




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山西太原市育英中學7年級數(shù)學下冊第五章生活中的軸對稱專項測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計20分)1、下面所給的銀行標志圖中是軸對稱圖形的是()A. B. C. D.2、如圖,將正方形圖案翻折一次,可以得到的圖案是()A. B. C. D.3、第24屆冬奧會將于2022年2月4日至20日在北京市和張家口市聯(lián)合舉行.下面是從歷屆冬奧會的會徽中選取的部分圖形,其中是軸對稱圖形的是()A. B. C. D.4、下列垃圾分類的標識中,是軸對稱圖形的是()A.①② B.③④ C.①③ D.②④5、下列圖形中,不是軸對稱圖形的是().A. B. C. D.6、北京2022年冬奧會會徽“冬夢”正式發(fā)布.以下是參選的會徽設計的一部分圖形,其中是軸對稱圖形的是()A. B. C. D.7、在“回收”、“節(jié)水”、“綠色食品”、“低碳”四個標志圖案中.軸對稱圖形是()A. B. C. D.8、下列圖形中不是軸對稱圖形的是().A. B. C. D.9、下列圖標中是軸對稱圖形的是()A. B. C. D.10、下列圖形中,不是軸對稱圖形的是()A. B. C. D.第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計20分)1、如圖,在平行四邊形中,,在內有一點,將向外翻折至,其中為其對稱軸,過點,分別作,的垂線,垂足為,,,,已知,,那么__________.2、如圖,腰長為22的等腰ABC中,頂角∠A=45°,D為腰AB上的一個動點,將ACD沿CD折疊,點A落在點E處,當CE與ABC的某一條腰垂直時,BD的長為_______.3、現(xiàn)實世界中,對稱現(xiàn)象無處不在,中國的方塊字中有些也具備對稱性,如:中、甲;請另寫一個是軸對稱圖形的漢字__________.4、如圖,點關于、的對稱點分別是,,線段分別交、于、,cm,則的周長為________cm.5、如圖,把四邊形ABCD紙條沿MN對折,若AD∥BC,∠α=52°,則∠AMN=_______.6、如圖,一束水平光線照在有一定傾斜角度的平面鏡上,若入射光線與反射光線的夾角為50°,則平面鏡與水平地面的夾角的度數(shù)是______.7、圖中與標號“1”的三角形成軸對稱的三角形的個數(shù)為________.8、如圖,在矩形中,,,點、分別在、上,將矩形沿折疊,使點、分別落在矩形外部的點、處,則整個陰影部分圖形的周長為______.9、如圖,∠MON內有一點P,P點關于OM的軸對稱點是G,P點關于ON的軸對稱點是H,GH分別交OM、ON于A、B點,若∠MON=38°,則∠GOH=___10、如圖,將一張長方形紙片ABCD(它的每一個角等于90°)沿EF折疊,使點D落在AB邊上的點M處,折疊后點C的對應點為點N.若∠AME=50°,則∠EFB=_____°.三、解答題(6小題,每小題10分,共計60分)1、如圖,已知△ABC和直線l,作出△ABC關于直線l的對稱圖形△A'B'C′.(不寫作法,保留作圖痕跡)2、已知,如圖,等腰直角△ABC中,∠ACB=90°,CA=CB,過點C的直線CH和AC的夾角∠ACH=α,請按要求完成下列各題:(1)請按要求作圖:作出點A關于直線CH的軸對稱點D,連接AD、BD、CD,其中BD交直線CH于點E,連接AE;(2)請問∠ADB的大小是否會隨著α的改變而改變?