京改版數(shù)學9年級上冊期中試卷含答案詳解【突破訓練】_第1頁
京改版數(shù)學9年級上冊期中試卷含答案詳解【突破訓練】_第2頁
京改版數(shù)學9年級上冊期中試卷含答案詳解【突破訓練】_第3頁
京改版數(shù)學9年級上冊期中試卷含答案詳解【突破訓練】_第4頁
京改版數(shù)學9年級上冊期中試卷含答案詳解【突破訓練】_第5頁
已閱讀5頁,還剩28頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

京改版數(shù)學9年級上冊期中試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題26分)一、單選題(6小題,每小題2分,共計12分)1、已知點都在反比例函數(shù)的圖象上,且,則下列結(jié)論一定正確的是(

)A. B. C. D.2、三孔橋橫截面的三個孔都呈拋物線形,兩小孔形狀、大小完全相同.當水面剛好淹沒小孔時,大孔水面寬度為10米,孔頂離水面1.5米;當水位下降,大孔水面寬度為14米時,單個小孔的水面寬度為4米,若大孔水面寬度為20米,則單個小孔的水面寬度為()A.4米 B.5米 C.2米 D.7米3、如圖,已知中,,則的值為(

)A. B. C. D.4、已知二次函數(shù)y=ax2+bx+c與自變量x的部分對應(yīng)值如表,下列說法錯誤的是()x…﹣1013…y…﹣3131…A.a(chǎn)<0B.方程ax2+bx+c=﹣2的正根在4與5之間C.2a+b>0D.若點(5,y1)、(﹣,y2)都在函數(shù)圖象上,則y1<y25、將三角形紙片()按如圖所示的方式折疊,使點C落在邊上的點D,折痕為.已知,若以點B、D、F為頂點的三角形與相似,那么的長度是(

)A.2 B.或2 C. D.或26、拋物線的對稱軸為直線.若關(guān)于的一元二次方程(為實數(shù))在的范圍內(nèi)有實數(shù)根,則的取值范圍是()A. B. C. D.二、多選題(7小題,每小題2分,共計14分)1、對于二次函數(shù),下列說法不正確的是(

)A.圖像開口向下B.圖像的對稱軸是直線C.函數(shù)最大值為0D.隨的增大而增大2、如圖,的頂點位于正方形網(wǎng)格的格點上,若,則滿足條件的是(

)A. B.C. D.3、如圖所示,,,,均在正方形網(wǎng)格中的格點上,,分別用和表示,下列四個選項中不正確的是()A. B. C. D.4、如圖,在邊長為4的正方形ABCD中,E、F是AD邊上的兩個動點,且AE=FD,連接BE、CF、BD,CF與BD交于點G,連接AG交BE于點H,連接DH,下列結(jié)論中正確的是(

A.△ABG∽△FDG B.HD平分∠EHG C.AG⊥BED.S△HDG:S△HBG=tan∠DAG E.線段DH的最小值是2﹣25、如圖,△ABC中,P為AB上點,在下列四個條件中能確定△APC和△ACB相似的是(

)A.∠ACP=∠B B.∠APC=∠ACB C.∠CAP=∠BAC D.6、如圖,△ABC中,D在AB上,E在AC上,下列條件中,不能判定DE∥BC的是(

).A. B.C. D.7、在直角坐標系中,若三點A(1,﹣2),B(2,﹣2),C(2,0)中恰有兩點在拋物線y=ax2+bx﹣2(a>0且a,b均為常數(shù))的圖象上,則下列結(jié)論正確的是(

