




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
202X本溪市中考數(shù)學(xué)幾何綜合壓軸題模擬專題一、中考幾何壓軸題1.(性質(zhì)探究)如圖,在矩形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,AE平分∠BAC,交BC于點(diǎn)E.作DF⊥AE于點(diǎn)H,分別交AB,AC于點(diǎn)F,G.(1)判斷△AFG的形狀并說明理由.(2)求證:BF=2OG.(遷移應(yīng)用)(3)記△DGO的面積為S1,△DBF的面積為S2,當(dāng)時(shí),求的值.(拓展延伸)(4)若DF交射線AB于點(diǎn)F,(性質(zhì)探究)中的其余條件不變,連結(jié)EF,當(dāng)△BEF的面積為矩形ABCD面積的時(shí),請(qǐng)直接寫出tan∠BAE的值.2.在中,,點(diǎn)D?E分別是的中點(diǎn),將繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)一定的角度,連接.觀察猜想(1)如圖①,當(dāng)時(shí),填空:①______________;②直線所夾銳角為____________;類比探究(2)如圖②,當(dāng)時(shí),試判斷的值及直線所夾銳角的度數(shù),并說明理由;拓展應(yīng)用(3)在(2)的條件下,若,將繞著點(diǎn)C在平面內(nèi)旋轉(zhuǎn),當(dāng)點(diǎn)D落在射線AC上時(shí),請(qǐng)直接寫出的值.3.已知:如圖1所示將一塊等腰三角板BMN放置與正方形ABCD的重合,連接AN、CM,E是AN的中點(diǎn),連接BE.(觀察猜想)(1)CM與BE的數(shù)量關(guān)系是________;CM與BE的位置關(guān)系是________;(探究證明)(2)如圖2所示,把三角板BMN繞點(diǎn)B逆時(shí)針旋轉(zhuǎn),其他條件不變,線段CM與BE的關(guān)系是否仍然成立,并說明理由;(拓展延伸)(3)若旋轉(zhuǎn)角,且,求的值.4.(1)問題發(fā)現(xiàn)如圖1,△ABC與△ADE都是等腰直角三角形,且∠BAC=∠DAE=90°,直線BD,CE交于點(diǎn)F,直線BD,AC交于點(diǎn)G.則線段BD和CE的數(shù)量關(guān)系是,位置關(guān)系是;(2)類比探究如圖2,在△ABC和△ADE中,∠ABC=∠ADE=α,∠ACB=∠AED=β,直線BD,CE交于點(diǎn)F,AC與BD相交于點(diǎn)G.若AB=kAC,試判斷線段BD和CE的數(shù)量關(guān)系以及直線BD和CE相交所成的較小角的度數(shù),并說明理由;(3)拓展延伸如圖3,在平面直角坐標(biāo)系中,點(diǎn)M的坐標(biāo)為(3.0),點(diǎn)N為y軸上一動(dòng)點(diǎn),連接MN.將線段MN繞點(diǎn)M逆時(shí)針旋轉(zhuǎn)90得到線段MP,連接NP,OP.請(qǐng)直接寫出線段OP長度的最小值及此時(shí)點(diǎn)N的坐標(biāo).5.如圖:兩個(gè)菱形與菱形的邊在同一條直線上,邊長分別為a和b,點(diǎn)C在上,點(diǎn)M為的中點(diǎn).(1)觀察猜想:如圖①,線段與線段的數(shù)量關(guān)系是______________.(2)拓展探究:如圖②,,將圖①中的菱形繞點(diǎn)B順時(shí)針旋轉(zhuǎn)至圖②位置,其他條件不變,連接,①猜想線段與線段的數(shù)量關(guān)系,并說明理由.②求出線段與所成的最小夾角.(3)解決問題:如圖③,若將題目中的菱形改為矩形,且,請(qǐng)直接寫出線段與線段的數(shù)量關(guān)系.6.綜合與實(shí)踐數(shù)學(xué)活動(dòng)課上,老師讓同學(xué)們結(jié)合下述情境,提出一個(gè)數(shù)學(xué)問題:如圖1,四邊形ABCD是正方形,四邊形BEDF是矩形.探究展示:“興趣小組”提出的問題是:“如圖2,連接CE.求證:AE⊥CE.”并展示了如下的證明方法:證明:如圖3,分別連接AC,BD,EF,AF.設(shè)AC與BD相交于點(diǎn)O.∵四邊形ABCD是正方形,∴OA=OC=AC,OB=OD=BD,且AC=BD.又∵四邊形BEDF是矩形,∴EF經(jīng)過點(diǎn)O,∴OE=OF=EF,且EF=BD.∴OE=OF,OA=OC.∴四邊形AECF是平行四邊形.(依據(jù)1)∵AC=BD,EF=BD,∴AC=EF.∴四邊形AECF是矩形.(依據(jù)2)∴∠CEA=90°,即AE⊥CE.反思交流:(1)上述證明過程中“依據(jù)1”“依據(jù)2”分別是什么?拓展再探:(2)“創(chuàng)新小組”受到“興趣小組”的啟發(fā),提出的問題是:“如圖4,分別延長AE,F(xiàn)B交于點(diǎn)P,求證:EB=PB.”請(qǐng)你幫助他們寫出該問題的證明過程.(3)“智慧小組”提出的問題是:若∠BAP=30°,AE=,求正方形ABCD的面積.請(qǐng)你解決“智慧小組”提出的問題.7.如圖(1),在矩形ABCD中,AD=nAB,點(diǎn)M,P分別在邊AB,AD上(均不與端點(diǎn)重合),且AP=nAM,以AP和AM為鄰邊作矩形AMNP,連接AN,CN.(問題發(fā)現(xiàn))(1)如圖(2),當(dāng)n=1時(shí),BM與PD的數(shù)量關(guān)系為,CN與PD的數(shù)量關(guān)系為.(類比探究)(2)如圖(3),當(dāng)n=2時(shí),矩形AMNP繞點(diǎn)A順時(shí)針旋轉(zhuǎn),連接PD,則CN與PD之間的數(shù)量關(guān)系是否發(fā)生變化?若不變,請(qǐng)就圖(3)給出證明;若變化,請(qǐng)寫出數(shù)量關(guān)系,并就圖(3)說明理由.(拓展延伸)(3)在(2)的條件下,已知AD=4,AP=2,當(dāng)矩形AMVP旋轉(zhuǎn)至C,N,M三點(diǎn)共線時(shí),請(qǐng)直接寫出線段CN的長8.探究:如圖1和圖2,四邊形中,已知,,點(diǎn)、分別在、上,.(1)①如圖1,若、都是直角,把繞點(diǎn)逆時(shí)針旋轉(zhuǎn)90°至,使與重合,直接寫出線段、和之間的數(shù)量關(guān)系____________________;②如圖2,若、都不是直角,但滿足,線段、和之間①中的結(jié)論是否仍然成立,若成立,請(qǐng)寫出證明過程;若不成立,請(qǐng)說明理由.(2)拓展:如圖3,在中,,,點(diǎn)、均在邊上,且,若,求的長.9.(問題發(fā)現(xiàn))(1)如圖1,在Rt△ABC中,AB=AC,D為BC邊上一點(diǎn)(不與點(diǎn)B、C重合)將線段AD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到AE,連結(jié)EC,則線段BD與CE的數(shù)量關(guān)系是,位置關(guān)系是;(探究證明)(2)如圖2,在Rt△ABC和Rt△ADE中,AB=AC,AD=AE,將△ADE繞點(diǎn)A旋轉(zhuǎn),當(dāng)點(diǎn)C,D,E在同一直線時(shí),BD與CE具有怎樣的位置關(guān)系,并說明理由;(拓展延伸)(3)如圖3,在Rt△BCD中,∠BCD=90°,BC=2CD=4,將△ACD繞順時(shí)針旋轉(zhuǎn),點(diǎn)C對(duì)應(yīng)點(diǎn)E,設(shè)旋轉(zhuǎn)角∠CAE為α(0°<α<360°),當(dāng)點(diǎn)C,D,E在同一直線時(shí),畫出圖形,并求出線段BE的長度.10.某數(shù)學(xué)學(xué)習(xí)小組在復(fù)習(xí)線段垂直平分線性質(zhì)時(shí),提出了以下幾個(gè)問題,請(qǐng)你幫他們解決:[數(shù)學(xué)理解](1)點(diǎn)是線段垂直平分線上的一點(diǎn),則的值為;[拓展延伸](2)在平面直角坐標(biāo)系中,點(diǎn),點(diǎn)在軸上,且,則點(diǎn)的坐標(biāo)為.