǎn)過程中掃過的面積為.【點睛】本題考查作旋轉(zhuǎn)圖形以及扇形的面積公式,掌握旋轉(zhuǎn)的性質(zhì)及扇形的面積公式是解題的關鍵.3、(1)見解析(2)見解析【分析】(1)根據(jù)軸對稱圖形,中心對稱圖形的性質(zhì)畫出圖形即可.(2)根據(jù)中心對稱圖形的定義畫出圖形即可.(1)解:圖形如圖①②所示.(2)解:圖形如圖③所示,點P即為所求作.【點睛】本題考查利用旋轉(zhuǎn)變換設計圖案,正方形的性質(zhì),軸對稱圖形,中心對稱圖形等知識,解題的關鍵是理解題意,靈活運用所學知識解決問題.4、(1)見解析(2)1【分析】(1)如圖,連接BE,AF,BE交AF于C,作直線OC交于點P,點P即為所求.(2)利用垂徑定理結(jié)合勾股定理求得OQ=4,進一步計算即可求解.(1)解:如圖中,點P即為所求.(2)解:連接OF,由作圖知OP⊥EF,EQ=QF=EF=3,∵AB=10,∴OF=OP=AB=5,∴OQ==4,∴PQ=OP-OQ=1,∴PQ的長度為1.【點睛】本題考查了作圖-應用與設計,垂徑定理,勾股定理,,解題的關鍵是靈活運用所學知識解決問題.5、(1)見解析(2)152cm2.【分析】(1)左視圖3列,每列小正方形數(shù)目分別為3,2,1;俯視圖有3列,每行小正方形數(shù)目分別為3,2,1,;(2)先數(shù)出各個面小正方形的個數(shù),再乘每個小正方形的面積可計算出表面積.(1)如圖所示:(2)(2×2)×(6×6+2)=4×38=152(cm2).故這個幾何體的表面積是152cm2.【點睛】本題考查作圖-三視圖.在畫圖時一定要將物體的邊緣、棱、頂點都體現(xiàn)出來,看得見的輪廓線都畫成實線,看不見的畫成虛線,不能漏掉.本題畫幾何體的三視圖時應注意小正方形的數(shù)目及位置.6、(1)①B和C;②或;(2)或【分析】(1)①分別找出點A,B,C到線段ON的最小值和最大值,是否滿足“二分點”定義即可;②對a的取值分情況討論:、、和,根據(jù)“二分點”的定義可求解;(2)設線段AN上存在的“二分點”為,對的取值分

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論