鐘山職業(yè)技術(shù)學(xué)院《計算智能與應(yīng)用》2024-2025學(xué)年第一學(xué)期期末試卷_第1頁
鐘山職業(yè)技術(shù)學(xué)院《計算智能與應(yīng)用》2024-2025學(xué)年第一學(xué)期期末試卷_第2頁
鐘山職業(yè)技術(shù)學(xué)院《計算智能與應(yīng)用》2024-2025學(xué)年第一學(xué)期期末試卷_第3頁
鐘山職業(yè)技術(shù)學(xué)院《計算智能與應(yīng)用》2024-2025學(xué)年第一學(xué)期期末試卷_第4頁
鐘山職業(yè)技術(shù)學(xué)院《計算智能與應(yīng)用》2024-2025學(xué)年第一學(xué)期期末試卷_第5頁
已閱讀5頁,還剩1頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共2頁鐘山職業(yè)技術(shù)學(xué)院《計算智能與應(yīng)用》2024-2025學(xué)年第一學(xué)期期末試卷題號一二三四總分得分一、單選題(本大題共15個小題,每小題1分,共15分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、對于一個智能聊天機器人,需要理解用戶輸入的自然語言并生成合理的回復(fù)。假設(shè)用戶提出了一個復(fù)雜且含義模糊的問題,聊天機器人要準(zhǔn)確理解用戶的意圖并提供有用的回答。以下哪種技術(shù)或方法對于提高聊天機器人的理解和生成能力是關(guān)鍵的?()A.構(gòu)建大規(guī)模的語料庫,通過匹配來生成回復(fù)B.運用深度學(xué)習(xí)模型,如Transformer架構(gòu)進行訓(xùn)練C.基于模板的回復(fù)生成,限制回復(fù)的多樣性D.不考慮上下文,只根據(jù)問題的關(guān)鍵詞生成回復(fù)2、圖像識別是人工智能的常見應(yīng)用之一。假設(shè)要開發(fā)一個能夠準(zhǔn)確識別各種動物的圖像識別系統(tǒng),以下關(guān)于圖像識別技術(shù)的描述,正確的是:()A.僅僅依靠像素級的特征提取就能實現(xiàn)高精度的圖像識別,無需考慮對象的形狀和結(jié)構(gòu)B.深度學(xué)習(xí)模型在圖像識別中總是能夠自動學(xué)習(xí)到最有效的特征,無需人工干預(yù)特征設(shè)計C.對于復(fù)雜的圖像場景,傳統(tǒng)的圖像識別方法比基于深度學(xué)習(xí)的方法更具優(yōu)勢D.圖像識別系統(tǒng)的性能不受圖像質(zhì)量、光照條件和拍攝角度等因素的影響3、在人工智能的自動駕駛領(lǐng)域,車輛需要根據(jù)周圍環(huán)境的感知信息做出決策,如加速、減速、轉(zhuǎn)彎等。假設(shè)車輛面臨復(fù)雜的交通場景,包括多個車輛、行人、交通信號燈等,為了確保安全和高效的駕駛決策,以下哪種技術(shù)或方法是至關(guān)重要的?()A.基于規(guī)則的決策制定,遵循固定的交通規(guī)則B.深度學(xué)習(xí)模型,自動從大量數(shù)據(jù)中學(xué)習(xí)決策模式C.隨機決策,根據(jù)概率選擇行動D.不考慮其他車輛和行人,只關(guān)注自身車輛的狀態(tài)4、假設(shè)要開發(fā)一個能夠輔助醫(yī)生進行疾病診斷的人工智能系統(tǒng),需要整合多種醫(yī)療數(shù)據(jù),如病歷、影像、檢驗報告等。在這個過程中,以下哪個環(huán)節(jié)可能是最具挑戰(zhàn)性的?()A.數(shù)據(jù)的清洗和預(yù)處理B.多模態(tài)數(shù)據(jù)的融合C.模型的訓(xùn)練和優(yōu)化D.模型的解釋和可信賴性5、深度學(xué)習(xí)模型在圖像識別、語音識別等領(lǐng)域取得了巨大的成功,但也面臨著過擬合、計算資源需求大等挑戰(zhàn)。假設(shè)要訓(xùn)練一個深度神經(jīng)網(wǎng)絡(luò)來識別各種動物的圖像,然而數(shù)據(jù)量有限,為了避免過擬合同時提高模型的性能,以下哪種方法最為有效?