).A.拋物線的對稱軸是直線B.拋物線與x軸的交點坐標是(﹣,0)和(2,0)C.當t>時,關(guān)于x的一元二次方程ax2+bx﹣2=t有兩個不相等的實數(shù)根D.若P(m,n)和Q(m+4,h)都是拋物線上的點且n<0,則.第Ⅱ卷(非選擇題74分)三、填空題(7小題,每小題2分,共計14分)1、二次函數(shù)y=-3x2-2的最大值為_____.2、已知點A(3,a)、B(-1,b)在函數(shù)的圖像上,那么a___b(填“>”或“=”或“<”)3、如圖是二次函數(shù)和一次函數(shù)y2=kx+t的圖象,當y1≥y2時,x的取值范圍是_____.4、在平面直角坐標系中,點O為坐標原點,點A的坐標為(3,4),點B的坐標為(7,0),D,E分別是線段AO,AB上的點,以DE所在直線為對稱軸,把△ADE作軸對稱變換得△A′DE,點A′恰好在x軸上,若△OA′D與△OAB相似,則OA′的長為________.(結(jié)果保留2個有效數(shù)字)5、從噴水池噴頭噴出的水珠,在空中形成一條拋物線,如圖所示,在拋物線各個位置上,水珠的豎直高度(單位:)與它距離噴頭的水平距離(單位:)之間滿足函數(shù)關(guān)系式,噴出水珠的最大高度是______.6、已知二次函數(shù)的圖象與x軸的兩個交點A,B關(guān)于直線x=﹣1對稱,且AB=6,頂點在函數(shù)y=2x的圖象上,則這個二次函數(shù)的表達式為________

.7、圖1是一輛吊車的實物圖,圖2是其工作示意圖,AC是可以伸縮的起重臂,其轉(zhuǎn)動點A離地面BD的高度AH為3.4m.當起重臂AC長度為9m,張角∠HAC為118°時,操作平臺C離地面的高度為_______米.(結(jié)果保留小數(shù)點后一位:參考數(shù)據(jù):sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)四、解答題(6小題,每小題10分,共計60分)1、某公司計劃購進一批原料加工銷售,已知該原料的進價為6.2萬元/t,加工過程中原料的質(zhì)量有20%的損耗,加工費m(萬元)與原料的質(zhì)量x(t)之間的關(guān)系為m=50+0.2x,銷售價y(萬元/t)與原料的質(zhì)量x(t)之間的關(guān)系如圖所示.(1)求y與x之間的函數(shù)關(guān)系式;(2)設(shè)銷售收入為P(萬元),求P與x之間的函數(shù)關(guān)系式;(3)原料的質(zhì)量x為多少噸時,所獲銷售利潤最大,最大銷售利潤是多少萬元?(銷售利潤=銷售收入﹣總支出).2、已知圖中的曲線是反比例函數(shù)y=(m為常數(shù))圖象的一支.