(3)經(jīng)小組探究發(fā)現(xiàn),如圖,延長線段到點(diǎn),使,以點(diǎn)為因心,長為半徑作園,則對(duì)于上任一點(diǎn),都有,請(qǐng)你證明這個(gè)結(jié)論:[問題解決](4)如圖,某人乘船以25千米/時(shí)的速度沿一筆直的河從碼頭到碼頭,再立即坐車沿一筆直公路以75千米/時(shí)的速度回到住處,已知乘船和坐車所用的時(shí)間相等請(qǐng)?jiān)诤舆吷洗_定碼頭的位置.(請(qǐng)畫出示意圖并簡要說明理由)11.將兩個(gè)完全相同的三角形紙片和重合放置,其中.(1)操作發(fā)現(xiàn):如圖2,固定使繞點(diǎn)旋轉(zhuǎn),設(shè)的面積為的面積為當(dāng)點(diǎn)恰好落在邊上時(shí),則與的數(shù)量關(guān)系是;(2)猜想論證:當(dāng)繞點(diǎn)旋轉(zhuǎn)到如圖3所示的位置時(shí),小明猜想中與的數(shù)量關(guān)系為相等,并嘗試分別作出了和中邊上的高請(qǐng)你證明小明的猜想,即證明:.(3)拓展探究:已知,點(diǎn)是角平分線上的一點(diǎn),交于點(diǎn)(如圖4).若射線上存在點(diǎn),使,請(qǐng)直接寫出相應(yīng)的的長.12.問題發(fā)現(xiàn):(1)如圖1,與同為等邊三角形,連接則與的數(shù)量關(guān)系為________;直線與所夾的銳角為_________;類比探究:(2)與同為等腰直角三角形,其他條件同(1),請(qǐng)問(1)中的結(jié)論還成立嗎?請(qǐng)說明理由;拓展延伸:(3)中,為的中位線,將繞點(diǎn)逆時(shí)針自由旋轉(zhuǎn),已知,在自由旋轉(zhuǎn)過程中,當(dāng)在一條直線上時(shí),請(qǐng)直接寫出的值.13.如圖1,在菱形ABCD中,,點(diǎn)E,F(xiàn)分別是AC,AB上的點(diǎn),且,猜想:①的值是_______;②直線DE與直線CF所成的角中較小的角的度數(shù)是_______.(2)類比探究:如圖2,將繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),在旋轉(zhuǎn)的過程中,(1)中結(jié)論是否成立,就圖2的情形說明理由.(3)拓展延伸:在繞點(diǎn)A旋轉(zhuǎn)的過程中,當(dāng)三點(diǎn)共線時(shí),請(qǐng)直接寫出CF的長.14.(1)問題發(fā)現(xiàn)如圖1,ABC是等邊三角形,點(diǎn)D,E分別在邊BC,AC上,若∠ADE=60°,則AB,CE,BD,DC之間的數(shù)量關(guān)系是.(2)拓展探究如圖2,ABC是等腰三角形,AB=AC,∠B=α,點(diǎn)D,E分別在邊BC,AC上.若∠ADE=α,則(1)中的結(jié)論是否仍然成立?請(qǐng)說明理由.(3)解決問題如圖3,在ABC中,∠B=30°,AB=AC=4cm,點(diǎn)P從點(diǎn)A出發(fā),以1cm/s的速度沿A→B方向勾速運(yùn)動(dòng),同時(shí)點(diǎn)M從點(diǎn)B出發(fā),以cm/s的速度沿B→C方向勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)運(yùn)動(dòng)至終點(diǎn)時(shí),另一個(gè)點(diǎn)隨之停止運(yùn)動(dòng),連接PM,在PM右側(cè)作∠PMG=30°,該角的另一邊交射線CA于點(diǎn)G,連接PC.設(shè)運(yùn)動(dòng)時(shí)間為t(s),當(dāng)△APG為等腰三角形時(shí),直接寫出t的值.15.如圖,四邊形是正方形,點(diǎn)為對(duì)角線的中點(diǎn).(1)問題解決:如圖①,連接,分別取,的中點(diǎn),,連接,則與的數(shù)量關(guān)系是_____,位置關(guān)系是____;(2)問題探究:如圖②,是將圖①中的繞點(diǎn)按順時(shí)針方向旋轉(zhuǎn)得到的三角形,連接,點(diǎn),分別為,的中點(diǎn),連接,.判斷的形狀,并證明你的結(jié)論;(3)拓展延伸:如圖③,是將圖①中的繞點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)得到的三角形,連接,點(diǎn),分別為,的中點(diǎn),連接,.若正方形的邊長為1,求的面積.16.(1)問題情境:如圖1,已知等腰直角中,,,是上的一點(diǎn),且,過作于,取中點(diǎn),連接,則的長為_______(請(qǐng)直接寫出答案)小明采用如下的做法:延長到,使,連接,為中點(diǎn),為的中點(diǎn),是的中位線……請(qǐng)你根據(jù)小明的思路完成上面填空;(2)遷移應(yīng)用:將圖1中的繞點(diǎn)作順時(shí)針旋轉(zhuǎn),當(dāng)時(shí),試探究、、的數(shù)量關(guān)系,并證明你的結(jié)論.(3)拓展延伸:在旋轉(zhuǎn)的過程中,當(dāng)、、三點(diǎn)共線時(shí),直接寫出線段的長.17.石家莊某學(xué)校數(shù)學(xué)興趣小組利用機(jī)器人開展數(shù)學(xué)活動(dòng),在相距150個(gè)單位長度的直線跑道AB上,機(jī)器人甲從端點(diǎn)A出發(fā),勻速往返于端點(diǎn)A、B之間,機(jī)器人乙同時(shí)從端點(diǎn)B出發(fā),以大于甲的速度勻速往返于端點(diǎn)B、A之間.他們到達(dá)端點(diǎn)后立即轉(zhuǎn)身折返,用時(shí)忽略不計(jì),興趣小組成員探究這兩個(gè)機(jī)器人迎面相遇的情況,這里的“迎面相遇”包括面對(duì)面相遇、在端點(diǎn)處相遇這兩種.(觀察)①觀察圖1,若這兩個(gè)機(jī)器人第一次迎面相遇時(shí),相遇地點(diǎn)與點(diǎn)A之間的距離為30個(gè)單位長度,則他們第二次迎面相遇時(shí),相遇地點(diǎn)與點(diǎn)A之間的距離為個(gè)單位長度.②若這兩個(gè)機(jī)器人第一次迎面相遇時(shí),相遇地點(diǎn)與點(diǎn)A之間的距離為35個(gè)單位長度,則他們第二次迎面相遇時(shí),相遇地點(diǎn)與點(diǎn)A之間的距離為個(gè)單位長度.(發(fā)現(xiàn))設(shè)這兩個(gè)機(jī)器人第一次迎面相遇時(shí),相遇地點(diǎn)與點(diǎn)A之間的距離為x個(gè)單位長度,他們第二次迎面相遇時(shí),相遇地點(diǎn)與點(diǎn)A之間的距離為y個(gè)單位長度,興趣小組成員發(fā)現(xiàn)了y與x的函數(shù)關(guān)系,并畫出了部分函數(shù)圖象(線段OP,不包括點(diǎn)O,如圖2所示)①a=;②分別求出各部分圖象對(duì)應(yīng)的函數(shù)解析式,并在圖2中補(bǔ)全函數(shù)圖象.(拓展)設(shè)這兩個(gè)機(jī)器人第一次迎面相遇時(shí),相遇地點(diǎn)與點(diǎn)A之間的距離為x個(gè)單位長度,他們第三次迎面相遇時(shí),相遇地點(diǎn)與點(diǎn)A之間的距離為y個(gè)單位長度,若這兩個(gè)機(jī)器人在第三次迎面相遇時(shí),相遇地點(diǎn)與點(diǎn)A之間的距離y不超過60個(gè)單位長度,則他們第一次迎面相遇時(shí),相遇地點(diǎn)與點(diǎn)A之間的距離x的取值范圍是.(直接寫出結(jié)果)18.(教材呈現(xiàn))下圖是華師版八年級(jí)下冊(cè)教材第89頁的部分內(nèi)容.例6:如圖18.2.12,G、H是平行四邊形ABCD對(duì)角線AC上的兩點(diǎn),且AG=CH,E、F分別是邊AB和CD的中點(diǎn).圖18.2.12求證:四邊形EHFG是平行四邊形.證明:連結(jié)EF交AC于點(diǎn)O.∵四邊形ABCD是平行四邊形,∴AB=CD,AB∥CD.又∵E、F分別是AB、CD的中點(diǎn),∴AE=CF.又∵AB∥CD,∴∠EAO=∠FCO.又∵∠AOE=∠COF,∴.