如果改變,請用含α的式子表示∠ADB;如果不變,請求出∠ADB的大?。?)請證明△ACE的面積和△BCE的面積滿足:.3、如圖,點A、B、C都在方格紙的格點上,方格紙中每個小正方形的邊長均為1.(1)畫出△ABC關于直線l對稱的△DEF;(2)結合所畫圖形,在直線l上畫出點P,使PD+PE的長度最?。?、如圖,已知線段a,利用尺規(guī)求作以a為底?以為高的等腰三角形.5、如圖①、圖②、圖③都是3×3的正方形網(wǎng)格,每個小正方形的頂點稱為格點.A,B,C均為格點.在給定的網(wǎng)格中,按下列要求畫圖:(1)在圖①中,畫一條不與AB重合的線段MN,使MN與AB關于某條直線對稱,且M、N為格點;(2)在圖②中,畫一條不與AC重合的線段PQ,使PQ與AC關于某條直線對稱,且P,Q為格點;(3)在圖③中,畫一個△DEF,使△DEF與△ABC關于某條直線對稱,且D,E,F(xiàn)為格點.6、如圖,將ABC分別沿AB,AC翻折得到ABD和AEC,線段BD與AE交于點F,連接BE.(1)若∠ABC=20°,∠ACB=30°,求∠DAE及∠BFE的度數(shù).(2)若BD所在的直線與CE所在的直線互相垂直,求∠CAB的度數(shù).-參考答案-一、單選題1、B【分析】根據(jù)軸對稱圖形的概念:平面內,一個圖形沿一條直線折疊,直線兩旁的部分能夠完全重合的圖形,逐項分析判斷即可.【詳解】解:A.不是軸對稱圖形,故該選項不正確,不符合題意;B.是軸對稱圖形,故該選項正確,符合題意;C.不是軸對稱圖形,故該選項不正確,不符合題意;D.不是軸對稱圖形,故該選項不正確,不符合題意;故選B【點睛】本題考查了軸對稱圖形的識別,軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.2、B【分析】根據(jù)軸對稱的性質進行解答判斷即可.【詳解】解:利用軸對稱可得將正方形圖案翻折一次,可以得到的圖案是,故選:B.【點睛】本題考查了軸對稱的性質,熟練掌握軸對稱的定義與性質是解本題的關鍵.3、B【分析】根據(jù)軸對稱圖形的定義:如果一個平面圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形就叫做軸對稱圖形,進行逐一判斷即可.【詳解】解:A、不是軸對稱圖形,故此選項不符合題意;B、是軸對稱圖形,故此選項符合題意;C、不是軸對稱圖形,故此選項符合題意;D、不是軸對稱圖形,故此選項符合題意;故選B.【點睛】本題主要考查了軸對稱圖形的定義,熟知定義是解題的關鍵.4、B【詳解】解:圖③和④是軸對稱圖形,故選:B.【點睛】本題考查了軸對稱圖形,熟記軸對稱圖形的定義(如果一個圖形沿一條直線折疊,直線兩旁的部分能夠完全重合,那么這個圖形叫做軸對稱圖形)是解題關鍵.5、A【詳解】解:A、不是軸對稱圖形,故本選項符合題意;B、是軸對稱圖形,故本選項不符合題意;C、是軸對稱圖形,故本選項不符合題意;D、是軸對稱圖形,故本選項不符合題意;故選:A【點睛】本題主要考查了軸對稱圖形的定義,熟練掌握如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形是解題的關鍵.6、A【分析】利用軸對稱圖形的概念進行解答即可.【詳解】解:A.是軸對稱圖形,故此選項符合題意;B.不是軸對稱圖形,故此選項不合題意;C.不是軸對稱圖形,故此選項不合題意;D.不是軸對稱圖形,故此選項不合題意;故選:A.