(1)根據(jù)圖象位置,求m的取值范圍;(2)若該函數(shù)的圖象任取一點A,過A點作x軸的垂線,垂足為B,當△OAB的面積為4時,求m的值.3、端午節(jié)是我國入選世界非物質(zhì)文化遺產(chǎn)的傳統(tǒng)節(jié)日,端午節(jié)吃粽子是中華民族的傳統(tǒng)習俗.市場上豆沙粽的進價比豬肉粽的進價每盒便宜10元,某商家用8000元購進的豬肉粽和用6000元購進的豆沙粽盒數(shù)相同.在銷售中,該商家發(fā)現(xiàn)豬肉粽每盒售價50元時,每天可售出100盒;每盒售價提高1元時,每天少售出2盒.(1)求豬肉粽和豆沙粽每盒的進價;(2)設(shè)豬肉粽每盒售價x元表示該商家每天銷售豬肉粽的利潤(單位:元),求y關(guān)于x的函數(shù)解析式并求最大利潤.4、(1)計算:.(2)解方程:.5、如圖,A,B兩點被池塘隔開,在AB外取一點C,連接AC,BC,在AC上取點M,使AM=3MC,作MN∥AB交BC于點N,量得MN=38m,求AB的長.6、已知反比例函數(shù)y=(m為常數(shù))的圖象在第一、三象限.(1)求m的取值范圍;(2)如圖,若該反比例函數(shù)的圖象經(jīng)過?ABOD的頂點D,點A,B的坐標分別為(0,3),(﹣2,0),求出該反比例函數(shù)的解析式;(3)若E(x1,y1),F(xiàn)(x2,y2)都在該反比例函數(shù)的圖象上,且x1>x2>0,則y1和y2有怎樣的大小關(guān)系?-參考答案-一、單選題1、C【解析】【分析】根據(jù)反比例函數(shù)的性質(zhì),可得答案.【詳解】反比例函數(shù)中,=-2020<0,圖象位于二、四象限,∵a<0,∴P(a,m)在第二象限,∴m>0;∵b>0,∴Q(b,n)在第四象限,∴n<0.∴n<0<m,即m>n,故選:C.【考點】本題考查了反比例函數(shù)的性質(zhì),利用反比例函數(shù)的性質(zhì):k<0時,圖象位于二四象限是解題關(guān)鍵.2、B【解析】【分析】根據(jù)題意,可以畫出相應(yīng)的拋物線,然后即可得到大孔所在拋物線解析式,再求出頂點為A的小孔所在拋物線的解析式,將x=﹣10代入可求解.【詳解】解:如圖,建立如圖所示的平面直角坐標系,由題意可得MN=4,EF=14,BC=10,DO=,設(shè)大孔所在拋物線解析式為y=ax2+,∵BC=10,∴點B(﹣5,0),∴0=a×(﹣5)2+,∴a=-,∴大孔所在拋物線解析式為y=-x2+,設(shè)點A(b,0),則設(shè)頂點為A的小孔所在拋物線的解析式為y=m(x﹣b)2,∵EF=14,∴點E的橫坐標為-7,∴點E坐標為(-7,-),