()A.增加網(wǎng)絡(luò)層數(shù)B.減少訓(xùn)練輪數(shù)C.使用數(shù)據(jù)增強技術(shù)D.降低學(xué)習(xí)率6、在人工智能的語音識別領(lǐng)域,假設(shè)要開發(fā)一個能夠準(zhǔn)確識別不同口音和背景噪聲下的語音識別系統(tǒng),以下關(guān)于語音識別技術(shù)的描述,正確的是:()A.語音識別系統(tǒng)只需要對清晰、標(biāo)準(zhǔn)的語音進行訓(xùn)練,就能應(yīng)對各種復(fù)雜情況B.增加訓(xùn)練數(shù)據(jù)中的口音和噪聲樣本可以提高系統(tǒng)在復(fù)雜環(huán)境下的識別能力C.語音識別的準(zhǔn)確率只取決于聲學(xué)模型,與語言模型無關(guān)D.現(xiàn)有的語音識別技術(shù)已經(jīng)能夠達到100%的準(zhǔn)確率,無需進一步改進7、在人工智能的文本摘要生成中,以下哪種方法可能導(dǎo)致生成的摘要與原文主題偏離?()A.過度依賴原文中的高頻詞匯B.未能理解原文的語義結(jié)構(gòu)C.忽略原文中的關(guān)鍵信息D.以上都有可能8、強化學(xué)習(xí)是人工智能中的一個重要領(lǐng)域,常用于訓(xùn)練智能體在環(huán)境中做出最優(yōu)決策。假設(shè)一個機器人需要在一個充滿障礙物的房間里找到通往目標(biāo)位置的路徑,同時避免碰撞。在這種情況下,以下關(guān)于強化學(xué)習(xí)的說法,哪一項是正確的?()A.智能體通過隨機嘗試不同的動作來學(xué)習(xí)最優(yōu)策略B.獎勵函數(shù)的設(shè)計對學(xué)習(xí)效果沒有太大影響C.強化學(xué)習(xí)不需要考慮環(huán)境的動態(tài)變化D.一旦訓(xùn)練完成,智能體在新的環(huán)境中無需重新學(xué)習(xí)就能表現(xiàn)良好9、在自然語言處理領(lǐng)域,情感分析是一項重要的任務(wù)。假設(shè)要分析大量的在線商品評論,以確定消費者對產(chǎn)品的態(tài)度是積極、消極還是中性。在進行情感分析時,以下哪種方法可能不是最有效的?()A.基于詞典的方法,通過查找預(yù)定義的情感詞來判斷情感傾向B.利用深度學(xué)習(xí)模型,如循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN),自動學(xué)習(xí)語言的特征和模式C.僅僅依靠人工閱讀和判斷,不使用任何自動化的技術(shù)D.結(jié)合詞向量和機器學(xué)習(xí)分類算法,如支持向量機(SVM)10、人工智能在藝術(shù)創(chuàng)作領(lǐng)域的探索引起了廣泛關(guān)注。假設(shè)要利用人工智能生成音樂作品,以下關(guān)于其應(yīng)用的描述,哪一項是不正確的?()A.基于深度學(xué)習(xí)算法學(xué)習(xí)大量的音樂作品,生成新的旋律和節(jié)奏B.可以與人類音樂家合作,共同創(chuàng)作出獨特的音樂作品C.人工智能生成的音樂作品在藝術(shù)價值和創(chuàng)造性上能夠超越人類音樂家的作品D.為音樂創(chuàng)作提供新的靈感和可能性,但不能完全取代人類的創(chuàng)造力11、強化學(xué)習(xí)是人工智能的一個重要分支,常用于訓(xùn)練智能體在環(huán)境中做出最優(yōu)決策。假設(shè)一個智能機器人需要在迷宮中找到出口,通過與環(huán)境的交互獲得獎勵。在這種情況下,以下關(guān)于強化學(xué)習(xí)算法的選擇,哪一項是最合適的?()A.Q-learning算法,通過估計狀態(tài)-動作值函數(shù)來選擇最優(yōu)動作B.策略梯度算法,直接優(yōu)化策略以最大化期望回報C.蒙特卡羅方法,通過隨機采樣來估計價值函數(shù)D.以上算法都不合適,應(yīng)該選擇其他方法12、自動駕駛是人工智能的一個具有挑戰(zhàn)性的應(yīng)用領(lǐng)域。