難點(diǎn)解析人教版8年級(jí)數(shù)學(xué)上冊《全等三角形》專題測評(píng)試題(含詳解)_第1頁
難點(diǎn)解析人教版8年級(jí)數(shù)學(xué)上冊《全等三角形》專題測評(píng)試題(含詳解)_第2頁
難點(diǎn)解析人教版8年級(jí)數(shù)學(xué)上冊《全等三角形》專題測評(píng)試題(含詳解)_第3頁
難點(diǎn)解析人教版8年級(jí)數(shù)學(xué)上冊《全等三角形》專題測評(píng)試題(含詳解)_第4頁
難點(diǎn)解析人教版8年級(jí)數(shù)學(xué)上冊《全等三角形》專題測評(píng)試題(含詳解)_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

人教版8年級(jí)數(shù)學(xué)上冊《全等三角形》專題測評(píng)考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、如圖,△ABC的三邊AB,BC,CA長分別是20,30,40,其三條角平分線將△ABC分為三個(gè)三角形,則S△ABO:S△BCO:S△CAO等于()A.1:1:1 B.1:2:3 C.2:3:4 D.3:4:52、如圖,與相交于點(diǎn)O,,不添加輔助線,判定的依據(jù)是(

)A. B. C. D.3、如圖,C為線段AE上一動(dòng)點(diǎn)(不與點(diǎn),重合),在AE同側(cè)分別作等邊三角形ABC和等邊三角形CDE,AD與BE交于點(diǎn)O,AD與BC交于點(diǎn)P,BE與CD交于點(diǎn)Q,連結(jié)PQ.以下結(jié)論錯(cuò)誤的是(

)A.∠AOB=60° B.AP=BQC.PQ∥AE D.DE=DP4、如圖,已知,,,是上的兩個(gè)點(diǎn),,,若,,,則的長為(

)A. B. C. D.5、如圖:∠B=∠C=90°,E是BC的中點(diǎn),DE平分∠ADC,則下列說法正確的有幾個(gè)(

)(1)AE平分∠DAB;(2)△EBA≌△DCE;(3)AB+CD=AD;

