強化訓(xùn)練-冀教版8年級下冊期末試卷及答案詳解(網(wǎng)校專用)_第1頁
強化訓(xùn)練-冀教版8年級下冊期末試卷及答案詳解(網(wǎng)校專用)_第2頁
強化訓(xùn)練-冀教版8年級下冊期末試卷及答案詳解(網(wǎng)校專用)_第3頁
強化訓(xùn)練-冀教版8年級下冊期末試卷及答案詳解(網(wǎng)校專用)_第4頁
強化訓(xùn)練-冀教版8年級下冊期末試卷及答案詳解(網(wǎng)校專用)_第5頁
已閱讀5頁,還剩24頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

冀教版8年級下冊期末試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計14分)1、如圖是一所學(xué)校對學(xué)生上學(xué)方式進行調(diào)查后,根據(jù)調(diào)查結(jié)果繪制了一個不完整的統(tǒng)計圖,其中“其他”部分所對的圓心角度數(shù)是36°則步行部分所占的百分比是()A.36% B.40% C.45% D.50%2、能清楚地反映漳州市近三年初中畢業(yè)學(xué)生人數(shù)的變化情況,應(yīng)繪制()A.條形統(tǒng)計圖 B.扇形統(tǒng)計圖 C.折線統(tǒng)計圖 D.直方圖3、下列說法錯誤的是()A.平行四邊形對邊平行且相等 B.菱形的對角線平分一組對角C.矩形的對角線互相垂直 D.正方形有四條對稱軸4、如圖,將邊長為6個單位的正方形ABCD沿其對角線BD剪開,再把△ABD沿著DC方向平移,得到△A′B′D′,當(dāng)兩個三角形重疊部分的面積為4個平方單位時,它移動的距離DD′等于()A.2 B. C. D.5、為了反映今天的氣溫變化情況,你認為選擇哪種統(tǒng)計圖最恰當(dāng)()A.頻數(shù)直方圖 B.條形統(tǒng)計圖 C.扇形統(tǒng)計圖 D.折線統(tǒng)計圖6、如圖,已知長方形,,分別是,上的點,,分別是,的中點,當(dāng)點在上從點向點移動,而點不動時,那么下列結(jié)論成立的是()A.線段的長逐漸增大 B.線段的長逐漸減少C.線段的長不變 D.線段的長先增大后變小7、在平面直角坐標系xOy中,點M(1,2)關(guān)于x軸對稱點的坐標為()A.(1,-2) B.(-1,2) C.(-1,-2) D.(2,-1)第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計16分)1、如果點P1(3,y1),P2(2,y2)在一次函數(shù)y=8x-1的圖像上,那么y1______y2.(填“>”、“<”或“=”)2、已知菱形ABCD兩條對角線的長分別為6和8,若另一個菱形EFGH的周長和面積分別是菱形ABCD周長和面積的2倍,則菱形EFGH兩條對角線的長分別是

_____.3、若一個正多邊形的內(nèi)角和與外角和的度數(shù)相等,則此正多邊形對稱軸條數(shù)為______.4、如圖,正方形ABCD的邊長為,作正方形A1B1C1D1,使A,B,C,D是正方形A1B1C1D1,各邊的中點;做正方形A2B2C2D2,使A1,B1,C1,D1是正方形A2B2C2D2各邊的中點…以此類推,則正方形A2021B2021C2021D2021的邊長為_____.5、如圖,在矩形中,的角平分線交于點,連接,恰好平分,若,則的長為______.6、點(2,-3)關(guān)于x軸的對稱點的坐標是______.7、在直角坐標系中,等腰直角三角形、、、、按如圖所示的方式放置,其中點、、、、均在一次函數(shù)的圖象上,點、、、、均在軸上.