




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
重慶市興龍湖中學(xué)7年級(jí)數(shù)學(xué)下冊(cè)第四章三角形同步測(cè)試考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計(jì)20分)1、以下列各組長(zhǎng)度的線段為邊,能構(gòu)成三角形的是()A.1cm,1cm,8cm B.3cm,3cm,6cmC.3cm,4cm,5cm D.3cm,2cm,1cm2、三角形的外角和是()A.60° B.90° C.180° D.360°3、如圖,點(diǎn)C在∠AOB的OB邊上,用尺規(guī)作出了∠NCE=∠AOD,作圖痕跡中,弧FG是()A.以點(diǎn)C為圓心,OD為半徑的弧B.以點(diǎn)C為圓心,DM為半徑的弧C.以點(diǎn)E為圓心,OD為半徑的弧D.以點(diǎn)E為圓心,DM為半徑的弧4、如圖,點(diǎn),在線段上,與全等,其中點(diǎn)與點(diǎn),點(diǎn)與點(diǎn)是對(duì)應(yīng)頂點(diǎn),與交于點(diǎn),則等于()A. B. C. D.5、定理:三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和.已知:如圖,∠ACD是△ABC的外角.求證:∠ACD=∠A+∠B.證法1:如圖,∵∠A=70°,∠B=63°,且∠ACD=133°(量角器測(cè)量所得)又∵133°=70°+63°(計(jì)算所得)∴∠ACD=∠A+∠B(等量代換).證法2:如圖,∵∠A+∠B+∠ACB=180°(三角形內(nèi)角和定理),又∵∠ACD+∠ACB=180°(平角定義),∴∠ACD+∠ACB=∠A+∠B+∠ACB(等量代換).∴∠ACD=∠A+∠B(等式性質(zhì)).下列說(shuō)法正確的是()A.證法1用特殊到一般法證明了該定理B.證法1只要測(cè)量夠100個(gè)三角形進(jìn)行驗(yàn)證,就能證明該定理C.證法2還需證明其他形狀的三角形,該定理的證明才完整D.證法2用嚴(yán)謹(jǐn)?shù)耐评碜C明了該定理6、小明把一副含有45°,30°角的直角三角板如圖擺放其中∠C=∠F=90°,∠A=45°,∠D=30°,則∠a+∠β等于()A.180° B.210° C.360° D.270°7、如圖,ABC的面積為18,AD平分∠BAC,且AD⊥BD于點(diǎn)D,則ADC的面積是()A.8 B.10 C.9 D.168、如圖,AB∥CD,∠E+∠F=85°,則∠A+∠C=()A.85° B.105°C.115° D.95°9、以下列長(zhǎng)度的各組線段為邊,能組成三角形的是()A.,, B.,,C.,, D.,,10、如圖,已知∠BAC=∠ABD=90°,AD和BC相交于O.在①AC=BD;②BC=AD;③∠C=∠D;④OA=OB.條件中任選一個(gè),可使△ABC≌△BAD.可選的條件個(gè)數(shù)為()A.1 B.2 C.3. D.4第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計(jì)20分)1、如圖,在ABC中,已知點(diǎn)D,E,F(xiàn)分別為邊BC,AD,CE的中點(diǎn),且ABC的面積等于24cm2,則陰影部分圖形面積等于_____cm22、如圖,方格紙中是9個(gè)完全相同的正方形,則∠1+∠2的值為_(kāi)____.3、如圖,Rt△ABC中,∠ACB=90°,AB=5,BC=3,將斜邊AB繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