(4)AE⊥DE.(5)DE=AEA.2個(gè) B.3個(gè) C.4個(gè) D.5第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、在△ABC中,AB=5,BC邊上的中線AD=4,則AC的長m的取值范圍是_______.2、如圖,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D,AD=2,BE=1.則DE=________.3、如圖,在中,D是上的一點(diǎn),,平分,交于點(diǎn)E,連接,若,,則_______.4、如圖,在中,,以點(diǎn)為圓心,任意長為半徑作弧,分別交于和,再分別以點(diǎn)為圓心,大于二分之一為半徑作弧,兩弧交于點(diǎn),連接并延長交于點(diǎn),過點(diǎn)作于.若,則的面積為________.5、如圖,在△ABC中,∠B=47°,三角形的外角∠DAC和∠ACF的平分線交于點(diǎn)E,則∠ABE=_____°.三、解答題(5小題,每小題10分,共計(jì)50分)1、如圖,在五邊形ABCDE中,AB=CD,∠ABC=∠BCD,BE,CE分別是∠ABC,∠BCD的角平分線.(1)求證:△ABE≌△DCE;(2)當(dāng)∠A=80°,∠ABC=140°,時(shí),∠AED=_________度(直接填空).2、已知:如圖,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=50°.(1)求證:AC=BD;(2)求∠APB的度數(shù).3、已知如圖,E.F在BD上,且AB=CD,BF=DE,AE=CF,求證:AC與BD互相平分.4、在中,,直線經(jīng)過點(diǎn)C,且于D,于E,(1)當(dāng)直線繞點(diǎn)C旋轉(zhuǎn)到圖1的位置時(shí),顯然有:(不必證明);(2)當(dāng)直線繞點(diǎn)C旋轉(zhuǎn)到圖2的位置時(shí),求證:;(3)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖3的位置時(shí),試問、、具有怎樣的等量關(guān)系?請直接寫出這個(gè)等量關(guān)系.5、如圖,在△ABC中,AD平分∠BAC,∠C=90°,DE⊥AB于點(diǎn)E,點(diǎn)F在AC上,BD=DF.(1)求證:CF=EB;(2)若AB=14,AF=8,求CF的長.-參考答案-一、單選題1、C【解析】【分析】過點(diǎn)作于點(diǎn),作于點(diǎn),作于點(diǎn),先根據(jù)角平分線的性質(zhì)可得,再根據(jù)三角形的面積公式即可得.【詳解】解:如圖,過點(diǎn)作于點(diǎn),作于點(diǎn),作于點(diǎn),是的三條角平分線,,,故選:C.【考點(diǎn)】本題考查了角平分線的性質(zhì),熟練掌握角平分線的性質(zhì)是解題關(guān)鍵.2、B【解析】【分析】根據(jù),,正好是兩邊一夾角,即可得出答案.【詳解】解:∵在△ABO和△DCO中,,∴,故B正確.故選:B.【考點(diǎn)】本題主要考查了全等三角形的判定,熟練掌握兩邊對應(yīng)相等,且其夾角也對應(yīng)相等的兩個(gè)三角形全等,是解題的關(guān)鍵.3、D【解析】【分析】利用等邊三角形的性質(zhì),BC∥DE,再根據(jù)平行線的性質(zhì)得到∠CBE=∠DEO,于是∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,得出A正確;根據(jù)△CQB≌△CPA(ASA),得出B正確;由△ACD≌△BCE得∠CBE=∠DAC,加之∠ACB=∠DCE=60°,AC=BC,得到△CQB≌△CPA(ASA),再根據(jù)∠PCQ=60°推出△PCQ為等邊三角形,又由∠PQC=∠DCE,根據(jù)內(nèi)錯(cuò)角相等,兩直線平行,得出C正確;根據(jù)∠CDE=60°,∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,可知∠DQE≠∠CDE,得出D錯(cuò)誤.