若點的坐標為,點的坐標為,則點的坐標為___.8、已知點P(a,b)在一次函數(shù)y=-2x+1的圖象上,則2a+b=______.三、解答題(7小題,每小題10分,共計70分)1、若直線分別交軸、軸于A、C兩點,點P是該直線上在第一象限內(nèi)的一點,PB⊥軸,B為垂足,且S△ABC=6(1)求點B和P的坐標;(2)點D是直線AP上一點,△ABD是直角三角形,求點D坐標;(3)請問坐標平面是否存在點Q,使得以Q、C、P、B為頂點四邊形是平行四邊形,若存在請直接寫出點Q的坐標;若不存在,請說明理由.2、如圖,在中,點D、E分別是邊的中點,過點A作交的延長線于F點,連接,過點D作于點G.(1)求證:四邊形是平行四邊形:(2)若.①當(dāng)___________時,四邊形是矩形;②若四邊形是菱形,則________.3、已知:線段m.求作:矩形ABCD,使矩形寬AB=m,對角線AC=m.4、已知:如圖,在?ABCD中,AE⊥BC,,點E,F(xiàn)分別為垂足.(1)求證:△ABE≌△CDF;(2)求證:四邊形AECF是矩形.5、如圖,已知矩形ABCD(AB<AD).E是BC上的點,AE=AD.(1)在線段CD上作一點F,連接EF,使得∠EFC=∠BEA(請用直尺和圓規(guī)作圖,保留作圖痕跡);(2)在(1)作出的圖形中,若AB=4,AD=5,求DF的值.6、肥西縣祥源花世界管理委員會要添置辦公桌椅A,B兩種型號,已知2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元.(1)直接寫出A型桌椅每套元,B型桌椅每套元;(2)若管理委員會需購買兩種型號桌椅共20套,若需要A型桌椅不少于12套,B型桌椅不少于6套,平均每套桌椅需要運費10元.設(shè)購買A型桌椅x套,總費用為y元.①求y與x之間的函數(shù)關(guān)系,并直接寫出x的取值范圍;②求出總費用最少的購置方案.7、如圖,矩形ABCD的對角線AC、BD相交于點O,AB=5cm,∠BOC=120°,求矩形對角線的長.-參考答案-一、單選題1、B【解析】【分析】先根據(jù)“其他”部分所對應(yīng)的圓心角是36°,算出“其他”所占的百分比,再計算“步行”部分所占百分比即可.【詳解】解:∵其他部分對應(yīng)的百分比為:×100%=10%,∴步行部分所占百分比為1﹣(35%+15%+10%)=40%,故選:B.【點睛】本題考查扇形統(tǒng)計圖,熟知“扇形統(tǒng)計圖中各部分所占百分比的計算方法和各部分所占百分比間的關(guān)系”是解答本題的關(guān)鍵.2、C【解析】【分析】根據(jù)統(tǒng)計圖的特點解答.【詳解】解:能清楚地反映漳州市近三年初中畢業(yè)學(xué)生人數(shù)的變化情況,應(yīng)繪制折線統(tǒng)計圖,故選:C.【點睛】此題考查了統(tǒng)計圖的特點,條形統(tǒng)計圖能夠直觀地反映各變量數(shù)量的差異,折線圖能直觀反映各變量的變化趨勢,扇形統(tǒng)計圖能清楚地表示各部分在總體中所占的百分比,直方圖體現(xiàn)個體的數(shù)量,熟記每種統(tǒng)計圖的特點是解題的關(guān)鍵.3、C【解析】【分析】根據(jù)矩形的性質(zhì)、平行四邊形的性質(zhì)、菱形的性質(zhì)和正方形的性質(zhì)分別進行判斷即可.【詳解】解:A、平行四邊形對邊平行且相等,正確,不符合題意;B、菱形的對角線平分一組對角,正確,不符合題意;C、矩形的對角線相等,不正確,符合題意;D、正方形有四條對稱軸,正確,不符合題意;故選:C.