°至AB′,連接B'C,則△AB′C的面積為_(kāi)____.4、在△ABC中,三邊為、、,如果,,,那么的取值范圍是_____.5、如圖,△ABC的面積等于35,AE=ED,BD=3DC,則圖中陰影部分的面積等于_______6、如圖,三角形ABC的面積為1,,E為AC的中點(diǎn),AD與BE相交于P,那么四邊形PDCE的面積為_(kāi)_____.7、如圖,在中,,一條線段,P,Q兩點(diǎn)分別在線段和的垂線上移動(dòng),若以A、B、C為頂點(diǎn)的三角形與以A、P、Q為頂點(diǎn)的三角形全等,則的長(zhǎng)為_(kāi)________.8、如圖,點(diǎn),在直線上,且,且,過(guò),,分別作,,,若,,,則的面積是______.9、如圖,在△ABC中,D是AC延長(zhǎng)線上一點(diǎn),∠A=50°,∠B=70°,則∠BCD=__________°.10、如圖,AB=CD,若要判定△ABD≌△CDB,則需要添加的一個(gè)條件是____________.三、解答題(6小題,每小題10分,共計(jì)60分)1、如圖,在中,AD是BC邊上的高,CE平分,若,,求的度數(shù).2、如圖,點(diǎn)A,B,C,D在一條直線上,,,.求證:.3、李華同學(xué)用11塊高度都是1cm的相同長(zhǎng)方體小木塊,壘了兩堵與地面垂直的木墻,木墻之間剛好可以放進(jìn)一個(gè)正方形ABCD(∠ABC=90°,AB=BC),點(diǎn)B在EF上,點(diǎn)A和C分別與木墻的頂端重合,求兩堵木墻之間的距離EF.4、如圖,點(diǎn)E,F(xiàn)在BC上,BE=CF,∠A=∠D,∠B=∠C,求證:AB=DC.5、如圖,點(diǎn)D在AB上,E在AC上,AB=AC,∠B=∠C,求證:AD=AE.6、如圖,在中,點(diǎn)D、E分別在邊AB、AC上,BE與CD交于點(diǎn)F,,,.求和的度數(shù).-參考答案-一、單選題1、C【分析】根據(jù)三角形的三邊關(guān)系“任意兩邊之和大于第三邊,任意兩邊之差小于第三邊”,進(jìn)行分析.【詳解】解:A、1+1=2<8,不能組成三角形,故此選項(xiàng)不合題意;B、3+3=6,不能組成三角形,故此選項(xiàng)不符合題意;C、3+4=7>5,能組成三角形,故此選項(xiàng)符合題意;D、1+2=3,不能組成三角形,故此選項(xiàng)不合題意;故選:C.【點(diǎn)睛】本題考查了構(gòu)成三角形的條件,掌握“任意兩邊之和大于第三邊,任意兩邊之差小于第三邊”是解題的關(guān)鍵.2、D【分析】根據(jù)三角形的內(nèi)角和定理、鄰補(bǔ)角的性質(zhì)即可得.【詳解】解:如圖,,,又,,即三角形的外角和是,故選:D.【點(diǎn)睛】本題考查了三角形的內(nèi)角和定理、鄰補(bǔ)角的性質(zhì),熟練掌握三角形的內(nèi)角和定理是解題關(guān)鍵.3、D【分析】根據(jù)作一個(gè)角等于已知角的步驟即可得.【詳解】解:作圖痕跡中,弧FG是以點(diǎn)E為圓心,DM為半徑的弧,故選:D.【點(diǎn)睛】本題主要考查作圖-尺規(guī)作圖,解題的關(guān)鍵是熟練掌握作一個(gè)角等于已知角的尺規(guī)作圖步驟.4、D【分析】根據(jù)點(diǎn)與點(diǎn),點(diǎn)與點(diǎn)是對(duì)應(yīng)頂點(diǎn),得到,根據(jù)全等三角形的性質(zhì)解答.【詳解】解:與全等,點(diǎn)與點(diǎn),點(diǎn)與點(diǎn)是對(duì)應(yīng)頂點(diǎn),,.