∴-=m(x﹣b)2,∴x1=+b,x2=-+b,∴MN=4,∴|+b-(-+b)|=4∴m=-,∴頂點為A的小孔所在拋物線的解析式為y=-(x﹣b)2,∵大孔水面寬度為20米,∴當x=-10時,y=-,∴-=-(x﹣b)2,∴x1=+b,x2=-+b,∴單個小孔的水面寬度=|(+b)-(-+b)|=5(米),故選:B.【考點】本題考查二次函數(shù)的應(yīng)用,解答本題的關(guān)鍵是明確題意,利用二次函數(shù)的性質(zhì)和數(shù)形結(jié)合的思想解答.3、D【解析】【分析】根據(jù)勾股定理,可得BC的長,根據(jù),可得答案.【詳解】解:在中,由勾股定理,得,∴.故選D【考點】本題考查了銳角正切值的求法,利用正切函數(shù)等于對邊比鄰邊是解題關(guān)鍵.4、B【解析】【分析】利用表中函數(shù)值的變換情況可判斷拋物線的開口方向,則可對A進行判斷;利用拋物線的對稱性可得x=﹣1和x=4的函數(shù)值相等,則可對B進行判斷;利用x=0和x=3時函數(shù)值相等可得到拋物線的對稱軸方程,則可對C進行判斷;利用二次函數(shù)的性質(zhì)則可對D進行判斷.【詳解】解:∵二次函數(shù)值先由小變大,再由大變小,∴拋物線的開口向下,∴a<0,故A正確;∵x=﹣1時,y=﹣3,∴x=4時,y=﹣3,∴二次函數(shù)y=ax2+bx+c的函數(shù)值為﹣2時,﹣1<x<0或3<x<4,即方程ax2+bx+c=﹣2的負根在﹣1與0之間,正根在3與4之間,故B錯誤;∵拋物線過點(0,1)和(3,1),∴拋物線的對稱軸為直線x=,∴﹣=>1,∴2a+b>0,故C正確;∵(﹣,y2)關(guān)于直線x=的對稱點為(,y2),∵<5,∴y1<y2,故D正確;故選:B.【考點】本題主要考查了一元二次方程根與系數(shù)的關(guān)系、拋物線與x軸的交點、圖象法求一元二次方程的近似根、根的判別式、二次函數(shù)圖象與系數(shù)的關(guān)系,準確計算是解題的關(guān)鍵.5、B【解析】【分析】分兩種情況:若或若,再根據(jù)相似三角形的性質(zhì)解題【詳解】∵沿折疊后點C和點D重合,∴,設(shè),則,以點B、D、F為頂點的三角形與相似,分兩種情況:①若,則,即,解得;②若,則,即,解得.綜上,的長為或2,故選:B.【考點】本題考查相似三角形的性質(zhì),是重要考點,掌握相關(guān)知識是解題關(guān)鍵.6、A【解析】【分析】根據(jù)給出的對稱軸求出函數(shù)解析式為,將一元二次方程的實數(shù)根可以看做與函數(shù)的有交點,再由的范圍確定的取值范圍即可求解;【詳解】∵的對稱軸為直線,∴,∴,∴一元二次方程的實數(shù)根可以看做與函數(shù)的有交點,∵方程在的范圍內(nèi)有實數(shù)根,當時,,當時,,函數(shù)在時有最小值2,∴,故選A.【考點】本題考查二次函數(shù)的圖象及性質(zhì);能夠?qū)⒎匠痰膶崝?shù)根問題轉(zhuǎn)化為二次函數(shù)與直線的交點問題,借助數(shù)形結(jié)合解題是關(guān)鍵.二、多選題1、ACD【解析】【分析】根據(jù)題目中的函數(shù)解析式,可以判斷各個選項中的說法是否正確.【詳解】解:二次函數(shù),a=2>0,∴該函數(shù)的圖象開口向上,故選項A錯誤,圖象的對稱軸是直線x=1,故選項B正確,函數(shù)的最小值是y=0,故選項C錯誤,當x>1時隨的增大而增大,故選項D錯誤,故選:A,C,D.【考點】本題考查二次函數(shù)的性質(zhì)、二次函數(shù)的最值,解答本題的關(guān)鍵是明確題意,利用二次函數(shù)的性質(zhì)解答.2、AD【解析】【分析】根據(jù)在直角三角形中一個角的正切值等于其所對的邊與斜邊的比值進行構(gòu)造直角三角形求解判斷即可.