




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
滬科版9年級下冊期末試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、下面的圖形中既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.2、下面四個立體圖形中,從正面看是三角形的是()A. B. C. D.3、如圖,四邊形ABCD內(nèi)接于⊙O,若∠ADC=130°,則∠AOC的度數(shù)為()A.25° B.80° C.130° D.100°4、7個小正方體按如圖所示的方式擺放,則這個圖形的左視圖是()A.B. C.D.5、已知⊙O的半徑為4,,則點A在()A.⊙O內(nèi) B.⊙O上 C.⊙O外 D.無法確定6、下列圖形中,可以看作是中心對稱圖形的是()A. B.C. D.7、如圖,AB是的直徑,CD是的弦,且,,,則圖中陰影部分的面積為()A. B. C. D.8、下列各點中,關于原點對稱的兩個點是()A.(﹣5,0)與(0,5) B.(0,2)與(2,0)C.(﹣2,﹣1)與(﹣2,1) D.(2,﹣1)與(﹣2,1)第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、如圖,AB是半圓O的直徑,AB=4,點C,D在半圓上,OC⊥AB,,點P是OC上的一個動點,則BP+DP的最小值為______.2、邊長相等、各內(nèi)角均為120°的六邊形ABCDEF在直角坐標系內(nèi)的位置如圖所示,,點B在原點,把六邊形ABCDEF沿x軸正半軸繞頂點按順時針方向,從點B開始逐次連續(xù)旋轉(zhuǎn),每次旋轉(zhuǎn)60°,經(jīng)過2021次旋轉(zhuǎn)之后,點B的坐標是_____________.3、如圖,AB為的弦,半徑于點C.若,,則的半徑長為______.4、如圖,半圓O中,直徑AB=30,弦CD∥AB,長為6π,則由與AC,AD圍成的陰影部分面積為_______.5、如圖,點A,B,C在⊙O上,四邊形OABC是平行四邊形,若對角線AC=2,則的長為_____.6、已知一個扇形的半徑是1,圓心角是120°,則這個扇形的面積是___________.7、如圖,一次函數(shù)的圖象與x軸交于點A,與y軸交于點B,作的外接圓,則圖中陰影部分的面積為______.(結(jié)果保留π)三、解答題(7小題,每小題0分,共計0分)1、如圖,是由若干個完全相同的小正方體組成的一個幾何體.(1)請畫出這個幾何體的從左面看和從上面看的形狀圖;(用陰影表示)(2)已知每個小正方體的邊長是2cm,求出這個幾何體的表面積是多少?2、隨著科技的發(fā)展,溝通方式越來越豐富.一天,甲、乙兩位同學同步從“微信”“QQ”,“電話”三種溝通方式中任意選一種與同學聯(lián)系.(1)用恰當?shù)姆椒信e出甲、乙兩位同學選擇溝通方式的所有可能;(2)求甲、乙兩位同學恰好選擇同一種溝通方式的概率.3、如圖,是由一些大小相同的小正方體組合成的簡單幾同體,請在下面方格紙中分別畫出從它的左面和上面看到的形狀圖.4、新冠病毒在全球肆虐,疫情防控刻不容緩.某校為了解學生對新冠疫情防控知識的了解程度,組織七、八年級學生開展新冠疫情防控知識測試(滿分為10分).學校學生處從七、八年級學生中各隨機抽取了20名學生的成績進行了統(tǒng)計.下面提供了部分信息.抽取的20名七年級學生的成績(單位:分)為:10,10,9,9,9,9,9,9,8,8,8,8,8,8,8,7,7,6,5,5.抽取的40名學生成績分析表:年級七年級八年級平均分88.1眾數(shù)8b中位數(shù)a8方差1.91.89請根據(jù)以上信息,解答下列問題:(1)直接寫出上表中a,b的值;(2)該校七、八年級共有學生2000人,估計此次測試成績不低于9分的學生有多少人?(3)在所抽取的七年級與八年級得10分的學生中,隨機抽取2名學生在全校學生大會上進行新冠疫情防控知識宣講,求所抽取的2名學生恰好是1名七年級學生和1名八年級學生的概率.5、如圖,在Rt△ABC中,∠B=90°,∠BAC的平分線AD交BC于點D,點E在AC上,以AE為直徑的⊙O經(jīng)過點D.