故選:D【點(diǎn)睛】本題主要考查了全等三角形的性質(zhì),熟練掌握全等三角形的對(duì)應(yīng)邊相等,對(duì)應(yīng)角相等是解題的關(guān)鍵.5、D【分析】利用測(cè)量的方法只能是驗(yàn)證,用定理,定義,性質(zhì)結(jié)合嚴(yán)密的邏輯推理推導(dǎo)新的結(jié)論才是證明,再逐一分析各選項(xiàng)即可得到答案.【詳解】解:證法一只是利用特殊值驗(yàn)證三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和,證法2才是用嚴(yán)謹(jǐn)?shù)耐评碜C明了該定理,故A不符合題意,C不符合題意,D符合題意,證法1測(cè)量夠100個(gè)三角形進(jìn)行驗(yàn)證,也只是驗(yàn)證,不能證明該定理,故B不符合題意;故選D【點(diǎn)睛】本題考查的是三角形的外角的性質(zhì)的驗(yàn)證與證明,理解驗(yàn)證與證明的含義及證明的方法是解本題的關(guān)鍵.6、B【分析】已知,得到,根據(jù)外角性質(zhì),得到,,再將兩式相加,等量代換,即可得解;【詳解】解:如圖所示,∵,∴,∵,,∴,∵,,∴,∵,,∴;故選D.【點(diǎn)睛】本題主要考查了三角形外角定理的應(yīng)用,準(zhǔn)確分析計(jì)算是解題的關(guān)鍵.7、C【分析】延長(zhǎng)BD交AC于點(diǎn)E,根據(jù)角平分線及垂直的性質(zhì)可得:,,依據(jù)全等三角形的判定定理及性質(zhì)可得:,,再根據(jù)三角形的面積公式可得:SΔABD=SΔADE,SΔBDC=S【詳解】解:如圖,延長(zhǎng)BD交AC于點(diǎn)E,∵AD平分,,∴,,在和中,,∴,∴,∴SΔABD=S∴SΔADC故選:C.【點(diǎn)睛】題目主要考查全等三角形的判定和性質(zhì),角平分線的定義等,熟練掌握基礎(chǔ)知識(shí),進(jìn)行邏輯推理是解題關(guān)鍵.8、D【分析】設(shè)交于點(diǎn),過(guò)點(diǎn)作,根據(jù)平行線的性質(zhì)可得,根據(jù)三角形的外角性質(zhì)可得,進(jìn)而即可求得【詳解】解:設(shè)交于點(diǎn),過(guò)點(diǎn)作,如圖,∵∴∠E+∠F=85°故選D【點(diǎn)睛】本題考查了平行線的性質(zhì),三角形的外角性質(zhì),平角的定義,掌握三角形的外角性質(zhì)是解題的關(guān)鍵.9、C【分析】根據(jù)三角形三條邊的關(guān)系計(jì)算即可.【詳解】解:A.∵2+4=6,∴,,不能組成三角形;B.∵2+5<9,∴,,不能組成三角形;C.∵7+8>10,∴,,能組成三角形;D.∵6+6<13,∴,,不能組成三角形;故選C.【點(diǎn)睛】本題考查了三角形三條邊的關(guān)系,熟練掌握三角形三條邊的關(guān)系是解答本題的關(guān)鍵.三角形任意兩邊之和大于第三邊,任意兩邊之差小于第三邊.10、D【分析】先得到∠BAC=∠ABD=90°,若添加AC=BD,則可根據(jù)“SAS”判斷△ABC≌△BAD;若添加BC=AD,則可利用“HL”證明Rt△ABC≌Rt△BAD,若添加∠C=∠D,則可利用“AAS”證明△ABC≌△BAD;若添加OA=OB,可先根據(jù)“ASA”證明△AOC≌△BOD得∠C=∠D,則可利用“AAS”證明△ABC≌△BAD.【詳解】解:在△ABC和△BAD中,∴△ABC≌△BAD故選AC=BD可使△ABC≌△BAD.