【詳解】解:∵等邊△ABC和等邊△CDE,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠BCD=∠DCE+∠BCD,即∠ACD=∠BCE,在△ACD與△BCE中,,∴△ACD≌△BCE(SAS),∴∠CBE=∠DAC,又∵∠ACB=∠DCE=60°,∴∠BCD=60°,即∠ACP=∠BCQ,又∵AC=BC,在△CQB與△CPA中,,∴△CQB≌△CPA(ASA),∴CP=CQ,又∵∠PCQ=60°可知△PCQ為等邊三角形,∴∠PQC=∠DCE=60°,∴PQ∥AE,故C正確,∵△CQB≌△CPA,∴AP=BQ,故B正確,∵AD=BE,AP=BQ,∴AD-AP=BE-BQ,即DP=QE,∵∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,∴∠DQE≠∠CDE,故D錯(cuò)誤;∵∠ACB=∠DCE=60°,∴∠BCD=60°,∵等邊△DCE,∠EDC=60°=∠BCD,∴BC∥DE,∴∠CBE=∠DEO,∴∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,故A正確.故選:D.【考點(diǎn)】本題考查了等邊三角形的性質(zhì)、全等三角形的判定與性質(zhì),利用旋轉(zhuǎn)不變性,解題的關(guān)鍵是找到不變量.4、B【解析】【分析】由題意可證可得可求EF的長.【詳解】解:在和中,故選:B.【考點(diǎn)】本題考查了全等三角形的判定和性質(zhì),熟練運(yùn)用全等三角形的判定是本題的關(guān)鍵.5、B【解析】【分析】過點(diǎn)E作EF⊥AD垂足為點(diǎn)F,證明△DEF≌△DEC(AAS);得出CE=EF,DC=DF,∠CED=∠FED,證明Rt△AFE≌Rt△ABE(HL);得出AF=AB,∠FAE=∠BAE,∠AEF=∠AEB,即可得出答案.【詳解】解:如圖,過點(diǎn)E作EF⊥AD,垂足為點(diǎn)F,可得∠DFE=90°,則∠DFE=∠C,∵DE平分∠ADC,∴∠FDE=∠CDE,在△DCE和△DFE中,,∴△DEF≌△DEC(AAS);∴CE=EF,DC=DF,∠CED=∠FED,∵E是BC的中點(diǎn),∴CE=EB,∴EF=EB,在Rt△ABE和Rt△AFE中,,∴Rt△AFE≌Rt△ABE(HL);∴AF=AB,∠FAE=∠BAE,∠AEF=∠AEB,∴AE平分∠DAB,故結(jié)論(1)正確,則AD=AF+DF=AB+CD,故結(jié)論(3)正確;可得∠AED=∠FED+AEF=∠FEC+∠BEF=90°,即AE⊥DE故結(jié)論(4)正確.∵AB≠CD,AE≠DE,(5)錯(cuò)誤,∴△EBA≌△DCE不可能成立,故結(jié)論(2)錯(cuò)誤.綜上所知正確的結(jié)論有3個(gè).故答案為:B.【考點(diǎn)】本題考查全等三角形的判定與性質(zhì)、平行線的判定等內(nèi)容,作出輔助線是解題的關(guān)鍵.二、填空題1、3<m<13【解析】【分析】延長AD至E,使DE=AD=4,連接CE,利用SAS證明△ABD≌△ECD,可得CE=AB,再根據(jù)三角形的三邊的關(guān)系即可解決問題.【詳解】解:如圖,延長AD至E,使DE=AD=4,連接CE,∵AD是BC邊上的中線,∴BD=CD,在△ADB和△CDE中,,∴△ABD≌△ECD(SAS),∴CE=AB,在△ACE中,AE-CE<AC<AE+CE,∵CE=AB=5,AE=8,∴8-5<AC<8+5,∴3<AC<13,∴3<m<13.故答案為:3<m<13.【考點(diǎn)】此題考查了全等三角形的性質(zhì)與判定,三角形的三邊的關(guān)系,解題的關(guān)鍵是利用已知條件構(gòu)造全等三角形,然后利用三角形的三邊的關(guān)系解決問題.2、1【解析】【分析】先證明△ACD≌△CBE,再求出DE的長,解決問題.【詳解】解:∵BE⊥CE于E,AD⊥CE于D∴∵∴∵∴∴,∴.故答案為:1【考點(diǎn)】此題考查三角形全等的判定和性質(zhì),掌握再全等三角形的判定和性質(zhì)是解題的關(guān)鍵.3、55°【解析】【分析】根據(jù)SAS證明△ACE≌△DCE,根據(jù)全等三角形的性質(zhì)可得∠CDE=∠A=100°,再根據(jù)三角形外角的性質(zhì)可求∠BED.【詳解】解:∵CE平分∠ACB,∴∠ACE=∠DCE,在△ACE與△DCE中,,∴△ACE≌△DCE(SAS),∴∠CDE=∠A=100°,∵∠B=45°,∴∠BED=∠CDE-∠B=100°-45°=55°,故答案為:55°.【考點(diǎn)】本題考查了全等三角形的判定與性質(zhì),三角形外角的性質(zhì),關(guān)鍵是得到∠CDE=∠A=100°.4、5【解析】【分析】作GM⊥AB于M,先利用基本作圖得到AG平分∠BAC,再根據(jù)角平分線的性質(zhì)得到GM=GH=2,然后根據(jù)三角形面積公式計(jì)算.【詳解】解:作GM⊥AB于M,由作法得AG平分∠BAC,而GH⊥AC,GM⊥AB,∴GM=GH=2,∴,故答案為:5.