蘇科版七年級數學下冊 第8章 冪的運算 單元測試卷1(含解析)_第1頁
蘇科版七年級數學下冊 第8章 冪的運算 單元測試卷1(含解析)_第2頁
蘇科版七年級數學下冊 第8章 冪的運算 單元測試卷1(含解析)_第3頁
蘇科版七年級數學下冊 第8章 冪的運算 單元測試卷1(含解析)_第4頁
蘇科版七年級數學下冊 第8章 冪的運算 單元測試卷1(含解析)_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

第8章測試卷(1)

一、選擇題

1.x2*x3=()

A.x5B.x6C.x8D.x9

2.計算(2)2O16X(W)2。17的結果是()

32

A.2B.JLC.上D.N

3322

3.下列運算中正確的是()

A.b3*b3=2b3B.x2*x3=x6C.(a5)2=a7D.a24-a5=a-3

4.在-21,-2,y,返,3.14,22,(?)°中有理數的個數是()

323

A.2個B.3個C.4個D.5個

5.計算(-2)」的結果是()

2

A.-1B.1C.2D.-2

22

6.當a>0時,下列關于易的運算正確的是()

1

A.a°=lB.a'1=-aC.(-a)2=-a2D.a2

a2

7.(x2-1)°=1成立的條件是()

A.x#lB.x#-1C.xR或存-lD.xk且洋-1

8.3X=4,9y=7,則32-的值為()

A.1B.1C.-3D.2

747

9.下列運算正確的是()

A.x3+x3=x6B.x2x3=x6C.(x2)3=x6D.x64-x3=x2

10.如果(-am)n=(-an)m,則()

A.m為奇數,n為奇數B.m為偶數,n為偶數C.m,n奇偶性相同

D.m,n奇偶性相反

11.下列運算中結果正確的是()

A.3a+2b=5abB.a?a4=a4C.(a3b)2=a6b2D.a6,a2=a12

12.計算:a?1等于()

A.a6B.a8C.2a4D.4a2

13.下列各式中,正確的是()

A.a4,a2=a8B.a4,a2=a6C.a4,a2=al6D.a4,a2=a2

14.一個長方形的長為0.02米,寬為0.016米,則這個長方形的面積用科學記數

法表示為()

A.4.8x102m2B.3.2x103m2C.3.2x104m2D.0.32xl0-3m2

15.一種病毒的長度約為0.00000432毫米,數據0.000000432用科學記數法表示

為()

A.432x108B.4.32x107C.4.32x106D.0.432x105

二、填空題

16.已矢口am=3,an=9,貝Uam+n=.

17.-4looxO.25loo=

18.某種流感病毒的直徑大約為0.0000000801米,則這個數用科學記數法表示

為.

19.計算(a111)3?a24-am=.

20.若(n+3)2n的值為1,則n的值為.

三、解答題

21.(a-b)2.(b-a)3+(a-b)4?(b-a)

22.⑴若(9m+1)2=316,求正整數m的值.

3n22

(2)已知n為正整數,且x2n=7,求(3x)-4(x)2n的值.

(2)考查了哥的乘法和積的乘方,掌握各運算法則是解答本題的關鍵.

23.(1)如果a+4=-3b,求3ax27b的值.

nk

⑵已知am=2,a=4,a=32,求a3m+2n”的值.

24.科學家密立根曾做過一個測量油分子直徑的實驗,具體的做法是先將油滴滴

在某種溶劑中,使油均勻溶解后取出一些溶液滴入水中,溶劑溶于水,此時油就

在水面上形成一層油膜,該方法稱油膜法,例如,在測分子直徑的實驗中,若油

酸酒精溶液的濃度是1:300,每lcm3溶液有250滴液滴,而1滴溶液滴在水面

上時自由散開的面積為120cm2,則由此可估算出油酸分子的直徑約為多少米?

25.60300000-3000=20100,可改寫為(6.03xl()7)-(3xl03)=2.01xl04

仿照上面改寫的方法,你會發(fā)現(axiom)-(bxlOn)的算法有什么規(guī)律嗎?