【詳解】解:A、如圖所示,,∴,故此選項符合題意;B、如圖所示,,∴,故此選項不符合題意;C、如圖所示,,∴,故此選項不符合題意;D、如圖所示,,,BD⊥AC,∴,∴,∴∴,故此選項符合題意;故選AD.【考點】本題主要考查了求正切值和勾股定理,解題的關(guān)鍵在于能夠構(gòu)造直角三角形進行求解.3、ABD【解析】【分析】利用勾股定理先求解再分別求解,從而可得答案.【詳解】解:由勾股定理得:所以:,,,,故A,B,D符合題意,C不符合題意;故選:ABD【考點】本題考查的是銳角三角函數(shù)的定義及計算,掌握銳角三角函數(shù)的定義是解題的關(guān)鍵.4、ACDE【解析】【分析】首先證明△ABE≌△DCF,△ADG≌△CDG(SAS),△AGB≌△CGB,利用全等三角形的性質(zhì),相似三角形的判定與性質(zhì),等高模型、三邊關(guān)系一一判斷即可.【詳解】解:∵四邊形ABCD是正方形,∴AB=CD,∠BAD=∠ADC=90°,∠ADB=∠CDB=45°,在△ABE和△DCF中,,∴△ABE≌△DCF(SAS),∴∠ABE=∠DCF,在△ADG和△CDG中,,‘∴△ADG≌△CDG(SAS),∴∠DAG=∠DCF,∴∠ABE=∠DAG,∵∠DAG+∠BAH=90°,∴∠ABE+∠BAH=90°,∴∠AHB=90°,∴AG⊥BE,故選項C正確;同法可證:△AGB≌△CGB,∵DF∥CB,∴△CBG∽△FDG,∴△ABG∽△FDG,故選項A正確;∵S△HDG:S△HBG=DG:BG=DF:BC=DF:CD=tan∠FCD,又∵∠DAG=∠FCD,∴S△HDG:S△HBG=tan∠FCD=tan∠DAG,故選項D正確;取AB的中點O,連接OD、OH,∵正方形的邊長為4,∴AO=OH=×4=2,由勾股定理得,OD==2,∵DH≥OD-OH,∴O、D、H三點共線時,DH最小,∴DH最小=2-2.故選項E正確,無法證明DH平分∠EHG,故選項B錯誤,故選項ACDE正確,故選:ACDE.【考點】本題考查了正方形的性質(zhì),相似三角形的判定與性質(zhì),全等三角形的判定與性質(zhì),三角形的三邊關(guān)系,三角函數(shù),勾股定理、等高模型等知識,解題的關(guān)鍵是靈活運用所學知識解決問題,難點在于選項E作輔助線并確定出DH最小時的情況.5、ABD【解析】【分析】根據(jù)有兩組角對應(yīng)相等的兩個三角形相似可對A、B、C進行判斷;根據(jù)兩組對應(yīng)邊的比相等且夾角對應(yīng)相等的兩個三角形相似可對D進行判斷.【詳解】解:∵∠ACP=∠B,∠A公共角,∴△APC∽△ACB,故選項A正確,符合題意;∵∠APC=∠ACB,∠A公共角,∴△APC∽△ACB,故選項B正確,符合題意;∵∠CAP=∠BAC,只有一組角相等,∴不能判斷△APC和△ACB相似,故選項C錯誤,不符合題意;∵,∠A是夾角,∴△APC∽△ACB,故選項D正確,符合題意.故答案為:ABD.【考點】本題考查了相似三角形的判定:兩組對應(yīng)邊的比相等且夾角對應(yīng)相等的兩個三角形相似;有兩組角對應(yīng)相等的兩個三角形相似.6、BCD【解析】【分析】利用各選項給定的條件,結(jié)合再證明,可得,逐一分析各選項,從而可得答案.【詳解】解:A、而則故A不符合題意;B、與不一定相似,則與不一定相等,不一定平行,故B符合題意;C、,而而不一定相等,故不一定平行,故C符合題意;D、與不一定相似,則與不一定相等,不一定平行,故D符合題意;故選:BCD.【考點】本題考查的是相似三角形的判定與性質(zhì),平行線的判定,掌握兩邊對應(yīng)成比例且夾角相等的兩個三角形相似是解題的關(guān)鍵.7、ACD【解析】【分析】利用待定系數(shù)法將各點坐標兩兩組合代入,求得拋物線解析式為,再根據(jù)對稱軸直線求解即可得到A選項是正確答案,由拋物線解析式為,令,求解即可得到拋物線與x軸的交點坐標(-1,0)和(2,0),從而判斷出B選項不正確,令關(guān)于x的一元二次方程的根的判別式當,解得,從而得到C選項正確,根據(jù)拋物線圖象的性質(zhì)由,推出,從而推出,得到D選項正確.