【考點(diǎn)】此題考查了角平分線的性質(zhì)定理:角平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等,還考查了角平分線的作圖方法,正確理解題意得到AG平分∠BAC是解題的關(guān)鍵.5、23.5或【解析】【分析】首先作EM⊥BD、EN⊥BF、EO⊥AC垂足分別為M、N、O,再利用角平分線的性質(zhì)得出BE為∠ABC的角平分線,即可求解.【詳解】解:作EM⊥BD、EN⊥BF、EO⊥AC垂足分別為M、N、O,如圖所示,∵AE、CE是∠DAC和∠ACF的平分線,∴EM=EO,EO=EN,∴EM=EN,∴BE是∠ABC的角平分線,∴∠ABE=∠ABC=23.5°.故答案為:23.5.【考點(diǎn)】此題考查角平分線的性質(zhì):在角的內(nèi)部,到角的兩邊距離相等的點(diǎn)在角的平分線上,反之也是成立的.解題關(guān)鍵是利用角平分線的判定定理.三、解答題1、(1)見解析;(2)100【解析】【分析】(1)根據(jù)∠ABC=∠BCD,BE,CE分別是∠ABC,∠BCD的角平分線,可得∠ABE=∠DCE,∠CBE=∠BCE,推出BE=CE,由此利用SAS證明△ABE≌△DCE;(2)根據(jù)三角形全等的性質(zhì)求出∠D的度數(shù),利用公式求出五邊形的內(nèi)角和,即可得到答案.(1)證明:∵∠ABC=∠BCD,BE,CE分別是∠ABC,∠BCD的角平分線,∴∠ABE=∠CBE=∠ABC,∠BCE=∠DCE=∠BCD,∴∠ABE=∠DCE,∠CBE=∠BCE,∴BE=CE,又∵AB=CD,∴△ABE≌△DCE(SAS);(2)∵△ABE≌△DCE,∴∠D=∠A=80°,∵五邊形ABCDE的內(nèi)角和為,∴∠AED=,故答案為:100.【考點(diǎn)】此題考查了全等三角形的判定及性質(zhì),多邊形內(nèi)角和計(jì)算,正確掌握全等三角形的判定及性質(zhì)定理是解題的關(guān)鍵.2、(1)見解析;(2)【解析】【分析】(1)通過證明,即可求證;(2)利用三角形外角的性質(zhì)可得,由(1)可得,從而得到,利用三角形內(nèi)角和的性質(zhì)即可求解.(1)證明:∵,∴,又∵OA=OB,OC=OD,∴,∴;(2)解:由(1)可得,由三角形外角的性質(zhì)可得∴,∴,【考點(diǎn)】此題考查了全等三角形的判定與性質(zhì),三角形內(nèi)角的性質(zhì)以及三角形外角的性質(zhì),解題的關(guān)鍵是熟練掌握相關(guān)基本性質(zhì).3、見解析【解析】【分析】根據(jù)已知條件易證△ABE≌△DFC,由全等三角形的對應(yīng)角相等可得∠B=∠D,再利用AAS證明△ABO≌△COD,所以AO=CO,BO=DO,即可證明AC與BD互相平分.【詳解】證明:∵BF=DE,∴BF-EF=DE-EF即BE=DF,在△ABE和△DFC中,∴△ABE≌△DFC(SSS),∴∠B=∠D.在△ABO和△CDO中,∴△ABO≌△CDO(AAS),∴AO=CO,BO=DO,即AC與BD互相平分.【考點(diǎn)】本題考查了全等三角形的判定與性質(zhì),解題關(guān)鍵是通過證明△ABE≌△DFC得∠B=∠D,為證明△ABO≌△COD提供條件.4、(1)見解析;(2)見解析;(3)DE=BE-AD【解析】【分析】(1)由于△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過點(diǎn)C,且AD⊥MN于D,BE⊥MN于E,由此即可證明△ADC≌△CEB,然后利用全等三角形的性質(zhì)即可解決問題;(2)由于△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過點(diǎn)C,且AD⊥MN于D,BE⊥MN于E,由此仍然可以證明△ADC≌△CEB,然后利用全等三角形的性質(zhì)也可以解決問題;(3)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖(3)的位置時(shí),仍然△ADC≌△CEB,然后利用全等三角形的性質(zhì)可以得到DE=BE-AD.【詳解】解:(1)∵△ABC中,∠ACB=90°,∴∠ACD+∠BCE=90°,又直線MN經(jīng)過點(diǎn)C,且AD⊥MN于D,BE⊥MN于E,∴∠ADC=∠CEB=90°∴∠ACD+∠DAC=90°,∴∠BCE=∠DAC,在△ADC和△CEB中,,∴△ADC≌

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論