(1)求證:①BC是⊙O的切線;②;(2)若點F是劣弧AD的中點,且CE=3,試求陰影部分的面積.6、如圖,在中,,以AC為直徑的半圓交斜邊AB于點D,E為BC的中點,連結(jié)DE,CD.過點D作于點F.(1)求證:DE是的切線;(2)若,,求的半徑.7、一張圓桌旁設有4個座位,丙先坐在了如圖所示的座位上,甲、乙、丁3人等可能地坐到①、②、③中的3個座位上.(1)甲坐在①號座位的概率是;(2)用畫樹狀圖或列表的方法,求甲與乙相鄰而坐的概率.-參考答案-一、單選題1、A【詳解】解:A、既是軸對稱圖形又是中心對稱圖形,此項符合題意;B、是中心對稱圖形,不是軸對稱圖形,此項不符題意;C、是軸對稱圖形,不是中心對稱圖形,此項不符題意;D、是軸對稱圖形,不是中心對稱圖形,此項不符題意;故選:A.【點睛】本題考查了中心對稱圖形和軸對稱圖形,熟記中心對稱圖形的定義(在平面內(nèi),把一個圖形繞某點旋轉(zhuǎn),如果旋轉(zhuǎn)后的圖形與另一個圖形重合,那么這兩個圖形互為中心對稱圖形)和軸對稱圖形的定義(如果一個圖形沿一條直線折疊,直線兩旁的部分能夠完全重合,那么這個圖形叫做軸對稱圖形)是解題關鍵.2、C【分析】找到從正面看所得到的圖形為三角形即可.【詳解】解:A、主視圖為正方形,不符合題意;B、主視圖為圓,不符合題意;C、主視圖為三角形,符合題意;D、主視圖為長方形,不符合題意.故選:C.【點睛】本題考查了三視圖的知識,主視圖是從物體的正面看得到的視圖.3、D【分析】根據(jù)圓內(nèi)接四邊形的性質(zhì)求出∠B的度數(shù),根據(jù)圓周角定理計算即可.【詳解】解:∵四邊形ABCD內(nèi)接于⊙O,∴∠B+∠ADC=180°,∵∠ADC=130°,∴∠B=50°,由圓周角定理得,∠AOC=2∠B=100°,故選:D.【點睛】本題考查的是圓內(nèi)接四邊形的性質(zhì)和圓周角定理,掌握圓內(nèi)接四邊形的對角互補是解題的關鍵.4、C【分析】細心觀察圖中幾何體擺放的位置,根據(jù)左視圖是從左面看到的圖象判定則可.【詳解】解:從左邊看,是左邊3個正方形,右邊一個正方形.故選:C.【點睛】本題考查了三視圖的知識,左視圖是從物體的左面看得到的視圖.5、C【分析】根據(jù)⊙O的半徑r=4,且點A到圓心O的距離d=5知d>r,據(jù)此可得答案.【詳解】解:∵⊙O的半徑r=4,且點A到圓心O的距離d=5,∴d>r,∴點A在⊙O外,故選:C.【點睛】本題主要考查點與圓的位置關系,點與圓的位置關系有3種.設⊙O的半徑為r,點P到圓心的距離OP=d,則有:①點P在圓外?d>r;②點P在圓上?d=r;③點P在圓內(nèi)?d<r.6、C【分析】根據(jù)中心對稱圖形的定義進行逐一判斷即可.【詳解】解:A、不是中心對稱圖形,故此選項不符合題意;B、不是中心對稱圖形,故此選項不符合題意;C、是中心對稱圖形,故此選項符合題意;D、不是中心對稱圖形,故此選項不符合題意;故選C.【點睛】本題主要考查了中心對稱圖形的識別,解題的關鍵在于能夠熟練掌握中心對稱圖形的定義:把一個圖形繞著某一個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形叫做中心對稱圖形,這個點就是它的對稱中心.7、C【分析】如圖,連接OC,OD,可知是等邊三角形,,,,計算求解即可.【詳解】解:如圖連接OC,OD∵∴是等邊三角形∴由題意知,故選C.【點睛】本題考查了扇形的面積,等邊三角形等知識.解題的關鍵在于用扇形表示陰影面積.8、D【分析】根據(jù)關于原點對稱的點的橫坐標互為相反數(shù),縱坐標互為相反數(shù),可得答案.【詳解】解:A、(﹣5,0)與(0,5)橫、縱坐標不滿足關于原點對稱的點的橫坐標互為相反數(shù),縱坐標互為相反數(shù)的特征,故A錯誤;B、(0,2)與(2,0)橫、縱坐標不滿足關于原點對稱的點的橫坐標互為相反數(shù),縱坐標互為相反數(shù)的特征,故B錯誤;C、(﹣2,﹣1)與(﹣2,1)關于x軸對稱,故C錯誤;D、關于原點對稱的點的橫坐標互為相反數(shù),縱坐標互為相反數(shù),故D正確;故選:D.【點睛】本題考查了關于原點對稱的點的坐標,關于原點對稱的點的橫坐標互為相反數(shù),縱坐標互為相反數(shù).二、填空題1、【分析】如圖,連接AD,PA,PD,OD.