∵∠BAC=∠ABD=90°,∴△ABC和△BAD均為直角三角形在Rt△ABC和Rt△BAD中,∴Rt△ABC≌Rt△BAD故選BC=AD可使△ABC≌△BAD.在△ABC和△BAD中,∴△ABC≌△BAD故選∠C=∠D可使△ABC≌△BAD.∵OA=OB∴∵∠BAC=∠ABD=90°,∴在△AOC和△BOD中,∴△AOC≌△BOD∴在△ABC和△BAD中,∴△ABC≌△BAD故選OA=OB可使△ABC≌△BAD.∴可選的條件個(gè)數(shù)有4個(gè)故選:D【點(diǎn)睛】本題考查了全等三角形的判定:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”、“HL”.二、填空題1、6【分析】因?yàn)辄c(diǎn)F是CE的中點(diǎn),所以△BEF的底是△BEC的底的一半,△BEF高等于△BEC的高;同理,D、E、分別是BC、AD的中點(diǎn),可得△EBC的面積是△ABC面積的一半;利用三角形的等積變換可解答.【詳解】解:如圖,點(diǎn)F是CE的中點(diǎn),∴△BEF的底是EF,△BEC的底是EC,即EF=EC,而高相等,∴S△BEF=S△BEC,∵E是AD的中點(diǎn),∴S△BDE=S△ABD,S△CDE=S△ACD,∴S△EBC=S△ABC,∴S△BEF=S△ABC,且S△ABC=24cm2,∴S△BEF=6cm2,即陰影部分的面積為6cm2.故答案為6.【點(diǎn)睛】本題考查了三角形面積的等積變換:若兩個(gè)三角形的高(或底)相等,面積之比等于底邊(高)之比.2、【分析】如圖(見(jiàn)解析),先根據(jù)三角形全等的判定定理證出,再根據(jù)全等三角形的性質(zhì)可得,由此即可得出答案.【詳解】解:如圖,在和中,,,,,故答案為:.【點(diǎn)睛】本題考查了三角形全等的判定定理與性質(zhì)等知識(shí)點(diǎn),正確找出兩個(gè)全等三角形是解題關(guān)鍵.3、【分析】根據(jù)題意過(guò)點(diǎn)B'作B'H⊥AC于H,由全等三角形的判定得出△ACB≌△B'HA(AAS),得AC=B'H=4,則有S△AB'C=AC?B′H即可求得答案.【詳解】解:過(guò)點(diǎn)B'作B'H⊥AC于H,∴∠AHB'=90°,∠BAB'=90°,∴∠HAB'+∠HB'A=90°,∠BAC+∠CAB'=90°,∴∠HB'A=∠CAB,在△ACB和△B'HA中,,∴△ACB≌△B'HA(AAS),∴AC=B'H,∵∠ACB=90°,AB=5,BC=3,∴AC===4,∴AC=B'H=4,∴S△AB'C=AC?B′H=×4×4=8.故答案為:8.【點(diǎn)睛】本題主要考查三角形全等的判定與性質(zhì)和旋轉(zhuǎn)的性質(zhì)以及勾股定理,根據(jù)題意利用全等三角形的判定證明△ACB≌△B'HA是解決問(wèn)題的關(guān)鍵.4、4<x<28【分析】根據(jù)三角形三邊的關(guān)系:兩邊之和大于第三邊,兩邊之差小于第三邊解答即可;【詳解】解:由題意得:解得:4<x<28.故答案為:4<x<28【點(diǎn)睛】本題考查了三角形三邊的關(guān)系,熟練掌握三角形三邊的關(guān)系是解題的關(guān)鍵.5、15【分析】連接DF,根據(jù)AE=ED,BD=3DC,可得,,,,然后設(shè)△AEF的面積為x,△BDE的面積為y,則,,,,再由△ABC的面積等于35,即可求解.【詳解】解:如圖,連接DF,∵AE=ED,∴,,∵BD=3DC,∴,設(shè)△AEF的面積為x,△BDE的面積為y,則,,,,∵△ABC的面積等于35,∴,解得:.