【點睛】本題考查了矩形的性質(zhì)、平行四邊形的性質(zhì)、菱形的性質(zhì)和正方形的性質(zhì),掌握以上性質(zhì)定理是解題的關(guān)鍵.4、B【解析】【分析】先判斷重疊部分的形狀,然后設(shè)DD'=x,進而表示D'C等相關(guān)的線段,最后通過重疊部分的面積列出方程求出x的值即可得到答案.【詳解】解:∵四邊形ABCD是正方形,∴△ABD和△BCD是等腰直角三角形,如圖,記A'D'與BD的交點為點E,B'D'與BC的交點為F,由平移的性質(zhì)得,△DD'E和△D'CF為等腰直角三角形,∴重疊部分的四邊形D'EBF為平行四邊形,設(shè)DD'=x,則D'C=6-x,D'E=x,∴S?D'EBF=D'E?D'C=(6-x)x=4,解得:x=3+或x=3-,故選:B.【點睛】本題考查了正方形的性質(zhì)、等腰直角三角形的性質(zhì)、平移的性質(zhì),通過平移的性質(zhì)得到重疊部分四邊形的形狀是解題的關(guān)鍵.5、D【解析】【分析】首先要清楚每一種統(tǒng)計圖的特點:頻數(shù)直方圖能夠顯示各組頻數(shù)分布的情況;條形統(tǒng)計圖能很容易看出數(shù)量的多少;折線統(tǒng)計圖不僅容易看出數(shù)量的多少,而且能反映數(shù)量的增減變化情況;扇形統(tǒng)計圖能反映部分與整體的關(guān)系;由此根據(jù)情況選擇即可.【詳解】解:如果想反映一天的氣溫變化,選擇折線統(tǒng)計圖合適,故選:D.【點睛】本題考查統(tǒng)計圖的選擇,解答此題要熟練掌握統(tǒng)計圖的特點,根據(jù)實際情況靈活選擇.6、C【解析】【分析】因為R不動,所以AR不變.根據(jù)三角形中位線定理可得EF=AR,因此線段EF的長不變.【詳解】解:連接.、分別是、的中點,為的中位線,,為定值.線段的長不改變.故選:.【點睛】本題考查了三角形的中位線定理,只要三角形的邊AR不變,則對應(yīng)的中位線的長度就不變.7、A【解析】【分析】根據(jù)平面直角坐標系中,關(guān)于x軸的對稱點的坐標特點:橫坐標不變,縱坐標互為相反數(shù)即可求解.【詳解】解:點M(1,2)關(guān)于x軸的對稱點的坐標為(1,-2);故選:A.【點睛】此題主要考查了關(guān)于x軸對稱點的坐標特征,點P(x,y)關(guān)于x軸的對稱點P′的坐標是(x,-y).二、填空題1、【解析】【分析】先求出y1,y2的值,再比較出其大小即可.【詳解】解:∵點P1(3,y1)、P2(2,y2)在一次函數(shù)y=8x-1的圖象上,∴y1=8×3-1=23,y2=8×2-1=15,∵23>15,∴y1>y2.故答案為:>.【點睛】本題考查的是一次函數(shù)圖象上點的坐標特點,熟知一次函數(shù)圖象上各點的坐標一定適合此函數(shù)的解析式是解答此題的關(guān)鍵.2、,【解析】【分析】首先根據(jù)題意畫出圖形,然后由菱形的兩條對角線長分別是6和8,可求得OA=4,OB=3,再由勾股定理求得邊長,繼而求得此菱形的周長與面積,然后根據(jù)勾股定理即可得到結(jié)論.【詳解】解:如圖,菱形ABCD中,AC=8,BD=6,∴OA=AC=4,OB=BD=3,AC⊥BD,∴AB==5,∴菱形ABCD的周長是:5×4=20,面積是:×6×8=24.∵另一個菱形EFGH的周長和面積分別是菱形ABCD周長和面積的2倍,∴菱形EFGH的周長和面積分別是40,48,∴菱形EFGH的邊長是10,設(shè)菱形EFGH的對角線為2a,2b,∴a2+b2=100,×2a×2b=48,∴a=,b=,∴菱形EFGH兩條對角線的長分別是,,故答案為:2,.