【點睛】本題主要是考查了軸對稱圖形的概念,判別軸對稱圖形的關鍵是找對稱軸.7、C【詳解】解:A、不是軸對稱圖形,故此選項不合題意;B、不是軸對稱圖形,故此選項不合題意;C、是軸對稱圖形,故此選項符合題意;D、不是軸對稱圖形,故此選項不合題意.故選:C【點睛】本題主要考查了軸對稱圖形的定義,熟練掌握若一個圖形沿著一條直線折疊后兩部分能完全重合,這樣的圖形就叫做軸對稱圖形,這條直線叫做對稱軸是解題的關鍵.8、C【分析】根據(jù)稱軸的定義進行分析即可.【詳解】解:A.是軸對稱圖形,故本選項不符合題意;B.是軸對稱圖形,故本選項不符合題意;C.不是軸對稱圖形,故本選項符合題意;D.是軸對稱圖形,故本選項不符合題意;故選:C.【點睛】本題考查了軸對稱圖形的概念,軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.9、B【詳解】解:選項A中的圖形不是軸對稱圖形,故A不符合題意;選項B中的圖形是軸對稱圖形,故B符合題意;選項C中的圖形不是軸對稱圖形,故C不符合題意;選項D中的圖形不是軸對稱圖形,故D不符合題意;故選B【點睛】本題考查的是軸對稱圖形的識別,軸對稱圖形的概念:把一個圖形沿某條直線對折,對折后直線兩旁的部分能夠完全重合;掌握“軸對稱圖形的概念”是解本題的關鍵.10、A【詳解】解:A、不是軸對稱圖形,故本選項符合題意;B、是軸對稱圖形,故本選項不符合題意;C、是軸對稱圖形,故本選項不符合題意;D、是軸對稱圖形,故本選項不符合題意;故選:A【點睛】本題主要考查了軸對稱圖形的定義,熟練掌握若一個圖形沿著一條直線折疊后兩部分能完全重合,這樣的圖形就叫做軸對稱圖形,這條直線叫做對稱軸是解題的關鍵.二、填空題1、36【分析】連接,,根據(jù)折疊的性質可得,根據(jù)四邊形四邊形,結合已知條件即可求得.【詳解】解:如圖,連接,,∵將向外翻折至,其中為其對稱軸,∴,∵四邊形四邊形,∴,∴,故答案為:36.【點睛】本題考查了軸對稱的性質,利用四邊形四邊形結合已知條件計算是解題的關鍵.2、或2【分析】分兩種情況:當CE⊥AB時,設垂足為M,在Rt△AMC中,∠A=45°,由折疊得:∠ACD=∠DCE=22.5°,證明△BCM≌△DCM,得到BM=DM,證明△MDE是等腰直角三角形,即可得解;當CE⊥AC時,根據(jù)折疊的性質,等腰直角三角形的判定與性質計算即可;【詳解】當CE⊥AB時,如圖,設垂足為M,在Rt△AMC中,∠A=45°,由折疊得:∠ACD=∠DCE=22.5°,∵等腰△ABC中,頂角∠A=45°,∴∠B=∠ACB=67.5°,∴∠BCM=22.5°,∴∠BCM=∠DCM,在△BCM和△DCM中,,∴△BCM≌△DCM(ASA),∴BM=DM,由折疊得:∠E=∠A=45°,AD=DE,∴△MDE是等腰直角三角形,∴DM=EM,設DM=x,則BM=x,DEx,∴ADx.∵AB=22,∴2xx=22,解得:x,∴BD=2x=2;當CE⊥AC時,如圖,∴∠ACE=90°,由折疊得:∠ACD=∠DCE=45°,∵等腰△ABC中,頂角∠A=45°,∴∠E=∠A=45°,AD=DE,∴∠ADC=∠EDC=90°,即點D、E都在直線AB上,且△ADC、△DEC、△ACE都是等腰直角三角形,∵AB=AC==22,∴ADAC=2,BD=AB﹣AD=(22)﹣(2),綜上,BD的長為或2.故答案為:或2.【點睛】本題主要考查折疊的性質,等腰直角三角形的判定與性質,全等三角形的判定與性質,注重分類討論思想的運用是解題的關鍵.3、王【分析】直接利用軸對稱圖形的定義得出答案.【詳解】解:“王”是軸對稱圖形,故答案為:王(答案為唯一).