首先證明PA=PB,再根據(jù)PD+PB=PD+PA≥AD,求出AD即可解決問題.【詳解】解:如圖,連接AD,PA,PD,OD.∵OC⊥AB,OA=OB,∴PA=PB,∠COB=90°,∵,∴∠DOB=×90°=60°,∵OD=OB,∴△OBD是等邊三角形,∴∠ABD=60°∵AB是直徑,∴∠ADB=90°,∴AD=AB?sin∠ABD=2,∵PB+PD=PA+PD≥AD,∴PD+PB≥2,∴PD+PB的最小值為2,故答案為:2.【點睛】本題考查圓周角定理,垂徑定理,圓心角,弧,弦之間的關系等知識,解題的關鍵是學會用轉(zhuǎn)化的思想思考問題.2、【分析】根據(jù)旋轉(zhuǎn)找出規(guī)律后再確定坐標.【詳解】∵正六邊形ABCDEF沿x軸正半軸作無滑動的連續(xù)翻轉(zhuǎn),每次翻轉(zhuǎn)60°,∴每6次翻轉(zhuǎn)為一個循環(huán)組循環(huán),∵,∴經(jīng)過2021次翻轉(zhuǎn)為第337循環(huán)組的第5次翻轉(zhuǎn),點B在開始時點C的位置,∵,∴,∴翻轉(zhuǎn)前進的距離為:,如圖,過點B作BG⊥x于G,則∠BAG=60°,∴,,∴,∴點B的坐標為.故答案為:.【點睛】題考查旋轉(zhuǎn)的性質(zhì)與正多邊形,由題意找出規(guī)律是解題的關鍵.3、5【分析】先根據(jù)垂徑定理求出AC的長,設⊙O的半徑為r,再連接OA,在Rt△OAC中利用勾股定理求出r的值即可.【詳解】解:∵⊙O的弦AB=8,半徑OD⊥AB,∴AC=AB=×8=4,設⊙O的半徑為r,則OC=r-CD=r-2,連接OA,在Rt△OAC中,OA2=OC2+AC2,即r2=(r-2)2+42,解得r=5.故答案為:5【點睛】本題考查的是垂徑定理及勾股定理,根據(jù)題意作出輔助線,構造出直角三角形,利用勾股定理求解是解答此題的關鍵.4、45【分析】連接OC,OD,根據(jù)同底等高可知S△ACD=S△OCD,把陰影部分的面積轉(zhuǎn)化為扇形OCD的面積,利用扇形的面積公式S=來求解.【詳解】解:連接OC,OD,∵直徑AB=30,∴OC=OD=,∴CD∥AB,∴S△ACD=S△OCD,∵長為6π,∴陰影部分的面積為S陰影=S扇形OCD=,故答案為:45π.【點睛】本題主要考查了扇形的面積公式,正確理解陰影部分的面積=扇形COD的面積是解題的關鍵.5、【分析】連接OB,交AC于點D,根據(jù)有一組鄰邊相等的平行四邊形是菱形,可得四邊形OABC為菱形,根據(jù)菱形的性質(zhì)可得:,,,根據(jù)等邊三角形的判定得出為等邊三角形,由此得出,在直角三角形中利用勾股定理即可確定圓的半徑,然后代入弧長公式求解即可.【詳解】解:如圖所示,連接OB,交AC于點D,∵四邊形OABC為平行四邊形,,∴四邊形OABC為菱形,∴,,,∵,∴為等邊三角形,∴,∴,在中,設,則,∴,即,解得:或(舍去),∴的長為:,故答案為:.【點睛】題目主要考查菱形的判定和性質(zhì),等邊三角形的判定和性質(zhì),勾股定理,弧長公式等,熟練掌握各個定理和公式是解題關鍵.6、【分析】根據(jù)圓心角為的扇形面積是進行解答即可得.【詳解】解:這個扇形的面積.故答案是:.【點睛】本題考查了扇形的面積,解題的關鍵是掌握扇形的面積公式.7、【分析】先求出A、B、C坐標,再證明三角形BOC是等邊三角形,最后根據(jù)扇形面積公式計算即可.【詳解】過C作CD⊥OA于D∵一次函數(shù)的圖象與x軸交于點A,與y軸交于點B,∴當時,,B點坐標為(0,1)當時,,A點坐標為∴∵作的外接圓,∴線段AB中點C的坐標為,∴三角形BOC是等邊三角形∴∵C的坐標為∴∴故答案為:【點睛】本題主要考查了一次函數(shù)的綜合運用,求扇形面積.用已知點的坐標表示相應的線段是解題的關鍵.三、解答題1、(1)見解析(2)152cm2.【分析】(1)左視圖3列,每列小正方形數(shù)目分別為3,2,1;俯視圖有3列,每行小正方形數(shù)目分別為3,2,1,;(2)先數(shù)出各個面小正方形的個數(shù),再乘每個小正方形的面積可計算出表面積.(1)如圖所示:(2)(2×2)×(6×6+2)=4×38=152(cm2).故這個幾何體的表面積是152cm2.【點睛】本題考查作圖-三視圖.