請(qǐng)補(bǔ)全上述問題的證明過程.(探究)如圖①,在中,E,O分別是邊AB、AC的中點(diǎn),D、F分別是線段AO、CO的中點(diǎn),連結(jié)DE、EF,將繞點(diǎn)O旋轉(zhuǎn)180°得到,若四邊形DEFG的面積為8,則的面積為.(拓展)如圖②,GH是正方形ABCD對(duì)角線AC上的兩點(diǎn),且AG=CH,GH=AB,E、F分別是AB和CD的中點(diǎn).若正方形ABCD的面積為16,則四邊形EHFG的面積為.19.綜合與實(shí)踐——探究特殊三角形中的相關(guān)問題問題情境:某校學(xué)習(xí)小組在探究學(xué)習(xí)過程中,將兩塊完全相同的且含角的直角三角板和按如圖1所示位置放置,且的較短直角邊為2,現(xiàn)將繞點(diǎn)按逆時(shí)針方向旋轉(zhuǎn),如圖2,與交于點(diǎn),與交于點(diǎn),與交于點(diǎn).(1)初步探究:勤思小組的同學(xué)提出:當(dāng)旋轉(zhuǎn)角時(shí),是等腰三角形;(2)深入探究:敏學(xué)小組的同學(xué)提出在旋轉(zhuǎn)過程中,如果連接,,那么所在的直線是線段的垂直平分線.請(qǐng)幫他們證明;(3)再探究:在旋轉(zhuǎn)過程中,當(dāng)旋轉(zhuǎn)角時(shí),求與重疊的面積;(4)拓展延伸:在旋轉(zhuǎn)過程中,是否能成為直角三角形?若能,直接寫出旋轉(zhuǎn)角的度數(shù);若不能,說明理由.20.探究:如圖1和圖2,四邊形ABCD中,已知AB=AD,∠BAD=90°,點(diǎn)E、F分別在BC、CD上,∠EAF=45°.(1)①如圖1,若∠B、∠ADC都是直角,把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,使AB與AD重合,直接寫出線段BE、DF和EF之間的數(shù)量關(guān)系;②如圖2,若∠B、∠D都不是直角,但滿足∠B+∠D=180°,線段BE、DF和EF之間的結(jié)論是否仍然成立,若成立,請(qǐng)寫出證明過程;若不成立,請(qǐng)說明理由.(2)拓展:如圖3,在△ABC中,∠BAC=90°,AB=AC=2.點(diǎn)D、E均在邊BC邊上,且∠DAE=45°,若BD=1,求DE的長.【參考答案】***試卷處理標(biāo)記,請(qǐng)不要?jiǎng)h除一、中考幾何壓軸題1.(1)等腰三角形,理由見解析;(2)見解析;(3);(4)或【分析】(1)如圖1中,△AFG是等腰三角形,利用全等三角形的性質(zhì)證明即可.(2)如圖2中,過點(diǎn)O作OL∥AB交DF于L,則∠AFG解析:(1)等腰三角形,理由見解析;(2)見解析;(3);(4)或【分析】(1)如圖1中,△AFG是等腰三角形,利用全等三角形的性質(zhì)證明即可.(2)如圖2中,過點(diǎn)O作OL∥AB交DF于L,則∠AFG=∠OLG.首先證明OG=OL,再證明BF=2OL即可解決問題.(3)如圖3中,過點(diǎn)D作DK⊥AC于K,則∠DKA=∠CDA=90°,利用相似三角形的性質(zhì)解決問題即可.(4)設(shè)OG=a,AG=k.分兩種情形:①如圖4中,連接EF,當(dāng)點(diǎn)F在線段AB上時(shí),點(diǎn)G在OA上.②如圖5中,當(dāng)點(diǎn)F在AB的延長線上時(shí),點(diǎn)G在線段OC上,連接EF.分別求解即可解決問題.【詳解】(1)解:如圖1中,△AFG是等腰三角形.理由:∵AE平分∠BAC,∴∠1=∠2,∵DF⊥AE,∴∠AHF=∠AHG=90°,∵AH=AH,∴△AHF≌△AHG(ASA),∴AF=AG,∴△AFG是等腰三角形.(2)證明:如圖2中,過點(diǎn)O作OL∥AB交DF于L,則∠AFG=∠OLG.∵AF=AG,∴∠AFG=∠AGF,∵∠AGF=∠OGL,∴∠OGL=∠OLG,∴OG=OL,∵OL∥AB,∴△DLO∽△DFB,∴,∵四邊形ABCD是矩形,∴BD=2OD,∴BF=2OL,∴BF=2OG.(3)解:如圖3中,過點(diǎn)D作DK⊥AC于K,則∠DKA=∠CDA=90°,∵∠DAK=∠CAD,∴△ADK∽△ACD,∴,∵S1=?OG?DK,S2=?BF?AD,又∵BF=2OG,,∴,設(shè)CD=2x,AC=3x,則AD=,∴.(4)解:設(shè)OG=a,AG=k.①如圖4中,連接EF,當(dāng)點(diǎn)F在線段AB上時(shí),點(diǎn)G在OA上.∵AF=AG,BF=2OG,∴AF=AG=k,BF=2a,∴AB=k+2a,AC=2(k+a),∴AD2=AC2﹣CD2=[2(k+a)]2﹣(k+2a)2=3k2+4ka,∵∠ABE=∠DAF=90°,∠BAE=∠ADF,∴△ABE∽△DAF,∴,∴,∴,由題意:=AD?(k+2a),∴AD2=10ka,即10ka=3k2+4ka,∴k=2a,∴AD=,∴BE==,AB=4a,∴tan∠BAE=.②如圖5中,當(dāng)點(diǎn)F在AB的延長線上時(shí),點(diǎn)G在線段OC上,連接EF.∵AF=AG,BF=2OG,∴AF=AG=k,BF=2a,∴AB=k﹣2a,AC=2(k﹣a),∴AD2=AC2﹣CD2=[2(k﹣a)]2﹣(k﹣2a)2=3k2﹣4ka,∵∠ABE=∠DAF=90°,∠BAE=∠ADF,∴△ABE∽△DAF,∴,∴,∴,由題意:=AD?(k﹣2a),∴AD2=10ka,即10ka=3k2﹣4ka,∴k=,∴AD=,∴,AB=,∴tan∠BAE=,綜上所述,tan∠BAE的值為或.【點(diǎn)睛】本題是一道綜合題,主要涉及到等腰三角形的判定及其性質(zhì)、全等三角形的判定和性質(zhì)、三角形中位線定理、相似三角形的判定及其性質(zhì)、勾股定理的應(yīng)用等知識(shí)點(diǎn),解題的關(guān)鍵是綜合運(yùn)用所學(xué)到的相關(guān)知識(shí).2.(1)①1,②;(2)直線所夾銳角為,見解析;(3)滿足條件的的值為【分析】(1)①②延長BD交AE的延長線于T,BT交AC于O.證明即可解決問題.(2)如圖②中,設(shè)AC交BD于O,AE交BD解析:(1)①1,②;(2)直線所夾銳角為,見解析;(3)滿足條件的的值為【分析】(1)①②延長BD交AE的延長線于T,BT交AC于O.證明即可解決問題.(2)如圖②中,設(shè)AC交BD于O,AE交BD于T.證明,推出,可得結(jié)論.(3)分兩種情形:①如圖③-1中,當(dāng)點(diǎn)D落在線段AC上時(shí),作于H.②如圖③-2中,當(dāng)點(diǎn)D在AC的延長線上時(shí),分別利用勾股定理求解即可.【詳解】解:(1)如圖①中,延長BD交AE的延長線于T,BT交AC于O.,是等邊三角形,,,,,,,,,∴直線所夾銳角為,故答案為1,.(2)如圖②中,設(shè)AC交于O,AE交于T.,是等腰直角三角形,,,,,,,,,∴直線所夾銳角為.(3)①如圖③-1中,當(dāng)點(diǎn)D落在線段AC上時(shí),作于H.由題意,,,,,在中,②如圖③-2中,當(dāng)點(diǎn)D在AC的延長線上時(shí),同法可得,綜上所述,滿足條件的的值為.【點(diǎn)睛】本題考查幾何變換綜合題,考查了全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),解直角三角形等知識(shí),解題的關(guān)鍵是正確尋找全等三角形或相似三角形解決問題,學(xué)會(huì)用分類討論的思想思考問題,屬于中考?jí)狠S題.3.(1);;(2)成立,理由見解析;(3)【分析】(1)【觀察猜想】根據(jù)正方形ABCD,得到AB=CB,由等腰三角形BMN,得到BM=BN,可證明Rt△BAN≌Rt△BCM(HL),又根據(jù)E是A解析:(1);;(2)成立,理由見解析;(3)【分析】(1)【觀察猜想】根據(jù)正方形ABCD,得到AB=CB,由等腰三角形BMN,得到BM=BN,可證明Rt△BAN≌Rt△BCM(HL),又根據(jù)E是AN的中點(diǎn),即可證明CM=2BE,根據(jù)等邊對(duì)等角得到∠ABE=∠BCM,∠ABE+∠BMC=90°即可證明CM⊥BE.