強化訓練-山東省萊西市中考數(shù)學真題分類(平行線的證明)匯編定向攻克試卷(含答案詳解)_第1頁
強化訓練-山東省萊西市中考數(shù)學真題分類(平行線的證明)匯編定向攻克試卷(含答案詳解)_第2頁
強化訓練-山東省萊西市中考數(shù)學真題分類(平行線的證明)匯編定向攻克試卷(含答案詳解)_第3頁
強化訓練-山東省萊西市中考數(shù)學真題分類(平行線的證明)匯編定向攻克試卷(含答案詳解)_第4頁
強化訓練-山東省萊西市中考數(shù)學真題分類(平行線的證明)匯編定向攻克試卷(含答案詳解)_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山東省萊西市中考數(shù)學真題分類(平行線的證明)匯編定向攻克考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、下列圖形中,由AB∥CD,能得到∠1=∠2的是(

)A. B.C. D.2、如圖,下列條件中,能判斷直線a∥b的有()個.①∠1=∠4;②∠3=∠5;③∠2+∠5=180°;④∠2+∠4=180°A.1 B.2 C.3 D.43、如圖,點E在的延長線上,下列條件不能判斷的是(

)A. B. C. D.4、如圖,已知在△ABC中,∠C=90°,BE平分∠ABC,且BE∥AD,∠BAD=20°,則∠AEB的度數(shù)為()A.100° B.110° C.120° D.130°5、兩個直角三角板如圖擺放,其中,,,AB與DF交于點M.若,則的大小為(