在畫圖時一定要將物體的邊緣、棱、頂點都體現(xiàn)出來,看得見的輪廓線都畫成實線,看不見的畫成虛線,不能漏掉.本題畫幾何體的三視圖時應注意小正方形的數(shù)目及位置.2、(1)3種可能,分別是“微信”“QQ”,“電話”(2)【分析】(1)用例舉法可得甲,乙兩位同學選擇溝通方式都有3種可能.(2)畫樹狀圖展示所有9種等可能的結(jié)果數(shù),再找出恰好選中同一種溝通方式的結(jié)果數(shù),然后根據(jù)概率公式求解.(1)解:甲,乙兩位同學選擇溝通方式都有3種可能,分別是“微信”“QQ”,“電話”.(2)解:畫出樹狀圖,如圖所示所有情況共有9種情況,其中恰好選擇同一種溝通方式的共有3種情況,故兩人恰好選中同一種溝通方式的概率為.【點睛】本題考查了判斷簡單隨機事件的可能性,利用列表法與樹狀圖法求解等可能事件的概率;利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式求事件A或B的概率.3、圖見解析.【分析】根據(jù)左視圖和俯視圖的畫法即可得.【詳解】解:畫圖如下:【點睛】本題考查了左視圖和俯視圖,熟練掌握左視圖(是指從左面觀察物體所得到的圖形)和俯視圖(是指從上面觀察物體所得到的圖形)的畫法是解題關鍵.4、(1)(2)(3)【分析】(1)根據(jù)眾數(shù)和中位數(shù)的概念求解可得;(2)用總?cè)藬?shù)乘以樣本中七、八年級不低于9分的學生人數(shù)和所占比例即可得,(3)根據(jù)列表法求概率即可.(1)根據(jù)抽取的20名七年級學生的成績找到第10個和第11個成績都是8,則中位數(shù)為8,即,根據(jù)條形統(tǒng)計圖可知9分的有6人,人數(shù)最多,則眾數(shù)為9,即(2)解:∵此次測試成績不低于9分的七年級學生有8人,八年級學生有9人∴此次測試成績不低于9分的學生有(人)(3)解:∵七年級得10分的有2人,八年級得10分的有3人設七年級的2人分別為,八年級的3人分別列表如下,根據(jù)列表可知,共有20種等可能結(jié)果,其中1名七年級學生和1名八年級學生的情形有12鐘則所抽取的2名學生恰好是1名七年級學生和1名八年級學生的概率為【點睛】本題考查了求中位數(shù),眾數(shù),根據(jù)樣本估計總體,列表法求概率,掌握以上知識是解題的關鍵.5、(1)①見解析;②見解析;(2).【分析】(1)①連接OD,由角平分線的性質(zhì)解得,再根據(jù)內(nèi)錯角相等,兩直線平行,證明,繼而由兩直線平行,同旁內(nèi)角互補證明即可解題;②連接DE,由弦切角定理得到,再證明,由相似三角形對應邊成比例解題;(2)證明是等邊三角形,四邊形DOAF是菱形,,結(jié)合扇形面積公式
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 印刷工藝成本效益分析考核試卷
- 秋冬居家嬰兒服廓形趨勢
- 職業(yè)健康與安全標準考核試卷
- 語音合成與翻譯在多模態(tài)交互系統(tǒng)中的協(xié)同策略考核試卷
- 復合材料結(jié)構設計優(yōu)化方法研究考核試卷
- 預習:集合的運算(原卷版)-2025高一數(shù)學暑假提升講義(滬教版)
- 電力市場傳導定價模型建立指引
- 八年級數(shù)學上冊蘇科版 第一章《三角形》全等三角形的九大模型及兩大構造方法 復習題(含答案)
- 廣東省深圳市高峰學校2017-2018學年七年級上學期期中考試數(shù)學試題(含答案)
- 山東省濟南市槐蔭區(qū)2021-2022學年七年級上學期期末道德與法治試題(解析版)
- 《瀝青碎石封層應用技術指南》
- UL1450標準中文版-2019電動空氣壓縮機真空泵和涂裝設備中文版第四版
- 技術服務和質(zhì)保期服務計劃方案(純方案-)
- 水土保持方案投標文件技術部分
- 老撾勞務合同范例
- 連接器-材料知識培訓課件
- 空白+彩色世界區(qū)域地理填圖
- 小紅書食用農(nóng)產(chǎn)品承諾書示例
- 完整退役軍人安置條例課件
- 2024年全國寄生蟲病防治技能競賽備賽試題庫-下(包蟲病、其它寄生蟲?。?/a>
- 2024青島版數(shù)學一上第一單元教學設計:快樂課堂第一課時(1-5數(shù)的認識)
評論
0/150
提交評論