【點睛】本題考查了軸對稱圖形的概念:如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形.解題的關鍵是尋找對稱軸,圖形兩部分沿對稱軸折疊后可重合.4、8【分析】首先根據(jù)點P關于OA、OB的對稱點分別是P1,P2,可得PD=P1D,PC=P2C;然后根據(jù)P1P2=8cm,可得P1D+DC+P2C=8cm,所以PD+DC+PC=8cm,即△PCD的周長為8cm,據(jù)此解答即可.【詳解】解:∵點P關于OA、OB的對稱點分別是P1,P2,∴PD=P1D,PC=P2C;∵P1P2=8(cm),∴P1D+DC+P2C=8(cm),∴PD+DC+PC=8(cm),即△PCD的周長為8cm.故答案為:8.【點睛】本題考查了軸對稱的性質的應用,要熟練掌握,解題的關鍵是判斷出:PD=P1D,PC=P2C.此題還考查了三角形的周長的含義以及求法的應用,要熟練掌握.5、【分析】如圖,設點對應點為,則根據(jù)折疊的性質求得,根據(jù)平行的性質可得,進而求得.【詳解】如圖,設點對應點為,根據(jù)折疊的性質可得,,∠α=52°,,,,.故答案為:.【點睛】本題考查了折疊的性質,平行線的性質,掌握以上性質是解題的關鍵.6、65°【分析】作CD⊥平面鏡,垂足為G,交地面于D.根據(jù)垂線的性質可得∠CDH+α=90°,根據(jù)平行線的性質可得∠AGC=∠CDH,根據(jù)入射角等于反射角可得,從而可得夾角的度數(shù).【詳解】解:如圖,作CD⊥平面鏡,垂足為G,交地面于D.∴∠CDH+α=90°,根據(jù)題意可知:AG∥DF,∴∠AGC=∠CDH,,∴∠CDH=25°,∴α=65°.故答案為:65°.【點睛】本題考查了入射角等于反射角問題,解決本題的關鍵是掌握平行線的性質、明確法線CG平分∠AGB.7、2個【分析】根據(jù)軸對稱圖形的定義(如果一個圖形沿一條直線折疊,直線兩旁的部分能夠完全重合,那么這個圖形叫做軸對稱圖形)即可得.【詳解】解:圖中與標號“1”的三角形成軸對稱的三角形是標號“2”和“4”,共有2個,故答案為:2個.【點睛】本題考查了軸對稱圖形,熟記定義是解題關鍵.8、32【分析】根據(jù)折疊的性質,得FD=FD1,C1D1=CD,C1E=CE,則陰影部分的周長即為矩形的周長.【詳解】解:根據(jù)折疊的性質,得FD=FD1,C1D1=CD,C1E=CE,則陰影部分的周長=矩形的周長=2×(12+4)=32.故答案為:32.【點睛】本題主要考查了翻折變換,關鍵是要能夠根據(jù)折疊的性質得到對應的線段相等,從而求得陰影部分的周長.9、76°【分析】連接OP,根據(jù)軸對稱的性質可得∠GOM=∠MOP,∠PON=∠NOH,然后求出∠GOH=2∠MON,代入數(shù)據(jù)計算即可得解.【詳解】解:如圖,連接OP,∵P點關于OM的軸對稱點是G,P點關于ON的軸對稱點是H,∴∠GOM=∠MOP,∠PON=∠NOH,∴∠GOH=∠GOM+∠MOP+∠PON+∠NOH=2∠MON,∵∠MON=38°,∴∠GOH=2×38°=76°.故答案為:76°.【點睛】本題考查了軸對稱的性質,熟記性質并確定出相等的角是解題的關鍵.10、70【分析】根據(jù)折疊的性質可得∠DEF=∠MEF、∠A=90°、∠EFB=∠DEF,再根據(jù)∠AME=50°可得∠AEM=90°﹣∠AME=90°﹣50°=40°,進而求得∠DEF,最后根據(jù)平行線的性質解答即可.