請你用發(fā)現的規(guī)律直接計算(7.329X109)+(2.1X104)-(2xl02)

26.已知(x-7)x=l,試探究x的可能取值.

答案

1.x2*x3=()

A.x5B.x6C.x8D.x9

【考點】46:同底數易的乘法.

【專題】選擇題

【難度】易

【分析】根據同底數易的乘法法則,同底數易相乘,底數不變,指數相加,即

am,an=am+n計算即可.

【解答】解:x2?x3=x2+3=x5.

故選:A.

【點評】主要考查同底數易的乘法的性質,熟練掌握性質是解題的關鍵.

2.計算(2)2016X(-③)2017的結果是()

32

A.2B.-J.C.1D.

3322

【考點】47:募的乘方與積的乘方.

【專題】選擇題

【難度】易

【分析】根據積的乘方和易的乘方進行計算即可.

【解答】解:原式=(2)2O16X(-2)2O16X(-2)

322

—一—3,

2

故選D.

【點評】本題考查了積的乘方和哥的乘方,掌握運算性質是解題的關鍵.

3.下列運算中正確的是()

A.b3*b3=2b3B.x2?x3=x6C.(a5)2=a7D.a24-a5=a3

【考點】48:同底數募的除法;46:同底數累的乘法;47:幕的乘方與積的乘方.

【專題】選擇題

【難度】易

【分析】結合選項分別進行同底數募的乘法、募的乘方和積的乘方、同底數易的

除法等運算,然后選擇正確答案.

【解答】解:A、b3-b3=b\原式計算錯誤,故本選項錯誤;

B、x2?x3=x5,原式計算錯誤,故本選項錯誤;

C、(a5)2=a10,原式計算錯誤,故本選項錯誤;

D、a2-^a5=a3,計算正確,故本選項正確.

故選D.

【點評】本題考查了同底數易的乘法、幕的乘方和積的乘方、同底數易的除法等

知識,掌握運算法則是解答本題的關鍵.

4.在-2L,-2,日,返,3.14,22,(血)°中有理數的個數是()

323

A.2個B.3個C.4個D.5個

【考點】6E:零指數募;12:有理數.

【專題】選擇題

【難度】易

【分析】實數的判斷,先化簡,后根據實數的值和有理數的范圍進行判斷.

【解答】解:有理數有-2,?=2,3.14,22,(加)°=1.

3

所以有理數的個數是5個.故選D.

【點評】(1)有理數都可以化為小數,其中整數可以看作小數點后面是零的小數,

例如5=5.0;分數都可以化為有限小數或無限循環(huán)小數;

⑵無理數是無限不循環(huán)小數,其中有開方開不盡的數,如2,33等,也有兀這

樣的數.

⑶有限小數和無限循環(huán)小數都可以化為分數,也就是說,一切有理數都可以用

分數來表示;而無限不環(huán)小數不能化為分數,它是無理數.

5.計算(-工)」的結果是()

2

A.-1B.1C.2D.-2

22

【考點】6F:負整數指數易.

【專題】選擇題

【難度】易

【分析】根據負整數指數易的運算法則計算.

【解答】解:原式=-+=-2.故選D.

【點評】哥的負整數指數運算,先把底數化成其倒數,然后將負整指數募當成正

的進行計算.

6.當a>0時,下列關于易的運算正確的是()

X

A.a°=lB.a-1=-aC.(-a)2=-a2D.a2=

a2

【考點】6F:負整數指數募;IE:有理數的乘方;2F:分數指數募;6E:零指

數賽

【專題】選擇題

【難度】易

【分析】分別利用零指數募的性質以及負指數募的性質和分數指數募的性質分別

分析求出即可.

【解答】解:A、a°=l(a>0),正確;

B、a*=1,故此選項錯誤;

a

C、(-a)2=a2,故此選項錯誤;

D、a(a>0),故此選項錯誤.

故選:A.