以下關(guān)于自動駕駛的描述,不正確的是()A.自動駕駛分為不同的級別,從輔助駕駛到完全自動駕駛B.自動駕駛需要依靠傳感器、計算機視覺和決策算法等技術(shù)的協(xié)同工作C.目前的自動駕駛技術(shù)已經(jīng)非常成熟,可以在任何路況下安全可靠地運行D.自動駕駛面臨著法律、道德和技術(shù)等多方面的挑戰(zhàn)和問題13、當(dāng)利用人工智能進行藥物研發(fā),例如預(yù)測藥物分子的活性和副作用,以下哪種技術(shù)和數(shù)據(jù)可能是重要的支撐?()A.化學(xué)信息學(xué)和分子模擬B.生物醫(yī)學(xué)數(shù)據(jù)和機器學(xué)習(xí)C.藥物臨床試驗數(shù)據(jù)和統(tǒng)計分析D.以上都是14、在人工智能的應(yīng)用開發(fā)中,數(shù)據(jù)標(biāo)注的質(zhì)量至關(guān)重要。假設(shè)要為圖像識別任務(wù)進行數(shù)據(jù)標(biāo)注,以下關(guān)于數(shù)據(jù)標(biāo)注的描述,哪一項是不正確的?()A.準(zhǔn)確和一致的標(biāo)注能夠提高模型的學(xué)習(xí)效果和泛化能力B.可以使用眾包平臺進行數(shù)據(jù)標(biāo)注,但需要進行質(zhì)量控制C.數(shù)據(jù)標(biāo)注的工作簡單易做,不需要專業(yè)知識和技能D.標(biāo)注數(shù)據(jù)的多樣性和代表性對模型的性能有重要影響15、人工智能在氣象預(yù)測中的應(yīng)用可以提高預(yù)測的準(zhǔn)確性和精細(xì)化程度。假設(shè)要開發(fā)一個能夠預(yù)測局部地區(qū)短期天氣變化的人工智能模型,需要考慮多種氣象因素的相互作用。以下哪種模型架構(gòu)和訓(xùn)練方法在處理這種復(fù)雜的時空數(shù)據(jù)方面表現(xiàn)更為出色?()A.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)B.長短期記憶網(wǎng)絡(luò)(LSTM)C.門控循環(huán)單元(GRU)D.以上模型結(jié)合使用二、簡答題(本大題共4個小題,共20分)1、(本題5分)說明局部可解釋模型-解釋(LIME)的原理。2、(本題5分)說明人工智能在產(chǎn)品研發(fā)和創(chuàng)新管理中的貢獻。3、(本題5分)解釋人工智能在智能市場競爭對手分析中的方法。4、(本題5分)談?wù)勅斯ぶ悄茉谥悄苷衅溉瞬女嬒駱?gòu)建中的應(yīng)用。三、操作題(本大題共5個小題,共25分)1、(本題5分)利用TensorFlow構(gòu)建一個生成對抗網(wǎng)絡(luò)(GAN),用于生成具有特定風(fēng)格的藝術(shù)圖像,如印象派或抽象派。定義生成器和判別器的結(jié)構(gòu)和損失函數(shù),通過對抗訓(xùn)練不斷優(yōu)化模型,展示生成的圖像并與真實的藝術(shù)作品進行比較。2、(本題5分)使用OpenCV和深度學(xué)習(xí)模型,實現(xiàn)對車牌顏色的識別。在不同光照條件下保持準(zhǔn)確識別。3、(本題5分)利用Python中的TensorFlow框架,構(gòu)建一個深度強化學(xué)習(xí)模型,讓智能體在一個簡單的環(huán)境中學(xué)習(xí)最優(yōu)的行動策略。設(shè)置合適的獎勵機制和環(huán)境參數(shù),訓(xùn)練模型并觀察智能體的學(xué)習(xí)效果。4、(本題5分)在Python中,運用粒子濾波算法對一個動態(tài)系統(tǒng)進行狀態(tài)估計。定義系統(tǒng)模型和觀測方程,展示濾波過程和估計結(jié)果。5、(本題5分)運用深度學(xué)習(xí)框架構(gòu)建一個目標(biāo)跟蹤模型,對視頻中的特定物體進行跟蹤,提高跟蹤的準(zhǔn)確性和穩(wěn)定性。四、案例分析題(本大題共4個小題,共40分)1、(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論