【點睛】本題考查了菱形的性質(zhì)以及勾股定理.關(guān)鍵是熟練掌握菱形的面積等于對角線積的一半的知識點.3、4【解析】【分析】利用多邊形的內(nèi)角和與外角和公式列出方程,求得多邊形的邊,再利用正多邊形的性質(zhì)可得答案.【詳解】解:設(shè)多邊形的邊數(shù)為n,根據(jù)題意(n-2)?180°=360°,解得n=4.所以正多邊形為正方形,所以這個正多邊形有4條對稱軸,故答案為:4.【點睛】本題考查了多邊形的內(nèi)角和公式與多邊形的外角和定理,解一元一次方程,需要注意,多邊形的外角和與邊數(shù)無關(guān),任何多邊形的外角和都是360°,也考查的正多邊形的對稱軸的條數(shù).4、【解析】【分析】根據(jù)勾股定理求得正方形對角線的長度,然后結(jié)合三角形中位線定理求得正方形的邊長,從而探索數(shù)字變化的規(guī)律,進而求解.【詳解】由題意得,正方形ABCD中CD=AD=在Rt△ACD中,AC==2∵A,B,C,D是正方形各邊的中點,∴正方形的邊長為2=在Rt△中==2∵是正方形各邊中點∴正方形的邊長為2=以此類推則正方形的邊長為故答案為:【點睛】本題考查勾股定理,正方形性質(zhì),探索數(shù)字變化的規(guī)律是解題關(guān)鍵.5、【解析】【分析】根據(jù)矩形的性質(zhì)得,,,根據(jù)BE是的角平分線,得,則,,在中,根據(jù)勾股定理得,根據(jù)平行線的性質(zhì)得,由因為EC平分則,等量代換得,所以,,即可得.【詳解】解:∵四邊形ABCD為矩形,∴,,,∵,BE是的角平分線,∴,∴,在中,根據(jù)勾股定理得,,∵,∴,∵EC平分,∴,∴,∴,∴,∴,故答案為:.【點睛】本題考查了矩形的性質(zhì),勾股定理,角平分線的性質(zhì),平行線的性質(zhì),解題的關(guān)鍵是掌握這些知識點.6、(2,3)【解析】【分析】根據(jù)關(guān)于x軸對稱的點,橫坐標相同,縱坐標互為相反數(shù)解答.【詳解】解:點(2,?3)關(guān)于x軸的對稱點的坐標是(2,3).故答案為:(2,3).【點睛】本題考查了關(guān)于x軸、y軸對稱的點的坐標,解決本題的關(guān)鍵是掌握好對稱點的坐標規(guī)律:關(guān)于x軸對稱的點,橫坐標相同,縱坐標互為相反數(shù);關(guān)于y軸對稱的點,縱坐標相同,橫坐標互為相反數(shù);關(guān)于原點對稱的點,橫坐標與縱坐標都互為相反數(shù).7、【解析】【分析】首先,根據(jù)等腰直角三角形的性質(zhì)求得點A1、A2的坐標;然后,將點A1、A2的坐標代入一次函數(shù)解析式,利用待定系數(shù)法求得該直線方程是y=x+1;最后,利用等腰直角三角形的性質(zhì)推知點Bn-1的坐標,然后將其橫坐標代入直線方程y=x+1求得相應(yīng)的y值,從而得到點An的坐標.【詳解】解:如圖,點的坐標為,點的坐標為,,,則.△是等腰直角三角形,,.點的坐標是.同理,在等腰直角△中,,,則.點、均在一次函數(shù)的圖象上,,解得,,該直線方程是.點,的橫坐標相同,都是3,當(dāng)時,,即,則,.同理,,,,當(dāng)時,,即點的坐標為,.故答案為,.【點睛】本題考查了一次函數(shù)圖象上點的坐標特點,涉及到的知識點有待定系數(shù)法求一次函數(shù)解析式,一次函數(shù)圖象上點的坐標特征以及等腰直角三角形的性質(zhì).解答該題的難點是找出點Bn的坐標的規(guī)律.8、1【解析】【分析】將點P坐標代入解析式可求b=-2a+1,即可求解.