【點評】此題主要考查了零指數易的性質以及負指數募的性質和分數指數易的性

質等知識,正確把握相關性質是解題關鍵.

7.(x2-1)°=1成立的條件是()

A.x^lB.-1C.x于1或xr-1D.x于1且xr-1

【考點】6E:零指數J.

【專題】選擇題

【難度】易

【分析】根據任何非0數的0次哥都等于1,得x?-屏0,求得x的取值范圍即

可.

【解答】解:叱-1)0=1,

X2-1加,

xVl>

...X#1,

即X#1且Xr-1,

故選:D.

【點評】本題考查了零指數募的定義和性質,是基礎知識要熟練掌握.

8.3X=4,9y=7,則32—的值為()

A.1B.1C.-3D.2

747

【考點】48:同底數募的除法;47:哥的乘方與積的乘方.

【專題】選擇題

【難度】易

【分析】根據同底數募的除法展開,求出后代入求出即可.

【解答】解::3x=4,9y=7,

/.32y-x

=32y^3x

=97

-_-7-,

4

故選B.

【點評】本題考查了同底數易的除法的應用,主要考查學生的理解能力和計算能

力.

9.下列運算正確的是()

A.x3+x3=x6B.x2x3=x6C.(x2)3=x6D.x6^x3=x2

【考點】48:同底數幕的除法;35:合并同類項;46:同底數易的乘法;47:曷

的乘方與積的乘方.

【專題】選擇題

【難度】易

【分析】原式各項計算得到結果,即可做出判斷.

【解答】解:A、原式=2x3,錯誤;

B、原式=x5,錯誤;

C、原式=X,,正確;

D、原式=x3,錯誤.

故選c

【點評】此題考查了同德數哥的除法,合并同類項,同底數累的乘法,以及募的

乘方與積的乘方,熟練掌握運算法則是解本題的關鍵.

10.如果(-am)n=(-an)m,則()

A.m為奇數,n為奇數B.m為偶數,n為偶數C.m,n奇偶性相同

D.m,n奇偶性相反

【考點】47:募的乘方與積的乘方.

【專題】選擇題

【難度】易

【分析】根據哥的乘方和積的乘方以及合并同類項進行選擇即可.

【解答】解:(-am)n=(-a11)m,

Am,n可以同時奇數,也可以同時偶數,

故選C

【點評】本題考查了哥的乘方和積的乘方以及合并同類項,掌握運算法則是解題

的關鍵.

11.下列運算中結果正確的是()

A.3a+2b=5abB.a?a4=a4C.(a3b)2=a6b2D.a6?a2=a12

【考點】47:募的乘方與積的乘方;35:合并同類項;46:同底數易的乘法.

【專題】選擇題

【難度】易

【分析】根據哥的乘方和積的乘方以及合并同類項進行選擇即可.

【解答】解:A、不能合并,故A錯誤;

B,a?a4=a5故B錯誤;

C、(a3b)2=a6b2,故C正確;

D、a6?a2=a8,故B錯誤;

故選C.

【點評】本題考查了累的乘方和積的乘方以及合并同類項,掌握運算法則是解題

的關鍵.

12.計算:a?/等于()

A.a6B.a8C.2a4D.4a2

【考點】46:同底數募的乘法.

【專題】選擇題

【難度】易

【分析】根據同底數易的乘法底數不變指數相加,可得答案.

【解答】解:原式=a2+4=a6,

故選:A.

【點評】本題考查了同底數募的乘法,底數不變指數相加是解題關鍵.

13.下列各式中,正確的是()

A.a4,a2=a8B.a4,a2=a6C.a4,a2=a16D.a4,a2=a2

【考點】46:同底數易的乘法.

【專題】選擇題

【難度】易

【分析】根據同底數易的乘法,底數不變指數相加,可得答案.

【解答】解:a4-a2=a4+2=a6,

故選:B.

【點評】本題考查了同底數易的乘法,同底數易的乘法,底數不變指數相加.