【詳解】解:∵長方形紙片ABCD(它的每一個角等于90°)沿EF折疊,∴∠DEF=∠MEF,∠A=90°,∠EFB=∠DEF,∵∠AME=50°,∴∠AEM=90°﹣∠AME=90°﹣50°=40°,∴∠DEM=180°﹣∠AEM=180°﹣40°=140°,∴∠DEF=∠MEF=.∴∠EFB=70°,故填:70.【點睛】本題主要考查了折疊的性質、平行線的性質等知識點,理解折疊的性質成為解答本題的關鍵.三、解答題1、見解析【分析】分別作點點點關于直線的對稱點,然后連接,,,即可得到△ABC關于直線的軸對稱圖形△.【詳解】解:如圖:△即為所作:.【點睛】本題考查了軸對稱變換,作軸對稱圖形的依據(jù)是軸對稱的性質,基本作法是:①先確定圖形的關鍵點;②利用軸對稱的性質作出關鍵點的對稱點;③按原圖形中的方式順次連接對稱點.2、(1)見解析;(2)大小不變,為定值45°;(3)見解析.【分析】(1)根據(jù)題意做出點A關于直線CH的軸對稱點D,連接AD、BD、CD即可求解;(2)根據(jù)題意證明,然后表示出的度數(shù),然后根據(jù)周角表示出的度數(shù),根據(jù)表示出的度數(shù),即可求出∠ADB的度數(shù);(3)首先根據(jù)題意證明,得出,然后根據(jù)三角形面積的求法表示出即可證明.【詳解】解:(1)如圖所示,(2)大小不變,為定值45°.∵A關于直線CH的軸對稱點D,∴CA=CD,AD⊥CH,如圖所示,AD與CH交于點M,在和中,,∴,∴,,∴,∴,∴,又∵,,∴,∴,∴,故大小不變,為定值45°;(3)如圖所示,過點B作BN⊥CH于點N,,,由(2)可知,,又∵,∴,∴為等腰直角三角形,∴,∵,∴,又∵,∴,在和中,∴,∴,即,∴.故.【點睛】此題考查了全等三角形的性質和判定,三角形面積,解題的關鍵是根據(jù)題意表示出和的度數(shù).3、(1)見解析;(2)見解析【分析】根據(jù)題意,先分別找到點A、B、C關于直線l的對稱點D、E、F,即可求解;(2)連接BD交直線l于點P,點P即為所求的點,根據(jù)軸對稱圖形的性質,可得PB=PE,從而得到當B、P、D三點共線時,PD+PE的長度最小,即可求解.【詳解】解:(1)如圖所示,△DEF即為所求(2)連接BD交直線l于點P,點P即為所求的點,理由如下:∵點B點E關于直
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年軍隊文職人員統(tǒng)一招聘筆試( 人民武裝)高頻錯題及答案
- 父母的愛作文450字7篇
- 2025年甘肅省嘉峪關市輔警協(xié)警筆試模擬題(附答案)
- 2025年副高去年考試真題及答案
- 2025茶葉種植合同管理與經(jīng)營資料
- 建筑工人居住管理協(xié)議
- 日記采辣椒200字(14篇)
- 客戶關系管理系統(tǒng)設計與客戶滿意度調查模板
- 江蘇省南通如皋市2026屆化學高三上期中考試模擬試題含解析
- 技術開發(fā)流程規(guī)劃及實施指南
- 2025版線上直播場推廣服務合同模板
- 高一上學期數(shù)學學法指導課件2024.9.14
- GB/T 45845.1-2025智慧城市基礎設施整合運營框架第1部分:全生命周期業(yè)務協(xié)同管理指南
- 呼吸科考試試題及答案
- 腫瘤內科膽囊癌護理查房
- 《肺結節(jié)規(guī)范化診治專家共識(2024)》解讀 課件
- 質量管理五大工具培訓教材
- 2025年村支書考試試題及答案
- 鋰電池生產(chǎn)企業(yè)事故綜合應急預案
- 兒童高鐵課件教學
- 癌性傷口臨床護理
評論
0/150
提交評論