(2)【探究證明】延長BE至F使EF=BE,連接AF,先證明△AEF≌△NEB,再證明△FAB≌MBC,得到CM=BF=2BE,∠BCM=∠ABF,得到∠ABF+∠FBC=90°,進(jìn)而求得∠BCM+∠EBC=90°,即可證明EB⊥CM;(3)[拓展延伸]由a=45°得到∠ABE=15°,由前面可得∠BMC=30°,過C作CG⊥MB于G,設(shè)CG為m,則BC=m,MG=m,所以MB=BN=m-m,最后求得的值.【詳解】解:【觀察猜想】(1)CM=2BE;CM⊥BE;如圖1所示圖1∵正方形ABCD,∴AB=CB,∵等腰三角形BMN,∴BM=BN,∴Rt△BAN≌Rt△BCM(HL),∴∠BAN=∠BCM,又∵E是AN的中點(diǎn),∴BE=AE=NE=AN,∴CM=2BE,∵BE=AE,∴∠BAN=∠ABE,∴∠ABE=∠BCM,∴∠ABE+∠BMC=∠BCM+∠BMC=90°∴∠BPM=90°∴CM⊥BE.【探究證明】(2)CM=2BE,CM⊥BE仍然成立.如圖2所示,延長BE至F使EF=BE,連接AF,∵AE=EN,∠AEF=∠NEB,EF=BE,∴△AEF≌△NEB∴AF=BN,∠F=∠EBN,∴AF//BN,AF=BM,∴∠FAB+∠ABN=180°,∵∠MBN=∠ABC=90°,∴∠NBC+∠ABN=90°,∴∠NBA+∠FAD=90°,∴∠CBN=∠FAD∴∠FAB=∠MBC,∵AB=BC,∴△FAB≌MBC,∴CM=BF=2BE,∠BCM=∠ABF,∵∠ABF+∠FBC=90°∴∠BCM+∠EBC=90°,∴EB⊥CM;[拓展延伸](3)由a=45°得∠MBA=∠ABN=45°,∵∠NBE=2∠ABE,∴∠ABE=15°,由前面可得∠MCB=∠ABE=15°,∠MBC=135°,∴∠BMC=180°-15°-135°=30°,如圖3所示,過C作CG⊥MB于G,圖3設(shè)CG為m則BC=m,MG=m,所以MB=BN=m-m,∴.【點(diǎn)睛】本題考查了正方形的性質(zhì),全等三角形的性質(zhì)和判定,等腰直角三角形的性質(zhì),直角三角形的性質(zhì),解題的關(guān)鍵是靈活運(yùn)用以上性質(zhì)解決問題.4.(1)BD=CE,BD⊥CE,理由見詳解;(2)AB=kAC,180°-α-β;(3)N(0,3),OP的最小值為3【分析】(1)先證明△ABD≌△ACE,從而得BD=CE,∠ABD=∠ACE解析:(1)BD=CE,BD⊥CE,理由見詳解;(2)AB=kAC,180°-α-β;(3)N(0,3),OP的最小值為3【分析】(1)先證明△ABD≌△ACE,從而得BD=CE,∠ABD=∠ACE,結(jié)合∠AGB=∠FGC,即可得到結(jié)論;(2)先證明ABCADE,從而得,結(jié)合∠BAD=∠CAE,可得BADCAE,進(jìn)而即可得到結(jié)論;(3)把OPM繞點(diǎn)M順時(shí)針旋轉(zhuǎn)90°得到(與N重合),則,,(3,3),,進(jìn)而即可求解.【詳解】解:(1)BD=CE,BD⊥CE,∵△ABC和△ADE都是等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=90°,∵∠BAD=∠BAC?∠DAC,∠CAE=∠DAE?∠DAC∴∠BAD=∠CAE,在△ABD和△ACE中,∵,∴△ABD≌△ACE,∴BD=CE,∠ABD=∠ACE,∵∠AGB=∠FGC,∴∠CFG=∠BAG=90°,即BD⊥CE,故答案是:BD=CE,BD⊥CE;(2)∵∠ABC=∠ADE=α,∠ACB=∠AED=β,∴ABCADE,∴,∵∠ABC=∠ADE=α,∠ACB=∠AED=β,∴∠BAC=∠DAE,∴∠BAD=∠CAE,∴BADCAE,∴∠ABD=∠ACE,又∵∠AGB=∠FGC,∴∠BFC=∠BAC=180°-∠ABC-∠ACB=180°-α-β,∴AB=kAC,直線BD和CE相交所成的較小角的度數(shù)為:180°-α-β;(3)由題意得:MN=MP,∠NMP=90°,把OPM繞點(diǎn)M順時(shí)針旋轉(zhuǎn)90°得到(與N重合),則,,∵點(diǎn)M的坐標(biāo)為(3,0),∴(3,3)∵OPM,∴,即線段OP長度最小時(shí),的長度最小,∴當(dāng)⊥y軸時(shí),的長度最小,此時(shí)(0,3),∴N(0,3),OP的最小值為3.【點(diǎn)睛】本題主要考查全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),旋轉(zhuǎn)的性質(zhì),通過旋轉(zhuǎn)變換,構(gòu)造相似三角形或全等三角形,是解題的關(guān)鍵.5.(1);(2)①,理由見解析;②線段與所成的最小夾角為60;(3).【分析】(1)根據(jù)已知求得AE=a+b,CG=b-a,根據(jù)線段中點(diǎn)的定義求得CM=,通過計(jì)算即可求解;(2)①延長BM解析:(1);(2)①,理由見解析;②線段與所成的最小夾角為60;(3).【分析】(1)根據(jù)已知求得AE=a+b,CG=b-a,根據(jù)線段中點(diǎn)的定義求得CM=,通過計(jì)算即可求解;(2)①延長BM到H,使MH=BM,連接GH,利用SAS證明△CMB△GMH和△ABE△HGB,即可得到結(jié)論;②延長MB交AE于N,證明∠GBE=∠BNE=60,即可求解;(3)延長BM到H,使MH=BM,連接GH,同理證明△CMB△GMH,再證明△ABE△HGB,即可求解.【詳解】(1),理由如下:∵菱形ABCD與菱形
BEFG的邊長分別為a和b,∴AE=AB+BE=a+b,CG=BG-BC=b-a,∵點(diǎn)M為CG的中點(diǎn),∴CM=CG=,∴,∴;(2)①,理由如下:延長BM到H,使MH=BM,連接GH,如圖:∵點(diǎn)M為CG的中點(diǎn),∴CM=MG,∵∠CMB=∠GMH,∴△CMB△GMH(SAS),∴∠BCM=∠HGM,BC=HG,∴BC∥GH,∴∠BGH+∠CBG=180,∵菱形ABCD與菱形
BEFG中,∠ABC=120°,∠GBE=60°,∴∠ABE+∠CBG=180,∴∠ABE=∠BGH,∵AB=BC=HG,BE=BG,∴△ABE△HGB(SAS),∴AE=HB;②線段與所成的最小夾角為60,理由如下:∵△ABE△HGB,∴∠AEB=∠BHG,延長MB交AE于N,則∠MBE=∠BNE+∠AEB,即∠HBG+∠GBE=∠BNE+∠AEB,∴∠GBE=∠BNE=60,∴線段與所成的最小夾角為60;(3),理由如下:延長BM到H,使MH=BM,連接GH,如圖:同理可得:△CMB△GMH(SAS),∴∠BCM=∠HGM,BC=HG,∴BC∥GH,∴∠BGH+∠CBG=180,∵矩形ABCD與矩形
BEFG中,∠ABC=∠GBE=90°,∴∠ABE+∠CBG=180,∴∠ABE=∠BGH,∵,∴,∴△ABE△HGB,∴,∵,∴.【點(diǎn)睛】本題考查四邊形綜合題、全等三角形的判定和性質(zhì)、相似三角形的判定和性質(zhì)、菱形的性質(zhì)、矩形的性質(zhì)等知識(shí),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問題,學(xué)會(huì)添加常用輔助線,構(gòu)造全等三角形解決問題,屬于中考?jí)狠S題.6.(1)依據(jù)1:對(duì)角線互相平分的四邊形是平行四邊形,依據(jù)2:對(duì)角線相等的平行四邊形是矩形;(2)見解析;(3)4【分析】(1)借助問題情景即可得出結(jié)論;(2)連接CE,先根據(jù)已證結(jié)論及正方形的性解析:(1)依據(jù)1:對(duì)角線互相平分的四邊形是平行四邊形,依據(jù)2:對(duì)角線相等的平行四邊形是矩形;(2)見解析;(3)4【分析】(1)借助問題情景即可得出結(jié)論;(2)連接CE,先根據(jù)已證結(jié)論及正方形的性質(zhì)得出AB=BC,∠1=∠4,再由矩形性質(zhì)證得∠PBA=∠EBC,得出△PBA≌△EBC,即可得出結(jié)論;(3)過點(diǎn)B作BM⊥AP,垂足為M.結(jié)合(2)所得結(jié)論利用等腰直角三角形的性質(zhì)可得BM=PM=ME,設(shè)BM=ME=x,則AM=x+-1.則根據(jù)三角函數(shù)解直角三角形求出x=1,再由直角三角形的性質(zhì)求出正方形的邊長,即可得出結(jié)果.【詳解】解:(1)依據(jù)1:對(duì)角線互相平分的四邊形是平行四邊形.