14.一個長方形的長為0.02米,寬為0.016米,則這個長方形的面積用科學記數

法表示為()

A.4.8x102m2B.3.2x103m2C.3.2x104m2D.0.32x103m2

【考點】1J:科學記數法一表示較小的數.

【專題】選擇題

【難度】易

【分析】絕對值小于1的正數也可以利用科學記數法表示,一般形式為axlO?

與較大數的科學記數法不同的是其所使用的是負指數易,指數由原數左邊起第一

個不為零的數字前面的0的個數所決定.

【解答】解:面積是0.00032=3.2xl(y4n?,

故選:C.

【點評】本題考查用科學記數法表示較小的數,一般形式為axlOn,其中l(wèi)<|a|

<10,n為由原數左邊起第一個不為零的數字前面的0的個數所決定.

15.一種病毒的長度約為0.00000432毫米,數據0.000000432用科學記數法表示

為()

A.432x108B.4.32X10-7C.4.32xl0-6D.0.432X10-5

【考點】1J:科學記數法一表示較小的數.

【專題】選擇題

【難度】易

【分析】絕對值小于1的正數也可以利用科學記數法表示,一般形式為axlO?

與較大數的科學記數法不同的是其所使用的是負指數募,指數由原數左邊起第一

個不為零的數字前面的0的個數所決定.

【解答】解:0.000000432=4.32x107,

故選:B.

【點評】本題考查用科學記數法表示較小的數,一般形式為axlOn,其中l(wèi)<|a|

<10,n為由原數左邊起第一個不為零的數字前面的0的個數所決定.

16.已知am=3,an=9,則am+n=.

【考點】46:同底數易的乘法.

【專題】填空題

【難度】中

【分析】根據同底數易相乘,底數不變指數相加進行計算即可得解.

【解答】解:Vam=3,an=9,

?,.am+n=am?an=3x9=27.

故答案為:27.

【點評】本題考查了同底數易的乘法,是基礎題,熟記運算法則是解題的關鍵.

17.-4looxO.25loo=

【考點】47:募的乘方與積的乘方.

【專題】填空題

【難度】中

【分析】根據積的乘方的運算方法,求出-4i0°x0.25i°°的值是多少即可.

【解答】解:-4looxO.25lo°

=-(4x0.25)100

=-poo

=-1

故答案為:-1.

【點評】此題主要考查了哥的乘方和積的乘方,要熟練掌握,解答此題的關鍵是

1nmnnnn

要明確:①(a")=a(m,n是正整數);②(ab)=ab(n是正整數).

18.某種流感病毒的直徑大約為0.0000000801米,則這個數用科學記數法表示

為.

【考點】1J:科學記數法一表示較小的數.

【專題】填空題

【難度】中

【分析】絕對值小于1的正數也可以利用科學記數法表示,一般形式為axlO?

與較大數的科學記數法不同的是其所使用的是負指數募,指數由原數左邊起第一

個不為零的數字前面的0的個數所決定.

【解答】解:0.0000000801=8.01x10”,

故答案為:8.01x108.

【點評】本題考查用科學記數法表示較小的數,一般形式為axlOn,其中l(wèi)<|a|

<10,n為由原數左邊起第一個不為零的數字前面的0的個數所決定.

19.計算(a111)3?a24-am=.

【考點】48:同底數易的除法;46:同底數易的乘法;47:哥的乘方與積的乘方.

【專題】填空題

【難度】中

【分析】根據易的乘方,底數不變指數相乘;同底數易相乘,底數不變指數相加;

同底數易相除,底數不變指數相減進行計算即可得解.

【解答】解:(a"1)3?a2+am,

=a3m?a2^am,

-

—_ca3m+2m9

—_do2m+2.

故答案為:a2m+2.

【點評】本題考查了幕的乘方的性質,同底數嘉的乘法,同底數易的除法,熟練

掌握運算性質和法則是解題的關鍵.

20.若(n+3)2n的值為1,則n的值為.

【考點】6E:零指數募;1E:有理數的乘方.