故答案為:15【點(diǎn)睛】本題主要考查了與三角形中線有關(guān)的面積問(wèn)題,根據(jù)題意得到,,,是解題的關(guān)鍵.6、【分析】連接CP.設(shè)△CPE的面積是x,△CDP的面積是y.根據(jù)BD:DC=2:1,E為AC的中點(diǎn),得△BDP的面積是2y,△APE的面積是x,進(jìn)而得到△ABP的面積是4x.再根據(jù)△ABE的面積是△BCE的面積相等,得4x+x=2y+x+y,解得,再根據(jù)△ABC的面積是1即可求得x、y的值,從而求解.【詳解】解:連接CP,設(shè)△CPE的面積是x,△CDP的面積是y.∵BD:DC=2:1,E為AC的中點(diǎn),∴△BDP的面積是2y,△APE的面積是x,∵BD:DC=2:1,CE:AC=1:2,∴△ABP的面積是4x.∴4x+x=2y+x+y,解得.又∵4x+x=,解得:x=,則則四邊形PDCE的面積為x+y=.故答案為:.【點(diǎn)睛】本題能夠根據(jù)三角形的面積公式求得三角形的面積之間的關(guān)系.等高的兩個(gè)三角形的面積比等于它們的底的比;等底的兩個(gè)三角形的面積比等于它們的高的比.7、6cm或12cm【分析】先根據(jù)題意得到∠BCA=∠PAQ=90°,則以A、B、C為頂點(diǎn)的三角形與以A、P、Q為頂點(diǎn)的三角形全等,只有△ACB≌△QAP和△ACB≌△PAQ兩種情況,由此利用全等三角形的性質(zhì)求解即可.【詳解】解:∵AX是AC的垂線,∴∠BCA=∠PAQ=90°,∴以A、B、C為頂點(diǎn)的三角形與以A、P、Q為頂點(diǎn)的三角形全等,只有△ACB≌△QAP和△ACB≌△PAQ兩種情況,當(dāng)△ACB≌△QAP,∴;當(dāng)△ACB≌△PAQ,∴,故答案為:6cm或12cm.【點(diǎn)睛】本題主要考查了全等三角形的性質(zhì),熟知全等三角形的性質(zhì)是解題的關(guān)鍵.8、15【分析】根據(jù)AAS證明△EFA≌△AGB,△BGC≌△CHD,再根據(jù)全等三角形的性質(zhì)以及三角形的面積公式求解即可.【詳解】解:(1)∵EF⊥FG,BG⊥FG,∴∠EFA=∠AGB=90°,∴∠AEF+∠EAF=90°,又∵AE⊥AB,即∠EAB=90°,∴∠BAG+∠EAF=90°,∴∠AEF=∠BAG,在△AEC和△CDB中,,∴△EFA≌△AGB(AAS);同理可證△BGC≌△CHD(AAS),∴AG=EF=6,CG=DH=4,∴S△ABC=ACBG=(AG+GC)BG=(6+4)3=15.故答案為:15.【點(diǎn)睛】本題考查了三角形全等的性質(zhì)和判定,解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問(wèn)題.9、120【分析】根據(jù)三角形的外角性質(zhì),可得,即可求解.【詳解】解:∵是的外角,∴,∵∠A=50°,∠B=70°,∴.故答案為:120【點(diǎn)睛】本題主要考查了三角形的外角性質(zhì),熟練掌握三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和是解題的關(guān)鍵.10、∠1=∠2(或填A(yù)D=CB)【分析】根據(jù)題意知,在△ABD與△CDB中,AB=CD,BD=DB,所以由三角形判定定理SAS可以推知,只需添加∠1=∠2即可.由三角形判定定理SSS可以推知,只需要添加AD=CB即可.【詳解】解:∵在△ABD與△CDB中,AB=CD,BD=DB,∴添加∠1=∠2時(shí),可以根據(jù)SAS判定△ABD≌△CDB,添加AD=CB時(shí),可以根據(jù)SSS判定△ABD≌△CDB,,故答案為∠1=∠2(或填A(yù)D=CB).