依據(jù)2:對(duì)角線相等的平行四邊形是矩形.(2)證明:連接CE,由題意得,∠CEA=90°,∴∠1+∠2=180°-∠AEC=90°.∵四邊形ABCD是正方形,∴∠ABC=90°,AB=BC.∴∠3+∠4=180°-∠ABC=90°.∵∠2=∠3.∴∠1=∠4.∵四邊形EBFD是矩形,∴∠EBF=90°.∴∠PBE=180°-∠EBF=90°.∴∠PBE=∠ABC.∴∠PBE+∠EBA=∠ABC+∠EBA.即∠PBA=∠EBC.∴△PBA≌△EBC.∴PB=EB.(3)解:過點(diǎn)B作BM⊥AP,垂足為M.由(2)可知,PB=BE,∠PBE=90°.∴BM=PM=ME.設(shè)BM=ME=x,則AM=x+-1.∵在Rt△ABM中,∠BAM=30°.∴AB=2BM,tan∠BAM=,解得x=1.∴AB=2,∴S正方形ABCD=2×2=4.【點(diǎn)睛】此題是四邊形綜合題,主要考查了正方形的性質(zhì),矩形的判定與性質(zhì),全等三角形的判定和性質(zhì)等知識(shí),熟練掌握特殊四邊形、全等三角形及三角函數(shù)等相關(guān)知識(shí)點(diǎn)是解題的關(guān)鍵.7.(1)BM=PD;(2)見解析(3)或【分析】(1)當(dāng)n=1時(shí)四邊形ABCD和四邊形AMNP均為正方形,所以AM=AP,AB=AD,從而得出BM=PD,再根據(jù)得出,從而得出結(jié)論;(解析:(1)BM=PD;(2)見解析(3)或【分析】(1)當(dāng)n=1時(shí)四邊形ABCD和四邊形AMNP均為正方形,所以AM=AP,AB=AD,從而得出BM=PD,再根據(jù)得出,從而得出結(jié)論;(2)連接AC,證明,即可求解;(3)分兩種情況考慮:通過證得出對(duì)應(yīng)邊數(shù)量關(guān)系,設(shè),則解直角三角形AQM,從而計(jì)算出QM的長度,從而求算CN.【詳解】(1)解:∵當(dāng)n=1時(shí)四邊形ABCD和四邊形AMNP均為正方形∴AM=AP,AB=AD∴BM=PD又∵∴∴(2)CN與PD之間的數(shù)量關(guān)系發(fā)生變化,.理由:連接AC,如圖:在矩形ABCD和矩形AMNP中,∵.AD=2AB,AP=2AM,∴,∴.易得∴△ANC∽△APD∴∴(3)分兩種情況考慮:①如圖:∵已知AD=4,AP=2,∴AB=2,AM=PN=1由圖知:∴設(shè),則,在直角三角形AQM中:解得:(舍)∴,∴∴②如圖:由①可得:,,MN=2∴【點(diǎn)睛】本題考查矩形與旋轉(zhuǎn)、相似等綜合,有一定的難度,轉(zhuǎn)化相關(guān)的線段與角度是解題關(guān)鍵.8.(1)①EF=BE+DF;②成立,理由見解析;(2).【分析】(1)①根據(jù)旋轉(zhuǎn)的性質(zhì)得出AE=AG,∠BAE=∠DAG,BE=DG,求出∠EAF=∠GAF=45°,根據(jù)SAS推出△EAF≌△GA解析:(1)①EF=BE+DF;②成立,理由見解析;(2).【分析】(1)①根據(jù)旋轉(zhuǎn)的性質(zhì)得出AE=AG,∠BAE=∠DAG,BE=DG,求出∠EAF=∠GAF=45°,根據(jù)SAS推出△EAF≌△GAF,根據(jù)全等三角形的性質(zhì)得出EF=GF,即可求出答案;②根據(jù)旋轉(zhuǎn)的性質(zhì)把△ABE繞A點(diǎn)旋轉(zhuǎn)到△ADG,使AB和AD重合,得出AE=AG,∠B=∠ADG,∠BAE=∠DAG,推出C、D、G在一條直線上,根據(jù)SAS推出△EAF≌△GAF,根據(jù)全等三角形的性質(zhì)得出EF=GF,即可得出結(jié)果;
(2)把△AEC繞A點(diǎn)旋轉(zhuǎn)到△AFB,使AB和AC重合,連接DF.根據(jù)等腰直角三角形性質(zhì)和勾股定理求出∠ABC=∠C=45°,BC=4,根據(jù)旋轉(zhuǎn)的性質(zhì)得出AF=AE,∠FBA=∠C=45°,∠BAF=∠CAE,求出∠FAD=∠DAE=45°,證△FAD≌△EAD,根據(jù)全等得出DF=DE,設(shè)DE=x,則DF=x,BF=CE=3-x,根據(jù)勾股定理得出方程,求出x即可.【詳解】解:(1)①如圖1中,∵把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,使AB與AD重合,∴AE=AG,∠BAE=∠DAG,BE=DG,∠B=∠ADG=90°,
∵∠ADC=90°,∴∠ADC+∠ADG=90°∴F、D、G共線.
∵∠BAD=90°,∠EAF=45°,
∴∠BAE+∠DAF=45°,
∴∠DAG+∠DAF=45°,即∠EAF=∠GAF=45°,
在△EAF和△GAF中,,∴△EAF≌△GAF(SAS),∴EF=GF,
∵BE=DG,
∴EF=GF=DF+DG=BE+DF,
故答案為:EF=BE+DF;②成立,理由如下:如圖2,把△ABE繞A點(diǎn)旋轉(zhuǎn)到△ADG,使AB和AD重合,則AE=AG,∠B=∠ADG,∠BAE=∠DAG,∵∠B+∠ADC=180°,∴∠ADC+∠ADG=180°,∴C、D、G在一條直線上,與①同理得,∠EAF=∠GAF=45°,在△EAF和△GAF中,,∴△EAF≌△GAF(SAS),∴EF=GF,∵BE=DG,∴EF=GF=BE+DF;(2)∵△ABC中,,∠BAC=90°,∴∠ABC=∠C=45°,.如圖3,把△AEC繞A點(diǎn)旋轉(zhuǎn)到△AFB,使AB和AC重合,連接DF.則AF=AE,∠FBA=∠C=45°,∠BAF=∠CAE,∵∠DAE=45°,∴∠FAD=∠FAB+∠BAD=∠CAE+∠BAD=∠BAC-∠DAE=90°-45°=45°,∴∠FAD=∠DAE=45°,在△FAD和△EAD中,,∴△FAD≌△EAD(SAS),∴DF=DE,設(shè)DE=x,則DF=x,∵BC=4,∴BF=CE=4-1-x=3-x,∵∠FBA=45°,∠ABC=45°,∴∠FBD=90°,由勾股定理得:DF2=BF2+BD2,x2=(3-x)2+12,解得:,即DE=.【點(diǎn)睛】本題主要考查了旋轉(zhuǎn)的性質(zhì),全等三角形的判定與性質(zhì),勾股定理以及等腰三角形的性質(zhì)等知識(shí),此題運(yùn)用了類比的思想,一般先在特殊圖形中找到規(guī)律,然后再推廣到一般圖形中,對(duì)學(xué)生的分析問題,解決問題的能力要求比較高.9.(1)BD=CE,BD⊥CE;(2)BD⊥CE,理由見解析;(3)畫出圖形見解析,線段BE的長度為.【分析】(1)由題意易得AD=AE,∠CAE=∠BAD,從而可證△ABD≌△ACE,然后根據(jù)三解析:(1)BD=CE,BD⊥CE;(2)BD⊥CE,理由見解析;(3)畫出圖形見解析,線段BE的長度為.【分析】(1)由題意易得AD=AE,∠CAE=∠BAD,從而可證△ABD≌△ACE,然后根據(jù)三角形全等的性質(zhì)可求解;(2)連接BD,由題意易得∠BAD=∠CAE,進(jìn)而可證△BAD≌△CAE,最后根據(jù)三角形全等的性質(zhì)及角的等量關(guān)系可求證;(3)如圖,過A作AF⊥EC,由題意可知Rt△ABC∽R(shí)t△AED,∠BAC=∠EAD=90°,然后根據(jù)相似三角形的性質(zhì)及題意易證△BAE∽△CAD,最后根據(jù)勾股定理及等積法進(jìn)行求解即可.【詳解】解:(1)在Rt△ABC中,AB=AC,∴∠B=∠ACB=45°,∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE,∠B=∠ACE=45°,∵∠ACB=45°,∴∠BCE=45°+45°=90°,故答案為:BD=CE,BD⊥CE;(2)BD⊥CE,理由:如圖2,連接BD,∵在Rt△ABC和Rt△ADE中,AB=AC,AD=AE,∠AEC=45°,∵∠CAB=∠DAE=90°,∴∠BAD=∠CAE,∵AC=AB,AE=AD,∴△CEA≌△BDA(SAS),∴∠BDA=∠AEC=45°,∴∠BDE=∠ADB+∠ADE=90°,∴BD⊥CE;(3)如圖3,過A作AF⊥EC,由題意可知Rt△ABC∽R(shí)t△AED,∠BAC=∠EAD=90°,∴,即,∵∠BAC=∠EAD=90°,∴∠BAE=∠CAD,∴△BAE∽△CAD,∴∠ABE=∠ACD,∵∠BEC=180°﹣(∠CBE+∠BCE)=180°﹣(∠CBA+∠ABE+∠BCE)=180°﹣(∠CBA+∠ACD+∠BCE)=90°,∴BE⊥CE,在Rt△BCD中,BC=2CD=4,∴BD=,∵AC⊥BD,∴S△BCD=AC?BD=BC?AC,∴AC=AE=,AD=,∴AF=,CE=2CF=2×,∴BE=.