【詳解】解:∵點P(a,b)在一次函數(shù)y=-2x+1的圖象上,∴b=-2a+1,∴2a+b=1,故答案為:1.【點睛】本題考查了一次函數(shù)圖象上點的坐標特征,熟練掌握函數(shù)圖象上點的坐標滿足函數(shù)解析式是本題的關(guān)鍵.三、解答題1、(1)B(2,0),P(2,3)(2)(2,3)或(,)(3)(0,5)或(0,-1)或(4,1)【解析】【分析】(1)設(shè)B(x,0),則P(x,x+2),由S△ABC=6列方程求出x的值,即得到點B和點P的坐標;(2)當(dāng)點D與點P重合時,△ABD是直角三角形;當(dāng)點D與點P不重合時,過點C作CE⊥AP,先求出直線CE的解析式,再由直線BD∥CE求出直線BD的解析式且與y=x+2聯(lián)立方程組,求出點D的坐標;(3)畫出圖形,根據(jù)平行四邊形的性質(zhì)分三種情況得出點Q坐標.(1)解:如圖1,設(shè)B(x,0),則P(x,x+2),對于y=x+2,當(dāng)y=0時,由x+2=0,得,x=-4;當(dāng)x=0時,y=2,∴A(-4,0),C(0,2),∵點P在第一象限,且S△ABC=6,∴×2(x+4)=6,解得x=2,∴B(2,0),P(2,3).(2)如圖1,點D與點P重合,此時∠ABD=∠ABP=90°,∴△ABD是直角三角形,此時D(2,3);如圖2,點D在線段AP上,∠ADB=90°,此時△ABD是直角三角形,作CE⊥AP,交x軸于點E,則∠ACE=∠ADB=90°,∴BD∥CE,AC=,設(shè)E(m,0),由AE?OC=AC?CE=S△ACE,得AE?OC=AC?CE,∴2(m+4)=CE,∴CE=(m+4),∵∠COE=90°,∴OE2+OC2=CE2,∴m2+22=(m+4)]2,整理得,m2-2m+1=0,解得,m1=m2=1,∴E(1,0);設(shè)直線CE的解析式為y=kx+2,則k+2=0,解得,k=-2,∴y=-2x+2;設(shè)直線BD的解析式為y=-2x+n,則-2×2+n=0,解得,n=4,∴y=-2x+4,由,得:,∴D(,);由圖象可知,當(dāng)點D在PA的延長線上,或點D在AP的延長線上,則△ABD不能是直角三角形,綜上所述,點D的坐標是(2,3)或(,);(3)存在.如圖,當(dāng)四邊形CQBP是平行四邊形時,此時,CQ=PB=3,∴Q(0,-1);當(dāng)四邊形CQ1PB是平行四邊形時,此時,CQ1=PB=3,∴Q1(0,5);當(dāng)四邊形CPQ2B是平行四邊形時,此時,CP∥BQ2且CB∥PQ2,∴Q2(4,1);綜上所述,點Q的坐標為(0,5)或(0,-1)或(4,1).【點睛】此題重點考查一次函數(shù)的圖象與性質(zhì)、平行四邊形的判定與性質(zhì)、勾股定理等知識點,在解第(2)題、第(3)題時,應(yīng)進行分類討論,求出所有符合條件的結(jié)果,此題綜合性較強,難度較大,屬于考試壓軸題.2、(1)見解析;(2)①3;②【解析】【分析】(1)根據(jù)三角形中位線的性質(zhì)得到DEAB,BD=CD,即可證得四邊形ABDF是平行四邊形,得到AF=BD=CD,由此得到結(jié)論;(2)①由點D、E分別是邊BC、AC的中點,得到DE=AB,由四邊形是平行四邊形,得到DF=2DE=AB=3,再根據(jù)矩形的性質(zhì)得到AC=DF=3;②根據(jù)菱形的性質(zhì)得到DF⊥AC,推出AB⊥AC,利用勾股定理求出AC,得到CE,利用面積法求出答案.