【詳解】當拋物線圖象經(jīng)過點A和點B時,將A(1,-2)和B(2,-2)分別代入,得,解得,不符合題意,當拋物線圖象經(jīng)過點B和點C時,將B(2,-2)和C(2,0)分別代入,得,此時無解,當拋物線圖象經(jīng)過點A和點C時,將A(1,-2)和C(2,0)分別代入得,解得,因此,拋物線經(jīng)過點A和點C,其解析式為,拋物線的對稱軸為直線,故A選項正確,因為,所以,拋物線與x軸的交點坐標是(-1,0)和(2,0),故B選項不正確,由得,方程根的判別式當,時,,當時,即,解得,此時關(guān)于x的一元二次方程有兩個不相等的實數(shù)根,故C選項正確,因為拋物線與x軸交于點(-1,0)和(2,0),且其圖象開口向上,若P(m,n)和Q(m+4,h)都是拋物線上的點,且n<0,得,又得,所以h>0,故D選項正確.故選ACD.【考點】本題考查拋物線與x軸的交點?根的判別式?二次函數(shù)的性質(zhì)及二次函數(shù)圖象上點的坐標特征,解題的關(guān)鍵是利用數(shù)形結(jié)合思想,充分掌握求二次函數(shù)的對稱軸及交點坐標的解答方法.三、填空題1、-2【解析】【分析】根據(jù)二次函數(shù)的性質(zhì)即可求得最值【詳解】解:由于二次函數(shù)y=-3x2-2的圖象是拋物線,開口向下,對稱軸為y軸,所以當x=0時,函數(shù)取得最大值為-2,故答案為-2.【考點】本題考查了二次函數(shù)y=ax2+k的性質(zhì),熟練掌握二次函數(shù)y=ax2+k的性質(zhì)是解題的關(guān)鍵.2、<【解析】【分析】把點A(3,a),B(-1,b)代入函數(shù)上求出a、b的值,再進行比較即可.【詳解】把點A(3,a)代入函數(shù)可得,a=-1;把點B(-1,b)代入函數(shù)可得,b=3;∵3>-1,即a<b.故答案為:<.【考點】本題比較簡單,考查了反比例函數(shù)圖象上點的坐標特點,即反比例函數(shù)圖象上點的坐標一定適合此函數(shù)的解析式.3、﹣1≤x≤2【解析】【分析】根據(jù)圖象可以直接回答,使得y1≥y2的自變量x的取值范圍就是直線y1=kx+m落在二次函數(shù)y2=ax2+bx+c的圖象上方的部分對應(yīng)的自變量x的取值范圍.【詳解】根據(jù)圖象可得出:當y1≥y2時,x的取值范圍是:﹣1≤x≤2.故答案為:﹣1≤x≤2.【考點】本題考查了二次函數(shù)的性質(zhì).本題采用了“數(shù)形結(jié)合”的數(shù)學思想,使問題變得更形象、直觀,降低了題的難度.4、2.0或3.3【解析】【分析】由點A的坐標為(3,4),點B的坐標為(7,0),可得OA=5,OB=7,AB=4,然后分別由△OA′D∽△OAB與△OA′D∽△OBA,根據(jù)相似三角形的對應(yīng)邊成比例,即可得答案.【詳解】∵點A的坐標為(3,4),點B的坐標為(7,0),∴OA==5,OB=7,AB==4,若△OA′D∽△OAB,則,設(shè)AD=x,則OD=5﹣x,A′D=x,即,解得:x≈2.2,∴,∴OA′=2.0;若△OA′D∽△OBA,則,同理:可得:OA′≈3.3.故答案為2.0或3.3.【考點】此題考查了相似三角形的性質(zhì)與折疊的知識.注意數(shù)形結(jié)合與方程思想的應(yīng)用,小心別漏解是解題關(guān)鍵.5、3【解析】【分析】把二次函數(shù)化為頂點式,進而即可求解.【詳解】解:∵,∴當x=1時,,故答案是:3.