)A. B. C. D.6、如圖,直線,等邊三角形的頂點、分別在直線和上,邊與直線所夾的銳角為,則的度數(shù)為(

)A. B. C. D.7、將一副三角尺按如圖所示的方式擺放,則的大小為(

)A. B. C. D.8、如圖,把沿線段折疊,使點落在點處;若,,,則的度數(shù)為(

)A. B. C. D.第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、如圖,..∵,∴.∴.∴.2、說明命題“若x>-4,則x2>16”是假命題的一個反例可以是_______.3、如圖,當∠ABC,∠C,∠D滿足條件______________時,AB∥ED.4、如圖,把兩塊大小相同的含45°的三角板ACF和三角板CFB如圖所示擺放,點D在邊AC上,點E在邊BC上,且∠CFE=13°,∠CFD=32°,則∠DEC的度數(shù)為_______.5、如圖,直線AB、CD相交于點O,∠BOC=α,點F在直線AB上且在點O的右側,點E在射線OC上,連接EF,直線EM、FN交于點G.若∠MEF=n∠CEF,∠NFE=(1﹣2n)∠AFE,且∠EGF的度數(shù)與∠AFE的度數(shù)無關,則∠EGF=__.(用含有α的代數(shù)式表示)6、將“對頂角相等”改寫為“如果...那么...”的形式,可寫為__________.7、如圖,點D是△ABC兩條角平分線AP、CE的交點,如果∠BAC+∠BCA=140°,那么∠ADC=_____°.三、解答題(7小題,每小題10分,共計70分)1、如圖,直線DE、FM,分別交的兩邊于N、G,P、Q,若嗎?如果平行請說明理由.2、如圖,直線分別與直線,交于點,.平分,平分,且∥.求證:∥.3、如圖,在△ABC中,CD⊥AB,垂足為D,點E在BC上,EF⊥AB,垂足為F.(1)CD與EF平行嗎?為什么?(2)如果∠1=∠2,且∠3=115°,求∠ACB的度數(shù).4、如圖,,.(1)試說明;(2)若,且,求的度數(shù).5、如圖,已知于點,于點,,試說明.解:因為(已知),所以().同理.所以().即.因為(已知),所以().所以().6、已知:如圖,O是內一點,且OB、OC分別平分、.(1)若,求;(2)若,求;(3)若,利用第(2)題的結論求.7、如圖,在△ABC中,∠ABC=40°,∠ACB=90°,AE平分∠BAC交BC于點E.P是邊BC上的動點(不與B,C重合),連結AP,將△APC沿AP翻折得△APD,連結DC,記∠BCD=α.(1)如圖,當P與E重合時,求α的度數(shù).(2)當P與E不重合時,記∠BAD=β,探究α與β的數(shù)量關系.-參考答案-一、單選題1、B【解析】【分析】根據(jù)平行四邊形的性質逐項判斷即可.【詳解】A、∵AB//CD,∴∠1+∠2=180°.故本選項不符合題意;B、如圖,∵AB//CD,∴∠1=∠3.∵∠2=∠3,∴∠1=∠2.故本選項正確.C、∵AB//CD,∴∠BAD=∠CDA,不能得到∠1=∠2.故本選項不符合題意;D、當梯形ABDC是等腰梯形時才有,∠1=∠2.故本選項不符合題意.故選:B.【考點】本題考查平行線的性質,熟練掌握平行線的性質是解答的關鍵.2、C【解析】【分析】根據(jù)平行線的判定方法,對各選項分析判斷后利用排除法求解.【詳解】解:①∵∠1=∠4,∴a∥b(內錯角相等,兩直線平行);②∵∠3=∠5,∴a∥b(同位角相等,兩直線平行),③∵∠2+∠5=180°,∴a∥b(同旁內角互補,兩直線平行);④∠2和∠4不是同旁內角,所以∠2+∠4=180°不能判定直線a∥b.∴能判斷直線a∥b的有①②③,共3個.故選C.【考點】本題考查了平行線的判定,只有同位角相等、內錯角相等、同旁內角互補,才能推出兩被截直線平行,解題時要認準各角的位置關系.3、D【解析】【分析】直接利用平行線的判定方法分別判斷得出答案.【詳解】解:A、當∠5=∠B時,AB∥CD,不合題意;B、當∠1=∠2時,AB∥CD,不合題意;C、當∠B+∠BCD=180°時,AB∥CD,不合題意;D、當∠3=∠4時,AD∥CB,符合題意;故選:D.【考點】此題主要考查了平行線的判定,正確掌握平行線的判定方法是解題關鍵.4、B【解析】【分析】根據(jù)兩直線平行,可得∠BAD=∠ABE=20°,因為BE平分∠ABC,所以∠ABE=∠EBC=20°,所以得到∠ABC=40°,從而求出∠EAB=50°,根據(jù)三角形內角和即可得到∠AEB的度數(shù).