(1)證明:∵點D、E分別是邊BC、AC的中點,∴DEAB,BD=CD,∵,∴四邊形ABDF是平行四邊形,∴AF=BD=CD,∴四邊形是平行四邊形;(2)解:①∵點D、E分別是邊BC、AC的中點,∴DE=AB,∵四邊形是平行四邊形,∴DF=2DE=AB=3,∵四邊形是矩形,∴AC=DF=3,故答案為:3;②∵四邊形是菱形,∴DF⊥AC,∵DEAB,∴AB⊥AC,∴AD=BC=2.5,∴AE=EC=2,∵∴∴,故答案為:.【點睛】此題考查了平行四邊形的判定及性質(zhì),矩形的性質(zhì),菱形的性質(zhì),三角形中位線的判定及性質(zhì),勾股定理,是一道較為綜合的幾何題,熟練掌握各知識點并應(yīng)用是解題的關(guān)鍵.3、見詳解【解析】【分析】先作m的垂直平分線,取m的一半為AB,然后以點A為圓心,以m長為半徑畫弧,交m的垂直平分線于C,連結(jié)AC,利用作一個角等于已知角,過A作BC的平行線AD,過C作AB的平行線CD,兩線交于D即可.【詳解】解:先作m的垂直平分線,取m的一半為AB,以點A為圓心,以m長為半徑畫弧,交m的垂直平分線于C,連結(jié)AC,過A作BC的平行線,與過C作AB的平行線交于D,則四邊形ABCD為所求作矩形;∵AD∥BC,CD∥AB,∴四邊形ABCD為平行四邊形,∵BC⊥AB,∴∠ABC=90°,∴四邊形ABCD為矩形,∵AB=,AC=m,∴矩形的寬與對角線滿足條件,∴四邊形ABCD為所求作矩形.【點睛】本題考查矩形作圖,線段垂直平分線,作線段等于已知線段,平行線作法,掌握矩形作圖,線段垂直平分線,作線段等于已知線段,平行線作法是解題關(guān)鍵.4、(1)證明見解析(2)證明見解析【解析】【分析】(1)先根據(jù)平行四邊形的性質(zhì)可得,再根據(jù)垂直的定義可得,然后根據(jù)三角形全等的判定定理(定理)即可得證;(2)先根據(jù)平行四邊形的性質(zhì)可得,再根據(jù)平行線的性質(zhì)可得,然后根據(jù)矩形的判定即可得證.(1)證明:四邊形是平行四邊形,,,,在和中,,.(2)證明:,,四邊形是平行四邊形,,,在四邊形中,,四邊形是矩形.【點睛】本題考查了平行四邊形的性質(zhì)、三角形全等的判定定理、矩形的判定等知識點,熟練掌握各判定定理與性質(zhì)是解題關(guān)鍵.5、(1)見解析(2)【解析】【分析】(1)作∠DAE的角平分線,與DC的交點即為所求,理由:可先證明△AEF≌△ADF,可得∠AEF=∠D=90°,從而得到∠DAE+∠DFE=180°,進而得到∠EFC=∠DAE,再由AD∥BC,即可求解;(2)根據(jù)矩形的性質(zhì)可得∠B=∠C=∠D=90°,AD=BC=5,AB=CD=4,從而得到BE=3,進而得到EC=2,然后在中,由勾股定理,即可求解.(1)解:如圖,作∠DAE的角平分線,與DC的交點即為所求.∵AE=AD,∠EAF=∠DAF,AF=AF,∴△AEF≌△ADF,∴∠AEF=∠D=90°,∴∠DAE+∠DFE=180°,∵∠EFC+∠DFE=180°,∴∠EFC=∠DAE,∵在矩形ABCD中,AD∥BC,∴∠BEA=∠DAE,∴∠EFC=∠BEA;(2)解:∵四邊形ABCD是矩形,∴∠B=∠C=∠D=90°,AD=BC=5,AB=CD=4,∵AE=AD=5,∴BE===3,∴EC=BC﹣BE=5﹣3=2,由(1)得:△AEF≌△ADF,∴,在中,,∴,∴.【點睛】本題主要考查了矩形的性質(zhì),全等三角形的判定和性質(zhì),勾股定理等知識,熟練掌握矩形的性質(zhì),全等三角形的判定和性質(zhì),勾

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論