【考點】本題主要考查二次函數(shù)的圖像和性質(zhì),掌握二次函數(shù)的頂點式,是解題的關(guān)鍵.6、y=x2+x﹣【解析】【分析】利用拋物線與x軸的兩個交點關(guān)于對稱軸對稱,求出A和B的坐標,再根據(jù)頂點坐標在y=2x的圖象上,將x=1代入即可求出頂點坐標,設(shè)頂點式即可求出二次函數(shù)表達式.【詳解】解:∵二次函數(shù)的圖象與x軸的兩個交點A,B關(guān)于直線x=﹣1對稱,且AB=6,∴A(-4,0),B(2,0),頂點橫坐標為-1,又∵頂點在函數(shù)y=2x的圖象上,∴將x=1代入,得y=2,即頂點坐標為(-1,-2)設(shè)二次函數(shù)解析式為y=a(x+1)2-2,代入A(-4,0),得a=,即y=(x+1)2-2=x2+x﹣【考點】本題考查了二次函數(shù)解析式的求法,中等難度,根據(jù)對稱軸找到頂點坐標和與x軸的交點坐標是解題關(guān)鍵.7、7.6【解析】【分析】作于,于,如圖2,易得四邊形為矩形,則,,再計算出,在中利用正弦可計算出,然后計算即可.【詳解】解:作于E,于,如圖2,∴四邊形為矩形,∴,,∴,∴在中,,∴,∴,∴操作平臺離地面的高度為.故答案是:.【考點】本題考查了解直角三角形的應(yīng)用:先將實際問題抽象為數(shù)學問題(畫出平面圖形,構(gòu)造出直角三角形轉(zhuǎn)化為解直角三角形問題),然后利用三角函數(shù)的定義進行幾何計算.四、解答題1、(1);(2);(3)原料的質(zhì)量為24噸時,所獲銷售利潤最大,最大銷售利潤是萬元【解析】【分析】(1)利用待定系數(shù)法求函數(shù)關(guān)系式;(2)根據(jù)銷售收入=銷售價×銷售量列出函數(shù)關(guān)系式;(3)設(shè)銷售總利潤為W,根據(jù)銷售利潤=銷售收入﹣原料成本﹣加工費列出函數(shù)關(guān)系式,然后根據(jù)二次函數(shù)的性質(zhì)分析其最值.【詳解】解:(1)設(shè)y與x之間的函數(shù)關(guān)系式為,將(20,15),(30,12.5)代入,可得:,解得:,∴y與x之間的函數(shù)關(guān)系式為;(2)設(shè)銷售收入為P(萬元),∴,∴P與x之間的函數(shù)關(guān)系式為;(3)設(shè)銷售總利潤為W,∴,整理,可得:,∵﹣<0,∴當時,W有最大值為,∴原料的質(zhì)量為24噸時,所獲銷售利潤最大,最大銷售利潤是萬元.【考點】本題考查了二次函數(shù)的實際應(yīng)用,涉及了數(shù)形結(jié)合的數(shù)學思想,熟練掌握待定系數(shù)法求解析式是解決本題的關(guān)鍵.2、(1)m>5;(2)m=13.【解析】【分析】(1)由反比例函數(shù)圖象位于第一象限得到m﹣5大于0,即可求出m的范圍;(2)根據(jù)反比例函數(shù)系數(shù)k的幾何意義得出(m﹣5)=4,解得即可.【詳解】解:(1)∵這個反比例函數(shù)的圖象分布在第一、第三象限,∴m﹣5>0,解得m>5;(2)∵S△OAB=|k|,△OAB的面積為4,∴(m﹣5)=4,∴m=13.【考點】此題考查了反比例函數(shù)系數(shù)k的幾何意義,反比例函數(shù)的圖象與性質(zhì),根據(jù)系數(shù)k的幾何意義得出(m?5)=4是解題的關(guān)鍵.3、(1)豬肉粽每盒進價40元,豆沙粽每盒進價30元;(2),最大利潤為1750元【解析】【分析】(1)設(shè)豬肉粽每盒進價a元,則豆沙粽每盒進價元,根據(jù)某商家用8000元購進的豬肉粽和用6000元購進的豆沙粽盒數(shù)相同列方程計算即可;(2)根據(jù)題意當時,每天可售100盒,豬肉粽每盒售x元時,每天可售盒,列出二次函

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論