【詳解】解:∵BE∥AD∴∠BAD=∠ABE=20°∵BE平分∠ABC∴∠ABE=∠EBC=20°∴∠ABC=40°∵∠C=90°∴∠EAB=50°∴∠AEB=180°-∠EAB-∠ABE=180°-50°-20°=110°故選B.【考點】本題考查了平行線的性質,角平分線和三角形內角和,能夠找出內錯角以及熟悉三角形內角和為180°是解決本題的關鍵.5、C【解析】【分析】根據(jù),可得再根據(jù)三角形內角和即可得出答案.【詳解】由圖可得∵,∴∴故選:C.【考點】本題考查了平行線的性質和三角形的內角和,掌握平行線的性質和三角形的內角和是解題的關鍵.6、C【解析】【分析】根據(jù),可以得到,,再根據(jù)等邊三角形可以計算出的度數(shù).【詳解】解:如圖所示:根據(jù)∴,又∵是等邊三角形∴∴∴故選:C.【考點】本題主要考查了平行線的性質,即兩直線平行內錯角相等以及兩直線平行同位角相等;明確平行線的性質是解題的關鍵.7、B【解析】【分析】先根據(jù)直角三角板的性質得出∠ACD的度數(shù),再由三角形內角和定理即可得出結論.【詳解】解:如圖所示,由一副三角板的性質可知:∠ECD=60°,∠BCA=45°,∠D=90°,∴∠ACD=∠ECD-∠BCA=60°-45°=15°,∴∠α=180°-∠D-∠ACD=180°-90°-15°=75°,故選:B.【考點】本題考查的是三角形內角和定理,熟知三角形內角和是180°是解答此題的關鍵.8、C【解析】【分析】由于折疊,可得三角形全等,運用三角形全等得出,利用平行線的性質可得出則即可求.【詳解】解:∵沿線段折疊,使點落在點處,∴,∴,∵,,∴,∵,∴,∴,故選:C.【考點】本題考查了全等三角形的性質及三角形內角和定理、平行線的性質;解題的關鍵是,理解折疊就是得到全等的三角形,根據(jù)全等三角形的對應角相等就可以解決.二、填空題1、、、【解析】【分析】根據(jù)兩直線平行的性質定理,結合三角形內角和定理推理即可得到正確結果.【詳解】解:∵,∴∴∴∴故答案為:、、【考點】本題考查平行線性質定理以及三角形內角和定理,牢記相關定理內容并能靈活應用是解題的重點.2、x=-3,答案不唯一【解析】【分析】當x=-3時,滿足x>-4,但不能得到x2>16,于是x=-3可作為說明命題“x>-4,則x2>16”是假命題的一個反例.【詳解】說明命題“x>-4,則x2>16”是假命題的一個反例可以是x=-3.故答案為-3.【考點】本題考查了命題與定理:判斷一件事情的語句,叫做命題.許多命題都是由題設和結論兩部分組成,題設是已知事項,結論是由已知事項推出的事項,一個命題可以寫成“如果…那么…”形式.有些命題的正確性是用推理證實的,這樣的真命題叫做定理.任何一個命題非真即假.要說明一個命題的正確性,一般需要推理、論證,而判斷一個命題是假命題,只需舉出一個反例即可.3、∠ABC=∠C+∠D【解析】【分析】延長CB交DE于F,根據(jù)三角形的一個外角等于與它不相鄰的兩個內角的和求出∠EFB=∠C+∠D,再根據(jù)同位角相等,兩直線平行解答即可.【詳解】如圖,延長CB交DE于F,則∠EFB=∠C+∠D,當∠ABC=∠EFB時,AB∥ED,所以,當∠ABC=∠C+∠D時,AB∥ED.故答案為∠ABC=∠C+∠D.【考點】本題考查了平行線的判定,作輔助線,把∠C、∠D轉化為一個角的度數(shù)是解題的關鍵.4、【解析】【分析】作FH垂直于FE,交AC于點H,可證得,由對應邊、對應角相等可得出,進而可求出,則.【詳解】作FH垂直于FE,交AC于點H,∵又∵,∴∵,F(xiàn)A=CF∴∴FH=FE∵∵∴又∵DF=DF∴∴∵∴∵∴∴故答案為:.【考點】本題考查了等腰三角形的性質,全等三角形的判定及其性質,作輔助線HF垂直于FE是解題的關鍵.5、α##α3【解析】【分析】利用三角形外角的性質:三角形的一個外角等于和它不相鄰的兩個內角和,以及三角形內角和定理求解.【詳解】解:∵∠CEF=∠AFE+∠BOC,∠BOC=α,∴∠CEF=α+∠AFE,∵∠MEF=n∠CEF,∴∠MEF=n(α+∠AFE),∵∠EGF=∠MEF﹣∠NFE,∴∠EGF=n(α+∠AFE)﹣(1﹣2n)∠AFE=nα+(3n﹣1)∠AFE,∵∠EGF的度數(shù)與∠AFE的度數(shù)無關,∴3n﹣1=0,即n=,∴∠EGF=α;故答案為:α.【考點】此題考查了三角形外角的性質及角度計算,解題的關鍵是理解∠EGF的度數(shù)與∠AFE的度數(shù)無關的含義.6、如果兩個角互為對頂角,那么這兩個角相等【解析】【分析】根據(jù)命題的形式解答即可.