【點(diǎn)睛】本題主要考查全等三角形的性質(zhì)與判定及相似三角形的性質(zhì)與判定,關(guān)鍵是根據(jù)題意得到三角形的全等,然后利用全等三角形的性質(zhì)得到相似三角形,進(jìn)而求解.10.(1)1;(2)或;(3)見解析;(4)以的中點(diǎn)為圓心,為半徑作,則與河邊的交點(diǎn)為所求點(diǎn)的位置,畫出示意圖見解析;簡要理由見解析.【分析】(1)直接利用垂直平分線的性質(zhì)證明即可;(2)根據(jù)求解析:(1)1;(2)或;(3)見解析;(4)以的中點(diǎn)為圓心,為半徑作,則與河邊的交點(diǎn)為所求點(diǎn)的位置,畫出示意圖見解析;簡要理由見解析.【分析】(1)直接利用垂直平分線的性質(zhì)證明即可;(2)根據(jù)求出的長,再根據(jù),即可求出點(diǎn)的坐標(biāo);(3)連接,根據(jù)推出,從而推出,證明,即可證明;(4)在線段上作點(diǎn),使,在線段的延長線上作點(diǎn),使,以的中點(diǎn)為圓心,為半徑作,則與河邊的交點(diǎn)為所求點(diǎn)的位置.同(3)證明即可證明結(jié)論.【詳解】(1)∵點(diǎn)是線段垂直平分線上的一點(diǎn),∴,∴,故答案為:1;(2)∵∴,∵,∴,∴點(diǎn)的坐標(biāo)為或,故答案為:或;(3)如圖,連接,∵,,∴,∵的半徑為,∴,∴.∴,∴.∵,∴,∴.∴.(4)如圖,在線段上作點(diǎn),使,在線段的延長線上作點(diǎn),使.以的中點(diǎn)為圓心,為半徑作,則與河邊的交點(diǎn)為所求點(diǎn)的位置.簡要理由:由于水路速度為陸路速度的,且時(shí)間相等,所以水路的距離必為陸路距離的,即需,連接,同(3)可證,∵,,∴,∴,∴,同理可得,∴又∵,由此,得.【點(diǎn)睛】本題主要考查了相似三角形的判定和性質(zhì),垂直平分線的性質(zhì),準(zhǔn)確的理解題意畫出圖形和作出正確的輔助線是解題的關(guān)鍵.11.(1);(2)詳見解析;(3)或【分析】(1)根據(jù)旋轉(zhuǎn)的性質(zhì)可得AC=CD,然后求出△ACD是等邊三角形,根據(jù)等邊三角形的性質(zhì)可得AC=AD,再根據(jù)直角三角形30°角所對(duì)的直角邊等于斜邊的一半求解析:(1);(2)詳見解析;(3)或【分析】(1)根據(jù)旋轉(zhuǎn)的性質(zhì)可得AC=CD,然后求出△ACD是等邊三角形,根據(jù)等邊三角形的性質(zhì)可得AC=AD,再根據(jù)直角三角形30°角所對(duì)的直角邊等于斜邊的一半求出AC=AB,然后求出AC=BD,再根據(jù)等邊三角形的性質(zhì)求出點(diǎn)C到AB的距離等于點(diǎn)D到AC的距離,然后根據(jù)等底等高的三角形的面積相等解答;(2)根據(jù)旋轉(zhuǎn)的性質(zhì)可得BC=CE,AC=CD,再求出∠ACN=∠DCM,然后利用“角角邊”證明△ACN和△DCM全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得AN=DM,然后利用等底等高的三角形的面積相等證明;
(3)過點(diǎn)D作//BE,求出四邊形是菱形,根據(jù)菱形的對(duì)邊相等可得BE=,然后根據(jù)等底等高的三角形的面積相等可知點(diǎn)為所求的點(diǎn),過點(diǎn)D作⊥BD,求出∠=60°,從而得到△是等邊三角形,然后求出,再求出∠=∠,利用“邊角邊”證明△和全等,根據(jù)全等三角形的面積相等可得點(diǎn)也是所求的點(diǎn),根據(jù)菱形和等邊三角形的性質(zhì)可得結(jié)論.【詳解】解:(1)∵△DEC繞點(diǎn)C旋轉(zhuǎn),點(diǎn)D恰好落在AB邊上,∴AC=CD,∵∠BAC=90°?∠B=90°?30°=60°,∴△ACD是等邊三角形,
∵∠B=30°,∠C=90°,∴CD=AC=AB,∴BD=AD=AC,根據(jù)等邊三角形的性質(zhì),△ACD的邊AC、AD上的高相等,
∴△BDC的面積和△AEC的面積相等(等底等高的三角形的面積相等),即;如圖3.是由繞點(diǎn)旋轉(zhuǎn)得到,..在和中.的面積和的面積相等(等底等高的三角形的面積相等)即(3)如圖4,過點(diǎn)D作//BE,∵BD平分∠ABC,
∠ABD=∠DBC,
∵D//BE,DE//B,∴四邊形BED是平行四邊形,∠ABD=∠BDE,∴∠DBC=∠BDE,
∴BE=DE,
∴四邊形BED是菱形,∴BE=D,且BE、D上的高相等,此時(shí);過點(diǎn)D作D⊥BD,∵∠ABC=60°,D//BE,∴∠D=∠ABC=60°,∵B=D,∠BD=∠ABC=30°,∠DB=90°,∴∠D=∠ABC=60°,∴△D是等邊三角形,∴D=D,∵BD=CD,∠ABC=60°,點(diǎn)D是角平分線上一點(diǎn),
∴∠DBC=∠DCB=×60°=30°,∴∠CD=180°?∠BCD=180°?30°=150°,∠CD=360°?150°?60°=150°,∴∠CD=∠CD∵在△CD和△CD中,D=D,∠CD=∠CD,CD=CD,∴△CD≌△CD(SAS),∴點(diǎn)也是所求的點(diǎn),又∵BE=4=B=D,△D是等邊三角形,∴B=4=,∴B=8,綜上所述:當(dāng)BF=4或8時(shí),.【點(diǎn)睛】本題考查了全等三角形的判定與性質(zhì)、三角形的面積、等邊三角形的判定與性質(zhì)、直角三角形30°角所對(duì)的直角邊等于斜邊的一半的性質(zhì),熟練掌握等底等高的三角形的面積相等,以及全等三角形的面積相等是解題的關(guān)鍵,還要注意(3)中符合條件的點(diǎn)F有兩個(gè).12.(1),;(2)不成立,見解析;(3)2或4【分析】(1)根據(jù)題意,利用等邊三角形的性質(zhì),得出,再根據(jù)全等三角形對(duì)應(yīng)角相等,得出,故得出與所夾的銳角為60°.(2)根據(jù)題意,利用等腰直角三角形解析:(1),;(2)不成立,見解析;(3)2或4【分析】(1)根據(jù)題意,利用等邊三角形的性質(zhì),得出,再根據(jù)全等三角形對(duì)應(yīng)角相等,得出,故得出與所夾的銳角為60°.(2)根據(jù)題意,利用等腰直角三角形的性質(zhì)可推出,再根據(jù)相似三角形對(duì)應(yīng)角相等,得出,故得出直線與所夾的銳角為45°,與(1)結(jié)論不符.(3)此問需要分兩種情況討論,一種情況是當(dāng)在直線上,該種情況需要先證明,從而根據(jù)相似三角形的性質(zhì)得到,最后根據(jù)全等三角形的性質(zhì)求出;另一種情況是,當(dāng)在直線下,先證明,從而證明四邊形為矩形,最后求出.【詳解】解:(1);60°解答如下:如圖1,與為等邊三角形,,在與中,,故答案為:;直線與所夾的銳角為60°.(2)不成立理由如下:與為等腰直角三角形,,,,即:,在與中,故(1)中的結(jié)論不成立;(3)的長度為2或4;①點(diǎn)在直線上方時(shí)如圖4,,,②點(diǎn)在直線下方時(shí),如圖5,∥根據(jù)題意,易證四邊形為矩形,,故答案為綜上可得的長度為2或4【點(diǎn)睛】本題考查了等邊三角形的性質(zhì)、等腰直角三角形的三邊關(guān)系、旋轉(zhuǎn)的性質(zhì)、矩形的判定及性質(zhì)相似三角形的判定及性質(zhì),綜合性比較強(qiáng),熟練掌握性質(zhì)定理是解題的關(guān)鍵.(1)利用等邊三角形的性質(zhì),從而證明三角形全等是解答該小問的關(guān)鍵.(2)根據(jù)等腰直角三角形的三邊關(guān)系,證明兩個(gè)三角形相似是解答第二問的關(guān)鍵,重點(diǎn)掌握相似三角形的判定方法.(3)解答本題時(shí),首先要認(rèn)識(shí)到旋轉(zhuǎn)過程中滿足題意的兩種情況,其次證明過程可參考上面的證明過程,最后如何判定四邊形為矩形也是解答最后一題第二種情況的關(guān)鍵.13.