【專題】填空題

【難度】中

【分析】分別討論,①底數為±1,②底數不為零,指數為0的情況,得出n的值

即可.

【解答】解:①當n+3=l時,n=-2,此時12n口遍口;

②當n+3=-1時,n=-4,此時(-1)8=(-1)8=1;

③當n+3知,2n=0時,n=0,此時3°=1;

故可得n的值為-2,-4,0.

故答案為:-2,-4,0.

【點評】本題考查了零指數募的知識,需要分情況討論,注意不要漏解.

21.(a-b)2*(b-a)3+(a-b)4*(b-a)

【考點】46:同底數易的乘法.

【專題】解答題

【難度】難

【分析】先將底數化為相同的式子,然后根據同底數嘉的乘法法則:同底數易相

乘,底數不變,指數相加.

【解答】解:原式=Cb-a)2.(b-a)3+(b-a)4,(b-a)=(b-a)5+(b-a)

5=2(b-a)5.

【點評】本題考查了同底數累的乘法運算,掌握同底數累的乘法法則是關鍵.

22.⑴若(9m+1)2=3叱求正整數m的值.

(2)已知n為正整數,且X2n=7,求(3x3n)2-4叱)2n的值.

【考點】47:募的乘方與積的乘方.

【專題】解答題

【難度】難

【分析】⑴由(9m+1)2=92m+2=32<2m+2)=316,可得方程:2(2m+2)=16,解此方

程即可求得答案.

(2)根據易的乘方的法則將式子中全部化為x2n的形式,然后代入即可求解.

【解答】解:⑴:(9m+l)2=92m+2=3212m+2)=316,

/.2(2m+2)=16,

解得:m=3.

(2)原式=9x6n_4x4n

=9(x2n)3-4(x2n)2

=9x73-4x72

=49x(63-4)

=49x59

=2891.

【點評】(1)考查了累的乘方與積的乘方.此題比較簡單,注意掌握指數的變化

是解此題的關鍵.

(2)考查了哥的乘法和積的乘方,掌握各運算法則是解答本題的關鍵.

23.⑴如果a+4=-3b,求3ax27b的值.

(2)已知am=2,an=4,ak=32,求a3m+2小的值.

【考點】48:同底數募的除法;46:同底數易的乘法;47:哥的乘方與積的乘方.

【專題】解答題

【難度】難

【分析】(1)根據哥的乘方,可得同底數累的乘法,根據同底數募的乘法,可得

答案;

(2)根據募的乘方,可得同底數募的乘法,根據同底數易的乘法,可得答案.

【解答】解:⑴由a+4=-3b,得a=-4-3b.

aaxa=a+=

3x27^—~33^^―~3+3^^~3^~343b+3b~=3-4一_次1.

(2)a3m=8,a2n=16,

3m+2n

ak=a3m.a2n^ak=8x16+32=4.

【點評】本題考查了同底數易的乘法,先利用哥的乘方得出同底數幕的乘法,再

利用同底數易的乘法運算.

24.科學家密立根曾做過一個測量油分子直徑的實驗,具體的做法是先將油滴滴

在某種溶劑中,使油均勻溶解后取出一些溶液滴入水中,溶劑溶于水,此時油就

在水面上形成一層油膜,該方法稱油膜法,例如,在測分子直徑的實驗中,若油

酸酒精溶液的濃度是1:300,每lcm3溶液有250滴液滴,而1滴溶液滴在水面

上時自由散開的面積為120cm2,則由此可估算出油酸分子的直徑約為多少米?

【考點】1J:科學記數法一表示較小的數.

【專題】解答題

【難度】難

【分析】采用估算的方法求油膜的面積,通過數正方形的個數:面積超過正方形

一半算一個,不足一半的不算,數出正方形的總個數乘以一個正方形的面積,近

似算出油酸膜的面積;根據濃度按比例算出純油酸的體積;把油酸分子看成球形,

且不考慮分子間的空隙,油膜的厚度近似等于油酸分子的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論