【詳解】將“對頂角相等”改寫為“如果...那么...”的形式,可寫為如果兩個角互為對頂角,那么這兩個角相等,故答案為:如果兩個角互為對頂角,那么這兩個角相等.【考點】此題考查命題的形式,可寫成用關聯(lián)詞“如果...那么...”連接的形式,準確確定命題中的題設和結論是解題的關鍵.7、110【解析】【分析】根據(jù)CE,AP分別平分∠ACB和∠BAC,得∠CAP=∠BAC,∠ACE=∠BCA,再根據(jù)三角形內角和定理,求出∠ADC即可.【詳解】解:∵CE,AP分別平分∠ACB和∠BAC,∴∠ACE=∠BCA,∠CAP=∠BAC,∵∠BAC+∠BCA=140°,∴∠CAP+∠ACE=70°,∴∠ADC=180°﹣(∠CAP+∠ACE)=180°﹣70°=110°,故答案為:110.【考點】本題考查了角平分線的性質和三角形內角和定理,熟練掌握了角平分線的性質是解題的關鍵.三、解答題1、平行【解析】【分析】由鄰補角關系得出∠BPQ=115°,得出∠BPQ=∠BNG,由同位角相等即可得出結論.【詳解】平行,因為,所以,所以根據(jù)“同位角相等,兩直線平行”可得.【考點】本題考查了平行線的判定方法、鄰補角關系;熟記同位角相等,兩直線平行,證出∠BPQ=∠BNG是解決問題的關鍵.2、證明見解析.【解析】【分析】先根據(jù)角平分線的定義可得,再根據(jù)平行線的性質可得,從而可得,然后根據(jù)平行線的判定即可得證.【詳解】平分,平分,即.【考點】本題考查了平行線的判定與性質、角平分線的定義等知識點,熟記平行線的判定與性質是解題關鍵.3、(1)平行;(2)115°.【解析】【分析】(1)先根據(jù)垂直的定義得到∠CDB=∠EFB=90°,然后根據(jù)同位角相等,兩直線平行可判斷EF∥CD;(2)由EF∥CD,根據(jù)平行線的性質得∠2=∠BCD,而∠1=∠2,所以∠1=∠BCD,根據(jù)內錯角相等,兩直線平行得到DG∥BC,所以∠ACB=∠3=115°.【詳解】解:(1)CD與EF平行.理由如下:CD⊥AB,EF⊥AB,∴∠CDB=∠EFB=90°∴EF∥CD(2)如圖:EF∥CD,∴∠2=∠BCD又∠1=∠2,∴∠1=∠BCD∴DG∥BC,∴∠ACB=∠3=115°.【考點】本題考查了平行線的判定與性質:同位角相等,兩直線平行;內錯角相等,兩直線平行;兩直線平行,同位角相等.4、(1)見解析(2)35°【解析】【分析】(1)根據(jù),可得BM∥CN,從而得到∠CBM=∠BCN,再由,可得∠ABC=∠BCD,即可求證;(2)根據(jù)對頂角相等可得∠ABD=110°,再由三角形的內角和定理可得∠BAD=35°,然后根據(jù)AB∥CD,即可求解.(1)解:∵,∴BM∥CN,∴∠CBM=∠BCN,∵,∴∠3+∠CBM=∠4+∠BCN,即∠ABC=∠BCD,∴AB∥CD;(2)解:∵∠ABD=∠EBF,,∴∠ABD=110°,∴∠BAD+∠BDA=70°,∵,∴∠BAD=35°,∵AB∥CD,∴∠ADC=∠BAD=35°.【考點】本題主要考查了平行線的性質和判定,對頂角的性質,三角形的內角和定理,熟練掌握平行線的性質和判定,對頂角的性質,三角形的內角和定理是解題的關鍵.5、垂直的定義;等量代換;等式的性質1;內錯角相等,兩直線平行【解析】【分析】根據(jù)垂直定義得出,求出,根據(jù)平行線的判定推出即可.【詳解】解:因為(已知),所以(垂直的定義),同理.所以(等量代換),即.因為(已知),所以(等式的性質,所以(內錯角相等,兩直線平行).故答案為:垂直的定義;等量代換;等式的性質1;內錯角相等,兩直線平行【考點】本題考查了垂直定義和平行線的判定的應用,熟練掌握平行線的判定是解題關鍵.6、(1);(2);(3)【解析】【分析】證明∠BOC=90°+∠A,(1)(2)(3)利用這個公式計算即可解決問題;【詳解】解:∵OB、OC分別平分∠ABC、∠ACB,∴∠1=∠2=∠ABC,∠3=∠4=∠ACB,∵∠BOC=180°?(∠2+∠4),∴∠BOC=180°?(∠ABC+∠ACB)=180°?(180°?∠A)=90°+∠A.(1)∵∠A=48°,∴∠BOC=90°+×48°=114°.(2)∵∠A=n°,∴∠BOC=90°+n°,∴.(3)∵∠BOC=130°,∴130°=90°+∠A,∴∠A=80°.【考點】本題考查三角形內

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論