(1)①;②30度;(2)成立,理由見解析;(3)或,理由見解析.【分析】①由得;②延長DE、CF交于K,由得,再由可得(2)連接BD交AC于點(diǎn)G,先證明可得,再利用“8”字型可得;(3解析:(1)①;②30度;(2)成立,理由見解析;(3)或,理由見解析.【分析】①由得;②延長DE、CF交于K,由得,再由可得(2)連接BD交AC于點(diǎn)G,先證明可得,再利用“8”字型可得;(3)過點(diǎn)A作,交直線DE于M,再結(jié)合(2)中相似分類討論即可;【詳解】(1)①∵菱形ABCD中,∴,∵∴∴∴;②如解題圖1,延長DE、CF交于K,∵∴,∵∴∴∴∴(2)成立,理由如下如解題圖2,連接BD交AC于點(diǎn)G,∵四邊形ABCD是菱形,∴,,即直線DE與CF夾角所成的較小角的度數(shù)是30度(3)或理由如下:(1)過點(diǎn)A作,交直線DE于M,如解題圖3:當(dāng)D,E,F三點(diǎn)共線時(shí),由(2)得,(2)如解題圖4,過點(diǎn)A作,當(dāng)D,E,F三點(diǎn)共線時(shí),由(2)得【點(diǎn)睛】本題綜合考察相似三角形的性質(zhì)與判定,菱形的性質(zhì),30°直角三角形的性質(zhì),熟練運(yùn)用性質(zhì)進(jìn)行角度轉(zhuǎn)換是解題的關(guān)鍵14.(1);(2)結(jié)論成立,見解析;(3)1或2【分析】(1)問題發(fā)現(xiàn):通過角的關(guān)系可證△ABD∽△DCE,根據(jù)相似三角形對(duì)應(yīng)邊成比例可得到線段的關(guān)系;(2)拓展探究:可證明△ABD∽△DCE,解析:(1);(2)結(jié)論成立,見解析;(3)1或2【分析】(1)問題發(fā)現(xiàn):通過角的關(guān)系可證△ABD∽△DCE,根據(jù)相似三角形對(duì)應(yīng)邊成比例可得到線段的關(guān)系;(2)拓展探究:可證明△ABD∽△DCE,即可得到結(jié)論;(3)解決問題:可證△PBM∽△MCG,然后得到,用t可表示線段的長,當(dāng)G點(diǎn)在線段AC上時(shí),若△APG為等腰三角形時(shí),則AP=AG,代入計(jì)算即可;當(dāng)G點(diǎn)在CA延長線上時(shí),若△APG為等腰三角形時(shí),則△APG為等邊三角形,代入計(jì)算得到t.【詳解】解:(1)問題發(fā)現(xiàn)AB,CE,BD,DC之間的數(shù)量關(guān)系是:,理由:∵△ABC是等邊三角形,∴∠B=∠C=60°,∴∠BAD+∠ADB=180°﹣60°=120°,∠ADE=60°,∴∠CDE+∠ADB=180°﹣60°=120°,∴∠BAD=∠CDE,∴△ABD∽△DCE,∴.故答案為:.(2)拓展探究(1)中的結(jié)論成立,∵AB=AC,∠B=α,∴∠B=∠C=α,∴∠BAD+∠ADB=180°﹣α,∵∠ADE=α,∴∠CDE+∠ADB=180°﹣α,∴∠BAD=∠CDE,∴△ABD∽△DCE,∴;(3)解決問題∵∠B=30°,AB=AC=4cm,∴∠B=∠C=30°,∴∠BPM+∠PMB=180°﹣30°=150°,∵∠PMG=30°,∴∠CMG+∠PMB=180°﹣30°=150°,∴∠BPM=∠CMG,又∠B=∠C=30°,∴△PBM∽△MCG,∴,由題意可知AP=t,BM=t,即BP=4﹣t,如圖1,過點(diǎn)A作AH⊥BC于H,∵∠B=30°,AB=AC=4cm,∴AH=2cm,BH===2cm,∵AB=AC,AH⊥BC,∴BC=2BH=4cm,∴MC=(4t)cm,∴,即CG=3t,當(dāng)G點(diǎn)在線段AC上時(shí),若△APG為等腰三角形時(shí),則AP=AG,如圖2,此時(shí)AG=AC﹣CG=4﹣3t,∴4﹣3t=t,解得:t=1,當(dāng)G點(diǎn)在CA延長線上時(shí),若△APG為等腰三角形時(shí),如圖3,此時(shí)∠PAG=180°﹣120°=60°,則△APG為等邊三角形,AP=AG,此時(shí)AG=CG﹣AC=3t﹣4,∴3t﹣4=t,解得:t=2,∴當(dāng)△APG為等腰三角形時(shí),t的值為1或2.【點(diǎn)睛】本題是三角形綜合題,考查了等腰三角形的性質(zhì),等邊三角形的判定與性質(zhì),相似三角形的判定與性質(zhì),熟練掌握分類的思想方法是解題的關(guān)鍵.15.(1),;(2)的形狀是等腰直角三角形,理由見解析;(3)【分析】(1)根據(jù)題意可得PQ為△BOC的中位線,再根據(jù)中位線的性質(zhì)即可求解;(2)連接并延長交于點(diǎn),根據(jù)題意證出,為等腰直角三角形,解析:(1),;(2)的形狀是等腰直角三角形,理由見解析;(3)【分析】(1)根據(jù)題意可得PQ為△BOC的中位線,再根據(jù)中位線的性質(zhì)即可求解;(2)連接并延長交于點(diǎn),根據(jù)題意證出,為等腰直角三角形,也為等腰直角三角形,由且可得是等腰直角三角形;(3)延長交邊于點(diǎn),連接,.證出四邊形是矩形,為等腰直角三角形,,再證出為等腰直角三角形,根據(jù)圖形的性質(zhì)和勾股定理求出O′A,O′B和BQ的長度,即可計(jì)算出的面積.【詳解】解:(1)∵點(diǎn)P和點(diǎn)Q分別為,的中點(diǎn),∴PQ為△BOC的中位線,∵四邊形是正方形,∴AC⊥BO,∴,;故答案為:,;(2)的形狀是等腰直角三角形.理由如下:連接并延長交于點(diǎn),由正方形的性質(zhì)及旋轉(zhuǎn)可得,∠,是等腰直角三角形,,.∴,.又∵點(diǎn)是的中點(diǎn),∴.∴.∴,.∴,∴.∴為等腰直角三角形.∴,.∴也為等腰直角三角形.又∵點(diǎn)為的中點(diǎn),∴,且.∴的形狀是等腰直角三角形.(3)延長交邊于點(diǎn),連接,.∵四邊形是正方形,是對(duì)角線,∴.由旋轉(zhuǎn)得,四邊形是矩形,∴,.∴為等腰直角三角形.∵點(diǎn)是的中點(diǎn),∴,,.∴.∴,.∴.∴.∴為等腰直角三角形.∵是的中點(diǎn),∴,.∵,∴,,∴.∴.【點(diǎn)睛】本題考查正方形的性質(zhì)、等腰直角三角形的判定與性質(zhì)、旋轉(zhuǎn)圖形的性質(zhì)、三角形中位線定理、全等三角形的判定與性質(zhì)和勾股定理,根據(jù)題意作出輔助線構(gòu)造全等三角形是解題的關(guān)鍵.16.(1);(2)或;(3)或【分析】(1)延長到,使,連接,過作于,在中,利用勾股定理求得EH的長,再利用三角形中位線定理即可求解;(2)分在上方和下方兩種情況討論,延長與的延長線交于一點(diǎn),利用解析:(1);(2)或;(3)或【分析】(1)延長到,使,連接,過作于,在中,利用勾股定理求得EH的長,再利用三角形中位線定理即可求解;(2)分在上方和下方兩種情況討論,延長與的延長線交于一點(diǎn),利用等腰直角三角形的性質(zhì)結(jié)合三角形中位線定理即可求解;(3)分點(diǎn)D在線段AC上和在AC延長線上兩種情況討論,仿照(1)的方法即可求解.【詳解】(1)延長到,使,連接,∵B為中點(diǎn),為的中點(diǎn),∴是的中位線,∴,過作于,∵,,∴四邊形BDEG是矩形,∵等腰直角三角形,,∴∠C=∠A=45,∵,∴等腰直角三角形,∵,∴,∴,∵在中,,∴;(2)當(dāng)時(shí),分成兩種情況:如圖在上方,延長與的延長線交于一點(diǎn),∵∠BAC=45,∴是等腰直角三角形,且B為AH的中點(diǎn),∴,∴,∵點(diǎn)F是AE中點(diǎn),∴,∴;如圖,在下方,延長與的延長線交于一點(diǎn),同理是等腰直角三角形,為中點(diǎn),∴,∴,∵點(diǎn)F是AE中點(diǎn),∴,∴;(3)當(dāng)點(diǎn)D在線段AC上時(shí),延長到,使,連接,∵B為中點(diǎn),為的中點(diǎn),∴是的中位線,過作于,∠ACB+∠DCE=90,∠ABC=90,∴四邊形BCEG是矩形,∴GE=BC=6,BG=CE=2,∴GH=2+6=8,∴EH=,∴;當(dāng)點(diǎn)D在AC延長線上時(shí),延長到,使,連接,∵B為中點(diǎn),為的中點(diǎn),∴是的中位線,過作于,同理四邊形BCEG是矩形,∴GE=BC=6,BG=CE=2,∴GH=6-2=4,∴EH=,∴;【點(diǎn)睛】本題是幾何變換綜合題,主要考查了矩形的判定和性質(zhì),三角形中位線定理,勾股定理的應(yīng)用,等腰直角三角形的性質(zhì)等,解題的關(guān)鍵是靈活應(yīng)用所學(xué)知識(shí)解決問題,屬于中考?jí)狠S題.17.