【點(diǎn)睛】本題考查了全等三角形的判定,判定兩個(gè)三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個(gè)三角形全等,判定兩個(gè)三角形全等時(shí),必須有邊的參與,若有兩邊一角對(duì)應(yīng)相等時(shí),角必須是兩邊的夾角.三、解答題1、85°【分析】由高的定義可得出∠ADB=∠ADC=90,在△ACD中利用三角形內(nèi)角和定理可求出∠ACB的度數(shù),結(jié)合CE平分∠ACB可求出∠ECB的度數(shù).由三角形外角的性質(zhì)可求出∠AEC的度數(shù),【詳解】解:∵AD是BC邊上的高,∴∠ADB=∠ADC=90.在△ACD中,∠ACB=180°﹣∠ADC﹣∠CAD=180°﹣90°﹣20°=70°.∵CE平分∠ACB,∴∠ECB=∠ACB=35°.∵∠AEC是△BEC的外角,,∴∠AEC=∠B+∠ECB=50°+35°=85°.答:∠AEC的度數(shù)是85°.【點(diǎn)睛】本題考查了三角形內(nèi)角和定理、角平分線的定義以及三角形外角的性質(zhì),利用三角形內(nèi)角和定理及角平分線的性質(zhì),求出∠ECB的度數(shù)是解題的關(guān)鍵.2、見(jiàn)解析【分析】根據(jù)平行線的性質(zhì)得出,運(yùn)用“角角邊”證明△AEB≌△CFD即可.【詳解】證明:∵,∴,在△AEB和△CFD中,∴△AEB≌△CFD,∴.【點(diǎn)睛】本題考查了全等三角形的判定與性質(zhì),解題關(guān)鍵是熟練運(yùn)用全等三角形的判定定
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 四川省宜賓市敘州區(qū)二中2026屆化學(xué)高二第一學(xué)期期末檢測(cè)試題含答案
- 山東省德州市樂(lè)陵市第一中學(xué)2026屆高一化學(xué)第一學(xué)期期末統(tǒng)考試題含解析
- 2025關(guān)于醫(yī)療器械采購(gòu)合同
- 2025年政府駐外招商局招聘面試專(zhuān)項(xiàng)練習(xí)含答案
- 2025項(xiàng)目管理服務(wù)合同模板
- 2025商務(wù)合作合同模板
- 立體停車(chē)庫(kù)測(cè)量合同
- 二手車(chē)交易通訊記錄保存協(xié)議
- 互聯(lián)網(wǎng)眾籌服務(wù)協(xié)議
- 采購(gòu)申請(qǐng)與審批流程標(biāo)準(zhǔn)模板高效執(zhí)行版
- 2025年匹克球裁判試題及答案
- 2025秋蘇教版科學(xué)三年級(jí)上冊(cè)教學(xué)設(shè)計(jì)(附目錄)
- 2025國(guó)家能源投資集團(tuán)有限責(zé)任公司審計(jì)中心社會(huì)招聘12人筆試參考題庫(kù)附帶答案詳解(10套)
- 《初中必讀名著導(dǎo)讀:《水滸傳》核心知識(shí)點(diǎn)與深度解讀》
- 深圳微利房管理辦法
- 診斷學(xué)血管檢查
- 大連市甘井子區(qū)社區(qū)工作者招聘筆試真題2024
- 生產(chǎn)安全會(huì)議紀(jì)要
- 哪個(gè)團(tuán)隊(duì)收益大+課件2025-2026學(xué)年+北師大版(2024)八年級(jí)數(shù)學(xué)上冊(cè)
- 智慧校園建設(shè)“十五五”發(fā)展規(guī)劃
- GB/T 17622-2008帶電作業(yè)用絕緣手套
評(píng)論
0/150
提交評(píng)論