【觀察】①90;②105;【發(fā)現(xiàn)】①50;②y=,補(bǔ)全圖象見解析;【拓展】0<x≤12或48≤x≤72【分析】【觀察】①先據(jù)題意求出兩個(gè)機(jī)器人速度的關(guān)系,再確定第二次迎面相遇的位置,然后設(shè)此時(shí)相解析:【觀察】①90;②105;【發(fā)現(xiàn)】①50;②y=,補(bǔ)全圖象見解析;【拓展】0<x≤12或48≤x≤72【分析】【觀察】①先據(jù)題意求出兩個(gè)機(jī)器人速度的關(guān)系,再確定第二次迎面相遇的位置,然后設(shè)此時(shí)相遇點(diǎn)距點(diǎn)A為m個(gè)單位,根據(jù)題意列方程即可求出結(jié)果;②仿照①的解題思路和方法解答即可;【發(fā)現(xiàn)】①當(dāng)點(diǎn)第二次相遇地點(diǎn)剛好在點(diǎn)B時(shí),根據(jù)題意可列方程150﹣x=2x,解出的x的值即為a的值;②分0<x≤50與50<x<75兩種情況,分別求出正比例函數(shù)與一次函數(shù)的關(guān)系式,進(jìn)一步即可補(bǔ)全函數(shù)圖象;【拓展】分三種情況畫出圖形,然后根據(jù)題意得出相應(yīng)的分式方程,解方程即可得出y與x的關(guān)系,進(jìn)而可得關(guān)于x的不等式,解不等式即可得到結(jié)論.【詳解】解:【觀察】①∵相遇地點(diǎn)與點(diǎn)A之間的距離為30個(gè)單位長度,∴相遇地點(diǎn)與點(diǎn)B之間的距離為150﹣30=120個(gè)單位長度,設(shè)機(jī)器人甲的速度為v,則機(jī)器人乙的速度為v=4v,∴機(jī)器人甲從相遇點(diǎn)到點(diǎn)B所用的時(shí)間為,機(jī)器人乙從相遇地點(diǎn)到點(diǎn)A再返回到點(diǎn)B所用時(shí)間為,而,∴機(jī)器人甲與機(jī)器人乙第二次迎面相遇時(shí),機(jī)器人乙從第一次相遇地點(diǎn)到點(diǎn)A,返回到點(diǎn)B,再返回向A時(shí)和機(jī)器人甲第二次迎面相遇,設(shè)此時(shí)相遇點(diǎn)距點(diǎn)A為m個(gè)單位,根據(jù)題意得,30+150+150﹣m=4(m﹣30),解得:m=90,故答案為:90;②∵相遇地點(diǎn)與點(diǎn)A之間的距離為35個(gè)單位長度,∴相遇地點(diǎn)與點(diǎn)B之間的距離為150﹣35=115個(gè)單位長度,設(shè)機(jī)器人甲的速度為v,則機(jī)器人乙的速度為,∴機(jī)器人乙從相遇點(diǎn)到點(diǎn)A再到點(diǎn)B所用的時(shí)間為,機(jī)器人甲從相遇點(diǎn)到點(diǎn)B所用時(shí)間為,而,∴機(jī)器人甲與機(jī)器人乙第二次迎面相遇時(shí),機(jī)器人乙從第一次相遇地點(diǎn)到點(diǎn)A,返回到點(diǎn)B,再返回向A時(shí)和機(jī)器人甲第二次迎面相遇,設(shè)此時(shí)相遇點(diǎn)距點(diǎn)A為m個(gè)單位,根據(jù)題意得,35+150+150﹣m=(m﹣35),解得:m=105,故答案為:105;【發(fā)現(xiàn)】①當(dāng)?shù)诙蜗嘤龅攸c(diǎn)剛好在點(diǎn)B時(shí),設(shè)機(jī)器人甲的速度為v,則機(jī)器人乙的速度為,根據(jù)題意知,150﹣x=2x,∴x=50,即:a=50,故答案為:50;②當(dāng)0<x≤50時(shí),點(diǎn)P(50,150)在線段OP上,∴線段OP的表達(dá)式為y=3x,當(dāng)v<時(shí),即當(dāng)50<x<75,此時(shí),第二次相遇地點(diǎn)是機(jī)器人甲在到點(diǎn)B返回向點(diǎn)A時(shí),設(shè)機(jī)器人甲的速度為v,則機(jī)器人乙的速度為,根據(jù)題意知,x+y=(150﹣x+150﹣y),整理,得y=﹣3x+300,∴y與x的函數(shù)關(guān)系式是y=,補(bǔ)全圖象如圖2所示:【拓展】①如圖,由題意知,,∴y=5x,∵0<y≤60,∴0<x≤12;②如圖,∴,∴y=﹣5x+300,∵0≤y≤60,∴48≤x≤60,③如圖,由題意得,=,∴y=5x﹣300,∵0≤y≤60,∴60≤x≤72,∵0<x<75,∴48≤x≤72,綜上所述,相遇地點(diǎn)與點(diǎn)A之間的距離x的取值范圍是0<x≤12或48≤x≤72,故答案為:0<x≤12或48≤x≤72.【點(diǎn)睛】本題考查了一次函數(shù)的應(yīng)用、分式方程的應(yīng)用、兩點(diǎn)間的距離、一元一次方程和一元一次不等式的應(yīng)用,難度較大,正確理解題意、靈活應(yīng)用數(shù)形結(jié)合的思想是解題的關(guān)鍵.18.教材呈現(xiàn):見解析;探究:16;拓展:.【分析】教材呈現(xiàn):先根據(jù)三角形全等的性質(zhì)可得,再根據(jù)線段的和差可得,然后根據(jù)平行四邊形的判定即可得證;探究:先根據(jù)旋轉(zhuǎn)的性質(zhì)可得,再根據(jù)等底同高可得,從而解析:教材呈現(xiàn):見解析;探究:16;拓展:.【分析】教材呈現(xiàn):先根據(jù)三角形全等的性質(zhì)可得,再根據(jù)線段的和差可得,然后根據(jù)平行四邊形的判定即可得證;探究:先根據(jù)旋轉(zhuǎn)的性質(zhì)可得,再根據(jù)等底同高可得,從而可得,然后根據(jù)三角形中位線定理即可得;拓展:先根據(jù)正方形的性質(zhì)和面積可得,從而可得,再根據(jù)相似三角形的判定與性質(zhì)可得,從而可得,然后利用三角形的面積公式可得,最后利用平行四邊形的性質(zhì)即可得.【詳解】教材呈現(xiàn):補(bǔ)充完整證明過程如下:,又∵,∴,即,∴四邊形EHFG是平行四邊形;探究:如圖,連接OE,由旋轉(zhuǎn)的性質(zhì)得:,點(diǎn)O是AC的中點(diǎn),點(diǎn)D是AO的中點(diǎn),點(diǎn)F是CO的中點(diǎn),,由等底同高得:,,又點(diǎn)E是AB的中點(diǎn),
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 現(xiàn)代管理技術(shù)試題及答案
- 2025快捷酒店員工獎(jiǎng)勵(lì)合同書(示范文本)
- 2025車輛租賃合同半年版
- 2025年勞動(dòng)合同的特點(diǎn)
- 2025藥品銷售合同簡化版
- 2025合作協(xié)議下載模板
- 2025設(shè)備租賃合同格式范本
- 搓絲基礎(chǔ)知識(shí)培訓(xùn)心得
- 活動(dòng)策劃能力測試:模擬面試題目與解答
- 南方物業(yè)面試經(jīng)驗(yàn)分享:面試題庫與面試技巧探討
- 初中數(shù)學(xué)幾何1000題專項(xiàng)訓(xùn)練(含詳解分析)-最新
- 《組織行為學(xué)》(MBA)課件
- 兒科常見疾病雙向轉(zhuǎn)診指南
- 中國傳媒大學(xué)-電視播音員主持人形象設(shè)計(jì)與造型(第2版)-課件
- 中鐵XXXX局城軌道交通工程勞務(wù)分包指導(dǎo)價(jià)2017版
- 德國申克振動(dòng)篩
- 常用危險(xiǎn)化學(xué)品儲(chǔ)存禁忌物配存表
- 鉆機(jī)電氣控制系統(tǒng)操作手冊(cè)
- 現(xiàn)澆剪力墻結(jié)構(gòu)模板安裝與拆除技術(shù)交底
- 電力服務(wù)收費(fèi)項(xiàng)目及標(biāo)準(zhǔn)
- 最新農(nóng)貿(mào)綜合市場項(xiàng)目可行性報(bào)告
評(píng)論
0/150
提交評(píng)論